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Abstract

This paper provides an axiomatic characterization of Bayes’ Rule that is widely used for updating

beliefs. Bayes’ Rule is viewed as a revision rule. Consider an agent whose belief about a set of states

is characterized by a point in a unit simplex of appropriate dimension. Now new information

emerges that rules out the possible occurrence of some of the states. The revision rule then assigns

new probabilities over the subset of states that is not ruled out. The paper provides a set of axioms

that characterizes Bayes’ Rule. The main axiom is Path Independence. A revision rule satisfies Path

Independence if the probability distribution over any set of states is unaffected by the order in which

new information comes in.
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1. Introduction

Bayes’ Rule is pervasive in theoretical economics, its widest use being for the purpose

of updating beliefs. From the perspective of probability theory, Bayes’ Rule can be derived

as a consequence of the basic axioms of probability and the definition of conditional

probability. This paper offers an alternative characterization of Bayes’ Rule based on

axioms inspired by those in the axiomatic theory of surplus sharing.

The central notion in the paper is that of a revision rule. Consider a situation where an

agent has an initial or prior belief about the true state of the world. This belief is expressed

in the form of a probability distribution over the set of ‘‘possible’’ states of the world, or

geometrically by a point in the unit simplex of appropriate dimension. Now new
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information emerges which conclusively rules out the occurrence of certain states. A

revision rule formulates an updated or posterior belief, which is a probability distribution

over the states which remain ‘‘possible’’. It is clear that Bayes’ Rule is a revision rule. In

particular, it redistributes the aggregate probability weight of the states which are

eliminated, among the states which remain, in proportion to the probability that is assigned

to each of these remaining states by prior belief.

Revision Rules are also sometimes described in the literature as ‘‘Evidence based

Rules’’. Evidence based rules appear in a wide variety of related contexts. In models of

learning, Stahl (1996, 1999, mimeo) introduces a family of such evidence based rules in

the context of learning dynamics. Belief revision rules are widely applied in other contexts

as well, one prominent area being artificial intelligence or more specifically computer

simulations of autonomous agents (Bhargava and Branley, 1995). Computer simulations

form an important aspect of what is known as decision support technology and is widely

used in formulating combat or military strategies. In such computer simulations, there are

several schemes for representing meaningful information and various techniques for

reasoning with information (Pearl, 1988; Sanchez and Zadeh, 1988). In such a comput-

er-simulated world, at any instant, an agent has a previous belief (prior) and a set of

information. The agent combines the set of information with the previous belief using

some belief revision rule to obtain the current belief. Even generalizations of probability

measures such as Dempster–Shafer type belief functions (Dempster, 1967; Shafer, 1976)

use belief revision rules for combining ex ante uncertainty with current information. There

are many ways to formulate belief revision rules, candidates being Bayesian methods and

weighted combination of beliefs.

There is an extensive literature on various ways of characterizing Bayes’ Rule. Most of

such methods are from a no-arbitrage perspective. No arbitrage is a fundamental principal

of economic rationality. The arbitrage principal has a long history. In the literature on

Bayesian Statistics and decision theory, it was introduced as an axiom by de Finetti (1974),

for characterizing subjective probability. More recently the ‘‘arbitrage principle’’ has been

proposed as a foundation for noncooperative game theory through its dual relation with the

concept of correlated equilibrium (McCardle and Nau, 1990; Nau, 1992). McCardle and

Nau (1991) tries to unify decision theory, market theory and game theory by appealing to

the principle of no arbitrage. However, in all these settings money plays a crucial role as a

medium of communication. In environments where money is available as a medium of

exchange and measurement, no arbitrage is synonymous with subjective utility maximi-

zation in personal decisions. The point of difference in characterizations involving the no-

arbitrage principle and the one in this paper is that this paper tries to axiomatize Bayes’

Rule without introducing money in the model.

The main result of the paper is a characterization of Bayes’ rule in terms of axioms

imposed on revision rules. The most potent of these axioms is Path Independence, an axiom

which has been employed in a variety of contexts such as the theory of rational choice

(Plott, 1977, axiomatic bargaining (Kalai, 1977), etc). The axiom requires that the posterior

belief be unaffected by the order in which the new information appears. In Section 3, this

axiom is illustrated by means of an example. The other axioms in the characterization are

relatively innocuous. One is a symmetry (or anonymity) axiom, which requires that the

names of the states of the world are not material for the revision rule. The continuity axiom



D. Majumdar / Mathematical Social Sciences 47 (2004) 261–273 263
requires the revision rule to be continuous with respect to the prior. The monotonicity axiom

requires that the revised probability on a state should not be less than the prior on that state.

