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Abstract

In this work, we propose two axiomatic procedures to distribute an inheritance based on monetary
compensations. In a cooperative context, the differences among the agents’ evaluations of the goods
are used to increase everyone’s participation. When the goods’ valuations are heterogeneous each
agent gets much more than 1/n of the value he believes the inheritance has.

The two procedures are characterized by three criteria, namely: money preservation, Pareto
optimality, and a certain kind of proportionality. The difference of the procedures is determined by
the kind of proportionality used.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this work, we present two axiomatic procedures in order to distribute an inheritance.
The first procedure is uniquely determined by three properties: preservation of money
(implicit in the definition of the solution), Pareto optimality and being in proportion with
the agents’ monetary valuations of items. The second one is uniquely determined by almost
the same three properties, the last one is changed by being in proportion with the agents’
monetary valuations of the inheritance. In both cases, after each agent evaluates each item,
the heterogeneity of the agents’ preferences is used to increase everybody’s participation.

Both procedures have several properties in common: letn be the number of agents,
then every agent gets at least 1/n of what he believes is the value of the inheritance and
this fraction increases when the items evaluations are heterogeneous. The solutions are
monotonic with respect to the items. Another pair of common properties are that a change
in the scale of items’ evaluation yields an equivalent change in the total amounts agents
receive and also, the solutions are continuous functions of the item’s evaluations.
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The first procedure could be applied in steps: first some items and later others, and money
could be distributed “in” or “out” of the procedure with the same result. We can think of
this procedure as if every item is assigned to the highest bidder and the collected money
is redistributed in proportion to the bids. The second procedure does not have the previous
properties, but with their solutions every agent gets the same percentage of the value he
believes is the whole value of the inheritance and this percentage is the highest that can
be guaranteed for all the agents. Besides, when a new heir is included, keeping the same
inheritance, the agents already present all benefit or all suffer. In this case, the collected
money is redistributed in such a way that a common percent of the inheritance is as big as
possible, each one in his corresponding evaluation.

The axiomatization of both procedures are also generalized in the case where the agents
have different rights over the inheritance in a simple and natural way. Furthermore, all
procedures are easy to use in real life and the solutions change in a smooth way as a
function of the matrixA.

Both procedures are similar to the procedure of Knaster–Steinhaus (see, for example,
Brams and Taylor (1996), p. 68). This procedure assign the items by an auction, gives to the
agents an initial fair share (1/n of the value he believes the items has) and then assign equal
share of the surplus.Raith (2000)formulates three similar two-step fair division algorithms
for negotiations: in the first step ensures an Pareto outcome, and in the second step he estab-
lishes ‘fairness’ through a distribution of gains.Tadenuma and Thomson (1993)consider
the problem of fairly allocating an indivisible good when monetary compensations to the
agents who do not receive the good are possible. The idea of assigning objects to the highest
bidders was present inSteinhaus (1946). Adjusted Winner procedure ofBrams and Taylor
(1996, p. 68)allocates a set of divisible’s goods among two agents without using money.

In Section 2we provide a formal characterization of both procedures based on several
definitions that describe individual features of the procedures. The main results are given
in Theorems 1 and 3, with two further variants characterized byTheorems 2 and 4. In
Section 3, we list further properties of the procedures and ends with a brief discussion of
the results. All mathematical proofs are provided in the Appendix A.

Before we start, we want to clarify the framework of this work. We proceed, according
to what is used in cooperative games by using any disagreement about the item’s values to
improve everyone’s participation. Our main goal is to establish normative solutions based
on desirable properties. Another option is that each agent tries to take advantage of any
knowledge he has over the preferences of the others. This situation can be modeled as
a non-cooperative game, see for example,Thomson (1988)or Tadenuma and Thomson
(1993), but we leave this approach for future work.

2. Axiomatic characterization

By an Inheritance’s Distribution problem (hereafter a “problem”) we mean a triplet
(M, N, A), where N = {1, . . . , n} is a finite set of agents that inherits a finite set
M = {1, . . . , m} of goods andA is am×n positive matrix, whereaij entry is the value that
agentj gives to the itemi. In order to generate this matrix, a judge can ask the agents to
give a bid for each item; each agent independently from the others.
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Now, we turn our attention to the solution concept. First, we propose monetary com-
pensations for an arbitrary assignment of the goods, and then we use the Pareto optimality
property to get an assignment of the goods. Suppose for a moment that the goods are al-
ready assigned, i.e. suppose a partition{M1, . . . , Mn} of M is given, whereMj is the set
of goods agentj has received and let us denote byuj = ∑

i∈Mj
aij, the value that agentj

gives to it. Some of these sets could be empty (in such a case, the corresponding entry foru

is defined to be zero). Letx ∈ R
N be a vector of the amounts of money agents receive as

compensation corresponding tou. So, the agentj receivesxj in money (or he pays, in case
xj is negative) and the setMj of goods that he evaluated inuj units of money.