Finally a ‘‘no mistake hypothesis’’ is imposed which requires that if an agent believes

initially that the occurrence of a particular state is impossible, then she continues to believe

this even after the arrival of new information. (Actually this axiom is required only in the

very special case where a revision eliminates all but only two states of the world.)

A paper, which is related in spirit to the present one, is Rubinstein and Zhou (1999).

They consider a general decision situation where an agent chooses an element from a set S

given a reference point e. The set S is a suitable subset of an ambient space X. For the case

of updating beliefs, X can be the set that includes all possible theories (point beliefs) about

the world. Assuming S to be a convex subset of an Euclidean space, they axiomatize the

choice rule that selects a point in S that is closest to e. Their paper uses a strong symmetry

axiom that forces choice decisions along the line joining the minimum distance point and

e. The present paper considers choices on unit simplices and characterizes a different rule.

In terms of structure, the problem analyzed in this paper is similar to the so-called

‘‘bargaining problem with claims’’ (Chun and Thomson, 1992). That problem has the

structure of a triple (S, e, c) with the interpretation that S is the set of feasible utility

vectors, eaS is the disagreement point and cgS is the vector of claims that cannot be

fulfilled. In such a setting, Chun and Thomson characterize the proportional solution,

which is similar in functional form to the Bayes’ Rule. That model however emphasizes

the utility interpretation of choices and as a consequence Pareto optimality is imposed as

an axiom. The present model however does not have a utility interpretation and so Pareto

optimality is not imposed.

The structure of the problem is also closely related to the one used in the analysis of

bankruptcy problems (see O’Neill, 1982; Aumann and Maschler, 1985). The issue there is

to divide the liquidation value of a bankrupt firm among its creditors. In this context, Chun

(1988) characterizes the proportional solution, which is again Bayes’ Rule. However, that

model uses a strong axiom the No-Advantageous Reallocation (NAR) (for a discussion of

NAR, see Moulin, 1987), which is a stronger version of the Pareto optimality criterion.

The paper is organized as follows: in Sections 2 and 3, we give the model and the

axioms. Section 4 gives the main result, while Section 5 checks the tightness of the

axiomatic characterization.
2. Model

Let T={1, . . ., t} denote the finite set of states of the world. LetPðTÞdenote the class of
all nonempty subsets of T. Generic elements of PðTÞ are denoted by P, Q, R, etc. For any

PaPðTÞ define DP= conv� hull{ei}iaP where ei is a vector in RP for which the ith

coordinate is 1 and the rest are zeros. Thus DP is the APA� 1 dimensional simplex.

Before proceeding further some preliminary definitions are needed.

Definition 1 (Revision Rule). Consider any QaPðTÞ and xaDQ. Consider any PoQ

such that there is at least one jaP for which xj>0. A revision rule F(P, Q, x) is a function

that assigns a unique point F(P, Q, x)aDP with the restriction F(Q, Q, x) = x.
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Now F(P, Q, x) is a APA dimensional vector. The ith element is Fi(P, Q, x). Thus

FðP;Q; xÞ ¼ ðFiðP;Q; xÞÞiaP ð1Þ

Definition 2 (Bayes’ Rule). Consider QaPðTÞ , xaDQ. Consider any PoQ such that

there exists at least one iaP for which xi>0. Then Bayes’ Rule BR(P, Q, x) is the revision

rule having the following expression: biaP,

BRiðP;Q; xÞ ¼ xi þ
X

xj

0
@

1
A xiX

xk
ð2Þ
jaQd jP
kaP
3. Axioms

We would like to characterize Bayes’ Rule. To that end we consider the following

axioms.