Definition 1. We will say thatu ∈ R
N is the result of an assignment of the goods inM, if

there exists a partition{M1, . . . , Mn} of M such thatuj = ∑
i∈Mj

aij for everyj ∈ N .

Definition 2. We will say thatu came from the highest bidders ifu is the result of an
assignment of the goods inM with a partition{M1, . . . , Mn} of M such that ifk ∈ Mj then
akj ≥ aki for everyi ∈ N .

Definition 3. By a solution of(M, N, A), we mean a pair(u, x) whereu is the result of an
assignment of the goods inM andx ∈ R

N is a pay-off vector whose coordinates add up to
zero, i.e.

∑
j∈N xj = 0.

Now, we establish the properties that characterize the first procedure. One of the properties
we will use to determinate our procedures is Pareto optimality. A solution is Pareto optimal
if there is no other solution that will make one or more agents better off leaving the others
as well off as they were. The next definition gives shape to this idea.

Definition 4. A solution(u, x) is Pareto optimal if and only if there does not exist any other
solution(ũ, x̃) such that

ũ + x̃ ≥ u + x

with strict inequality holding true for at least one coordinate.

Lemma 1. In the solution (u, x), u came from the highest bidders if and only if (u, x) is
Pareto optimal.

Proof. Let (u, x) be a solution whereu came from the highest bidders and suppose there
exists a solution(ũ, x̃) such that̃u + x̃ ≥ u + x with strict inequality for at least one coor-
dinate. Then, adding then inequalities we get

∑
j∈N ũj >

∑
j∈N uj because

∑
j∈N xj =∑

j∈N x̃j = 0. But, asu came from the highest bidders,
∑

j∈N ũj ≤ ∑
j∈N uj ,which is a

contradiction. So(u, x) is Pareto optimal.
For the converse, let(u, x) be a Pareto optimal solution and assumeu does not come from

the highest bidders. Then, there exists a good assigned to an agent who is not the highest
bidder. In order to get a solution where two agents improve, the corresponding agent could
sell this good to any agent who gives it a higher value with a price between their valuations.
This contradicts the Pareto optimality of(u, x), sou comes from the highest bidders.�
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For anyP ⊆ M, let us denote byAP the matrixA restricted to the rows inP . Con-
sider the set of problems{(P, N, AP )|P ⊆ M} and a corresponding family of solutions
{(u(P ), x(P ))|P ⊆ M} for (M, N, A). For a given solution(u(P ), x(P )) of the problem
(P, N, AP ) whereP ⊆ M, we will denote byϕ(P ) = u(P ) + x(P ) the total value agents
receive. In case we need to specify the set of agents, we will include it as a second coordinate,
i.e.ϕ(P, N) = u(P, N) + x(P, N).

The goods have no value by themselves. This value is generated by the agents’ evaluations
and so, we feel that it is according to them that it must be distributed. So, we suppose that
the changes in the value agents receive, when one item is omitted, are in proportion with
the value they give to this item.

Definition 5. We will say that a family{(u(P ), x(P ))|P ⊆ M} of solutions for(M, N, A)

is in proportion withA if and only if

(ϕi(P ) − ϕi(P \{k}))akj = (ϕj (P ) − ϕj (P \{k}))aki (2.1)

for everyi, j ∈ N andk ∈ P .

Lemma 2. Let {(u(P ), x(P ))|P ⊆ M} be a family of solutions for (M, N, A) in proportion
with A and m(P ) = ∑

j∈N ϕj (P ) then

(a) ϕi(P ) = ϕi(P \{k})+ [m(P )−m(P \{k})]aki/
∑

j∈N akj, for every P ⊆ M and k ∈ P .
(b) m(P ) = ∑

k∈P m({k}).
(c) Moreover, if the family is Pareto optimal then m({k}) = maxi∈Naki for every k ∈ M.

Proof.