3.1. Path independence (PI)

Consider P, Q, RaPðTÞ, PoQoR and xaDR. A revision rule satisfies PI if and only if

FðP;Q;FðQ;R; xÞÞ ¼ FðP;R; xÞ ð3Þ

The expression in Eq. (3) can alternatively be written in the following way: consider

PaPðTÞ and take Q1, Q2aPðTÞ such that Q1sP and Q2sP. PI then says,

FðP; T ; xÞ ¼ FðP;Q1;FðQ1; T ; xÞÞ ¼ FðP;Q2;FðQ2T ; xÞÞ ð4Þ

Path Independence is a consistency requirement. Path Independence implies that the

order in which information comes in does not matter. The axiom is illustrated by the

following example. Suppose that a person running a high fever consults a doctor. Initial

symptoms suggest to the doctor that the true disease is one in the set {D1, D2, D3, D4,

D5}. His beliefs are represented by a probability distribution over this set. The doctor

orders blood test B1 which can correctly identify D4 and D5 and blood test B2 which can

correctly identify D3. Both the tests are negative. The doctor’s revision rule transforms

his prior beliefs into a probability distribution over {D1, D2}. Suppose the results on B1

arrive before that on B2. The posterior on {D1, D2} can be thought of as passing through

an intermediate belief on {D1, D2, D3}. If on the other hand the report on B2 precedes

that on B1, the prior is first revised to {D1, D2, D4, D5} and eventually to {D1, D2}. If a

revision rule satisfies path independence, the same posterior (on {D1, D2}) obtains in

both the cases.
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3.2. Symmetry (SYM)

Consider any P, QaPðTÞ , PoQ and xaDQ. Consider any permutation function r:
Q!Q such that

½i	 rðiÞaP if iaP

½ii	 rðiÞ ¼ i bi gP

A revision rule satisfies SYM if and only if

biaP; FrðiÞðP;Q; rðxÞÞ ¼ FiðP;Q; xÞ where; rðxÞ ¼ ðxrðkÞÞkaQ ð5Þ

This is an anonymity requirement. It forces the revision rule to ignore the names of the

states of the world. In the disease example, the doctor should not be putting more weight

on a disease just because it carries a particular name, say tuberculosis.

3.3. Continuity (CONT)

The continuity axiom requires that the revision rule F(P, Q, x) is continuous in x.

This axiom means a small change in the prior belief should not lead to any abrupt jump

in the revised probabilities.

3.4. Monotonicity (MON)

Consider any P, QaPðTÞ, PoQ and xaDQ. A revision rule satisfies monotonicity if for

all iaP,

FiðP;Q; xÞzxi ð6Þ

This monotonicity requirement says that, if a state is not ruled out by some new

information coming in, then the revised probability on that state is not going to be less than

the prior probability.

3.5. No mistake hypothesis (NM)

For all PaPðTÞ with APA= 2, if xi= 0 for some iaP, then

FjðP; T ; xÞ ¼ 1; jaP; jpi ð7Þ

Let us consider the disease example again. Suppose that the prior belief of the doctor

about disease D1 is zero. This axiom says that if the doctor believes that it is impossible for
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disease D1 to occur and if the test conducted does not rule out D1, then, after the revision

process, the doctor is never going to put positive weight on D1. The agent is therefore not

allowed to make mistakes of a particular kind.
4. The main result

Let F be a revision rule and let xaDQ, PoQoT. Without loss of generality, we can

write

FiðP;Q; xÞ ¼ xi þ /P;Q
i ðxÞ; biaP ð8Þ

where /i
P,Q: DQ!R is a real valued function with the restriction � xiV/i

P,Q(x)V 1� xi,

for any xaDQ. Since for any QaPðTÞ, xaDQ necessarily means xaDT, we ignore the

second superscript.

Theorem 1. Suppose ATA=3. A revision rule satisfies SYM, CONT, MON and NM if and

only if it is the Bayes’ Rule.

Without loss of generality we can take T={1, 2, 3}. Before going into the proof of the

theorem let us consider the following lemma.

Lemma 1. Let P={1, 2}, T={1, 2, 3}. A revision rule satisfies SYM, CONT and MON if

and only if there exists a continuous function g:R +
2!R such that biaP, and for all

xaDT,

FiðP; T ; xÞ ¼ xi þ
xi

xl þ x2
fx3 � 2gðx1 þ x2; x3Þg þ gðx1 þ x2; x3Þ

Proof. As mentioned above, for each i in P, the revision rule can be written as

FiðP; T ; xÞ ¼ xi þ /P
i ðx1; x2; x3Þ ð9Þ

where x1 is the first element of the vector, x2 is the second element and so on. Using MON

we can say that /i
P(x1, x2, x3)z 0. Now consider r: {1, 2, 3}! {1, 2, 3} in the following

manner: r(1) = 2, r(2) = 1, r(3) = 3. Then from SYM it follows,

F2ðP; T ; xÞ ¼ F1ðP; T ; rðxÞÞ ¼ x2 þ /P
1 ðx2; x1; x3Þ

Therefore, /2
P(x1, x2, x3) =/1

P(x2, x1, x3). Since F1(P, T, x) +F2(P, T, x) = 1, it follows that

/P
1 ðx1; x2; x3Þ þ /P

1 ðx1; x2; x3Þ ¼ x3 ð10Þ
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Since (x1 + x2, 0, x3)aDT, it also follows that

/P
1 ðx1 þ x2; 0; x3Þ þ /P

1 ð0; x1 þ x2; x3Þ ¼ x3 ð11Þ

Combining Eqs. (10) and (11), we have

/P
1 ðx1; x2; x3Þ þ /P

1 ðx2; x1; x3Þ ¼ /P
1 ðx1 þ x2; 0; x3Þ þ /P

1 ð0; x1 þ x2; x3Þ ð12Þ

Define the function f: R3!R as follows:

Let z=(z1, z2, z3)aR3,

f ðz1; z2; z3Þ ¼ /P
1 ðz1; z2 � z1; z3Þ � /P

1 ð0; z2; z3Þ:

Then, f (x1, x1 + x2, x3) + f (x2, x1 + x2, x3)

¼ /P
1 ðx1; x2; x3Þ þ /P

1 ðx2; x1; x3Þ � 2/P
1 ð0; x1 þ x2; x3Þ

¼ /P
1 ðx1 þ x2; 0; x3Þ � /P

1 ð0; x1 þ x2; x3Þ
¼ f ðx1 þ x2; x1 þ x2; x3Þ ð13Þ

Thus f is additive with respect to the first argument for each (x1 + x2), x3. Since f is

continuous (follows from CONT), applying the theorem on Cauchy Equation to Eq. (13), 1

it follows that there exists a function h: R2!R such that,

f ðxi; x1 þ x2; x3Þ ¼ xihðx1 þ x2; x3Þ ð14Þ

Since /1
P(x1, x2, x3)�/1

P(0, x1 + x2, x3) = f(x1, x1 + x2, x3), we have,

x1hðx1 þ x2; x3Þ þ /P
1 ð0; x1 þ x2; x3Þ ¼ /P

1 ðx1; x2; x3Þ ð15Þ

Similarly,

x2hðx1 þ x2; x3Þ þ /P
1 ð0; x1 þ x2; x3Þ ¼ /P

1 ðx2; x1; x3Þ ð16Þ

Adding Eqs. (14) and (15) and using Eq. (10), we obtain

ðx1 þ x2Þhðx1 þ x2; x3Þ þ 2/P
1 ð0; x1 þ x2; x3Þ ¼ x3

Zhðx1 þ x2; x3Þ ¼
1

x1 þ x2
fx3 � 2/P

1 ð0; x1 þ x2; x3Þg ð17Þ

1 For a treatment of Cauchy Equations, see Eichhorn (1978).
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Substituting Eq. (17) in Eqs. (14) and (15) we obtain,

FiðP; T ; xÞ ¼ xi þ
xi

x1 þ x2
fx3 � 2/P

1 ð0; x1 þ x2; x3Þg þ /P
1 ð0; x1 þ x2; x3Þ i ¼ 1; 2:

ð18Þ

Writing the function /1
P(0, x1 + x2, x3) as the function g: R2

+!R, we obtain the desired

conclusion. 5

Proof of Theorem 1. Without loss of generality let P={1, 2} and T={1, 2, 3} and xaDT.

Let x1 = 0 be given. Then by NM we have, F1(P, T, x) = 0. Now from the definition of g

given in Eq. (17) this implies that g(x1 + x2, x3) = 0. Observe that g(,) is the same for all

iaP. Thus we have Fi(P, T, x)=(xi)/(x1 + x2) for all iaP. Suppose now that xaDT and xi>0

biaT. Consider another vector yaDT defined as follows:

y1 ¼ 0; y2 ¼ x1 þ x2; y3 ¼ x3

Observe that g is the same for both x and y. But g( y1 + y2, y3) = 0. This implies Fi(P, T,

x)=(xi)/(x1 + x2) for all iaP as desired. 5

Now we consider the more general case.