(a) Consider a family{(u(P ), x(P ))|P ⊆ M} of solutions for(M, N, A), an arbitrary
subsetP ⊆ M andk ∈ P . Adding the corresponding equalities in(2.1)overj ∈ N ,
we get

(ϕi(P ) − ϕi(P \{k}))
∑
j∈N

akj =
∑
j∈N

(ϕj (P ) − ϕj (P \{k}))aki

= [m(P ) − m(P \{k})]aki,

thus

ϕi(P ) = ϕi(P \{k}) + [m(P ) − m(P \{k})] aki∑
j∈N akj

. (2.2)

(b) After adding(2.2)overi ∈ N , the proof is direct by induction on the cardinality ofP

using the facts thatm(∅) = 0 andϕi(∅) = 0 for all i ∈ N .
(c) By (b), we have

m({k}) =
∑
i∈N

ϕi(P ) =
∑
i∈N

ui(P ) + xi(P ) =
∑
i∈N

ui(P ) = akj.

Since,u(P ) came from the highest bidders byLemma 1, m({k}) = akj = maxi∈Naki.
�
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Consider the following solution: every item is assigned to its highest bidder and the monetary
compensations are calculated according to

xi =
∑
k∈M

[
ck

aki∑
j∈N akj

]
− ui,

whereck = maxj∈Nakj.
In case of a tie in the highest bid, any mechanism could be used to break it.
One of the main contributions of this work is established in the next theorem: the previous

solution is the only one that is Pareto optimal and in proportion withA.

Theorem 1. The family of solutions {(u(P ), x(P ))|P ⊆ M} for (M, N, A) is in proportion
with A and each (u(P ), x(P )), P ⊆ M is Pareto optimal if and only if for every P ⊆ M,
u(P ) came from the highest bidders and

xi(P ) =
∑
k∈P

[
ck

aki∑
j∈N akj

]
− ui(P ). (2.3)

Proof. Suppose a family of solutions{(u(P ), x(P ))|P ⊆ M} for (M, N, A) in proportion
with A and where each(u(P ), x(P )), with P ⊆ M is Pareto optimal. Notice first that for
P = {k}, using(2.2)and the fact thatck = maxj∈Nakj,

ϕi({k}) = m({k}) aki∑
j akj

= ck

aki∑
j akj

. (2.4)

Now, for arbitraryP ⊆ M andi ∈ N , by Lemma 2(b) and (c),

ϕi(P ) = ϕi(P \{k}) + [m(P ) − m(P \{k})] aki∑
j∈N akj

= ϕi(P \{k}) + ck

aki∑
j∈N akj

so, if we repeat the previous argument for the items inP \{k} then we get(2.3).
Now, consider the family of solutions{(u(P ), x(P ))|P ⊆ M} for (M, N, A) whereu(P )

came from the highest bidders andx(P ) is given by(2.3). First notice that,

(ϕi(P ) − ϕi(P \{k}))akj = ck

akiakj∑
j∈N akj

= (ϕj (P ) − ϕj (P \{k}))aki

so, the family{(u(P ), x(P ))|P ⊆ M} of solutions for(M, N, A) is in proportion withA.
By Lemma 1, each(u(P ), x(P )), P ⊆ M is Pareto optimal. This proves the theorem.�
Note that with the solution ofTheorem 1agenti getsckaki/

∑
j∈N akj from item k, so,

every agent gets the same percentageck/
∑

j∈N akj of the valueaki that he believes the item
k has.

Example. Suppose the setN = {1, 2, 3} inherits the set of goodsM = {1, 2} and the
agents inN evaluate the goods according to the matrix

A =
[

25 20 50

75 180 200

]
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Let us calculate the solution established inTheorem 1for this example. Both goods are
assigned to agent 3, since he is the highest bidder in both cases, so agent 3 gets US$ 250
in goods and nothing for the others. Hence, we have thatuT = (0, 0, 250) and the corre-
sponding monetary compensations are given by

x = 50

95


 25

20
50


 + 200

455


 75

180
200


 −


 0

0
250


 =


 46.12

89.64
−135.77




The result is excellent: agent 1 gets US$ 46.12 when he just expected US$ 33.33, agent
2 gets US$ 89.64 when he expected US$ 66.66 and agent 3 gets a benefit of US$ 114.23
(250–135.77) when according to his estimations, he would have received only US$ 83.33.
Furthermore, every agent gets the same proportion of what he believes each item has. The
next table summarizes the result. The first number in each cell is the value agent receives
from the corresponding item and the number in paranthesis is its percentage with respect
to the value he gives to the item.