Theorem 2. Suppose ATAz 4. Then a revision rule satisfies SYM, PI, CONT and NM if

and only if it is Bayes’ Rule.

The proof of the theorem follows from the given lemma.

Lemma 2. Consider T such that ATA= tz 4 and xaDT. If F(P, T, x) = BR(P, T, x) for all

PaPðTÞ such that APA=m (2Vm< t), then F(Q, T, x) = BR(Q, T, x) for all Q such that

AQA>m.

Proof. The following cases are considered.

Case A: consider xaDT such that xk>0 for all kaT. Consider P, QaPðTÞ such that

Q =Pv{ jV}, jVaT \P.

Fix an iaP. From PI we get,

FiðP; T ; xÞ ¼ FiðP;Q;FðQ; T ; xÞÞZ/Q
i ðxÞ þ /P

i ððxj þ /Q
j ðxÞÞjeQÞ ¼ /P

i ðxÞ

Z/Q
i ðxÞ þ ðxjVþ /Q

jVðxÞÞ
xi þ /Q

i ðxÞX
kaP

xk þ /Q
k ðxÞ

ð19Þ

¼
X
mgP

xm

 !
xiX

kaP

xk
ð20Þ
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The last equality follows from the fact that F(P, T, x) = BR(P, T, x). Let xjV+/jV
Q
(x) =A.

Then we get,

/Q
i ðxÞ þ Axi

1� A
¼
 
1�

X
kaP

xk

!
xiX

kaP

xk
ð21Þ

The last equality holds for any jaP. So for any jaP we get,

/Q
j ðxÞ ¼

xj

xi
/Q
i ðxÞ ð22Þ

Now consider a PVin which a jaP\i is replaced by state of the world jV. Thus

PV=(P\j)v{ jV}. And one gets,

/Q

jVðxÞ ¼
xjV

xi
/Q
i ðxÞ ð23Þ

Now,
P

lgQ x1 ¼
P

jeQ/j
Q(x) This implies that for any iaQ,

/Q
i ðxÞ ¼

X
lgQ

xi

 !
xiX

jaQ

xj
ð24Þ

Case B: suppose that xk= 0 for some kaT. Consider a P with APA=m such that kaP.

Consider QsP such that AQA =APA + 1. Proceeding as above one can show that

/Q
k ðxÞ þ A

/Q
k ðxÞ

1� A
¼ 0 Z /Q

k ðxÞ ¼ 0

For any other iaQ such that xi>0 application of Case A gives

/Q
i ðxÞ ¼

X
lgQ

xl

 !
xiX

jaQ

xj
ð25Þ
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Thus we have seen that given F(P, T, x) = BR(P, T, x), for any P with APA=m, F(Q, T,
x) = BR(Q, T, x) whenever Q =Pv{ j} for any jaT \P. Suppose that F(Q, T, x) = BR(Q, T,

x) for anyQ such thatm <AQAV n < t. ConsiderQV=Qv{ jV} where jVaT \Q. Applying the

procedure used above we can show that F(QV, T, x) = BR(QV, T, x). Therefore, we have the
desired result. 5

Proof of Theorem 2. Consider xaDT and PaPðTÞ. Now take PVoQoP, such that

APVA= 2, AQA = 3. Let F(Q, T, x) = y. Now yaDQ. From Theorem 1, we get F(PV, Q,
y) = BR(PV, Q, y). Now from PI we get, F(PV, Q, y) =F(PV, Q, F(Q, T, x)) =F(PV, T, x).
So, F(PV, T, x) = BR(PV, T, x). Now from Lemma 2 we know that if F(PV, T, x) = BR(PV,
T, x), then for any QsPV, F(Q, T, x) = BR(Q, T, x). Since PsPVwe have F(P, T,

x) = BR(P, T, x). 5

Remark 1. There is a possible extension to the model considered above. Observe that the

revision process analyzed in this paper always takes place from one set to its subsets. A

possible way to extend this model would be to consider revisions that takes place from one

set to another which is not necessarily a subset of the former. For the revision process to be

meaningful the two sets should have nonempty intersection. Consider for example P,

QaPðTÞ, P\Q p F and xaDT. The choice rule for any such P, Q would be defined as

F(P, T, x)aDP with the additional restrictions:

FðP;Q;FðQ; T ; xÞÞ a DP\Q ð26Þ

In this extension let us consider an alternative version of the path independence axiom,

which is due to Rubinstein and Zhou (1999).

[v] PI*: consider P, Q a PðTÞ xaDT, P\Q p F. Then,

FðP;Q;FðQ; T ; xÞÞ ¼ FðP \ Q; T ; xÞ ð27Þ

Let T={1, 2, 3}. Let P={1, 2}, Q={2, 3}. From PI* we get F2(P, Q, F(Q, T,

x)) =F2({2}, T, x) = 1. This implies F1({1, 2}, {2, 3}, F({2, 3}, T, x)) = 0. Let F({2, 3},

T, x) = y. Now y1 = 0, i.e., F1({1, 2}, {2, 3}, (0, y2, y3)) = 0. Applying this to the expression

in Eq. (17) we get g(,) = 0. Hence, F(P, T, x) = BR(P, T, x). For T with ATAz 4 the result

follows from Lemma 2.

Thus we get an alternative characterization.

Theorem 3. A choice rule satisfies SYM, MON, PI* and CONT if and only if it is the

Bayes’ Rule.

Below we show that the four axioms are independent. For each axiom we give an

example of a function that satisfies the remaining three but fails to satisfy it.
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5. Independence of the axioms

1. Example of a function that satisfies PI, MON, SYM and CONT but not NM.

Let T={1, 2, 3, 4}. For any RaPðTÞ, define F(R, T, x) as follows:

FiðR;T ; xÞ ¼ 1=rbiaR where r ¼ ARA:

Consider P={1, 2}, xaDT, x=(0, a, b, c,) where a, b, ca(0, 1). This function satisfies PI,

MON, CONT and SYM but not NM as F1({1, 2}, T, x) = 1/2 p 0.

2. Example of a function that satisfies PI, MON, SYM and NM but not CONT.

Again take T={1, 2, 3, 4}. For any RaPðTÞ, define F(R, x) as follows:

FiðR;T ; xÞ ¼ 1=m if xi > 0 ¼ 0 otherwise:

where m ¼ AfjaMAxj > 0gA:

Take P={1, 2, 3}, xaDT, x=(0, a, b, c) where a, b, ca(0, 1). Consider xe=(3e, a� e, b� e,

c� e); F1({1, 2, 3}, T, xe) = 1/3 but F1({1, 2, 3}, T, x) = 0.

3. Example of a function that satisfies NM, MON, SYM and CONT but not PI.

Take T={1, 2, 3, 4}. Define,

FiðP; T ; xÞ ¼
xiX

kaP

xk
if APA ¼ 2:

¼ 1=p ðwhere p ¼ APAÞ otherwise:

Consider P={1, 2}, Q ={1, 2, 3}. Consider xaDT such that x = (0.1, 0.2, 0.3, 0.4). This

function satisfies NM, MON, CONT, SYM but not PI.

4. Example of a function that satisfies NM, PI, CONT, SYM but not MON.

Take T={1, 2, 3, 4}. Define the revision rule as follows: If RaPðTÞ and ARA = 2,

FiðR;T ; xÞ ¼
xi2X

kaR

xk2

Otherwise,

FiðR;T ; xÞ ¼
x1X

kaR

xk
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Consider xaDT such that x = (0.05, 0.85, 0.025, 0.075). Take R={1, 2}. Then F1(R,

x) = 0.0034 < 0.05.

5. Example of a function that satisfies NM, PI, MON and CONT but not SYM.

Take T= {1, 2, 3, 4}. For any RaPðTÞ define F as follows: If ARA = 2

FiðR; T ; xÞ ¼
2xi

2xi þ xj
if i ¼ maxfkAkaRg

¼ xi

x1 þ 2xj
otherwise:

Otherwise,

FiðR; T ; xÞ ¼
xiX

kaR

xk

Consider P={1, 2} and r{1, 2, 3, 4} as follows: r(1) = 2; r(2) = 1; r(3) = 3; r(4) = 4. Then
Fr(2)({1, 2}, T, r(x)) = x2/(x2 + 2x1) but F2({1, 2}, T, x) = 2x2/(x1 + 2x2). This function

satisfies PI, NM, MON, CONT but not SYM.
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