Item Agent 1 (percentage) Agent 2 (percentage) Agent 3 (percentage)

1 13.15 (52.6) 10.52 (52.6) 26.32 (52.6)
2 32.97 (43.96) 79.12 (43.96) 87.91 (43.96)

Total 46.12 (46.12) 89.64 (44.82) 114.23 (45.69)

Now, we consider the case where the agents do not have the same right over the inheritance.
Let αi be the percentage of the inheritance corresponding to agenti, e.g. a husband could
leave 60% of the inheritance to his wife and 20% to each of his two sons, soα1 = 0.6,
α2 = 0.2 andα3 = 0.2 in this case.

Definition 6. We will say that a family{(u(P ), x(P ))|P ⊆ M} of solutions for(M, N, A)

is in a weighted proportion withA if and only if

(ϕi(P ) − ϕi(P \{k}))αjakj = (ϕj (P ) − ϕj (P \{k}))αiaki (2.5)

for everyi, j ∈ N andk ∈ P .

Lemma 3. If a family {(u(P ), x(P ))|P ⊆ M} of solutions for (M, N, A) is in a weighted
proportion with A then

(a) ϕi(P ) = ϕi(P \{k})+ [m(P )−m(P \{k})]αiaki/
∑

j∈N αjakj, for every P ⊆ M and
k ∈ P .

(b) m(P ) = ∑
k∈P m({k}).

(c) Moreover, if the family is Pareto optimal then m({k}) = maxi∈Naki for every k ∈ M.

The proof of the lemma is similar to that ofLemma 2.

Theorem 2. The family of solutions {(u(P ), x(P ))|P ⊆ M} for (M, N, A) is in a weighted
proportion with A and each (u(P ), x(P )), P ⊆ M is Pareto optimal if and only if for every
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P ⊆ M, u(P ) came from the highest bidders and

xi(P ) =
∑
k∈P

[
ck

αiaki∑
j∈N αjakj

]
− ui(P ) (2.6)

The proof of the theorem is similar to that ofTheorem 1.
Notice that the solutions ofTheorems 1 and 2could be applied in steps, if we divide the

setM, the sum of the solutions of the parts coincide with the solution of the whole set.

Example (Continuation). For the previous example, suppose that agents 1, 2 and 3 have
20, 70, and 10%, respectively of the rights over the inheritance. As before we have that
uT = (0, 0, 250) and the corresponding monetary compensations are given by

x = 50

0.2 × 25+ 0.7 × 20+ 0.1 × 50


 0.2 × 25

0.7 × 20
0.1 × 50




+ 200

0.2 × 75+ 0.7 × 180+ 0.1 × 200


 0.2 × 75

0.7 × 180
0.1 × 200


 −


 0

0
250




=




29.05

185.689

−214.74




As before, the amounts agents receive are bigger than they expect. The result of using the
solution ofTheorem 2is summarized in the following table

Agent 1 Agent 2 Agent 3

α 0.2 0.7 0.1
Amount received in goods 0 0 250
Amount received in cash 29.05 185.69 −214.74
Total inheritance’s value 100 200 250
Expected assignment 20 140 25
Total assignment 29.05 185.69 35.26
Inheritance’s percentage 29.05 92.85 14.10

Now, we modify the definition of being in proportion withA to get a solution where every
agent gets the same percentage of the value he believes the whole inheritance has. Moreover,
this percentage is the highest that can be guaranteed for all the agents. We denote byv ∈
R

N the vector whosej -entry is the value assigned by agentj to the total inheritance, i.e.
vj = ∑

i∈M aij.

Definition 7. We will say that the solution(u, x) is in proportion withv if and only if

(ui + xi)vj = (uj + xj )vi (2.7)

for everyi, j ∈ N .
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Theorem 3. The solution (u, x) is Pareto optimal and in proportion with v if and only if
u came from the highest bidders and x = ((ιTu)/(ιTv))v − u where ι denotes the column
vector of all 1’s.

Proof. Suppose a solution(u, x) is Pareto optimal and in proportion withv. By Lemma 1,
we just have to prove thatx = ((ιTu)/(ιTv))v − u. If we add the equations in(2.7) over
i ∈ N , we get

(ιTu + 0)vj = (uj + xj )ι
Tv

and it is follows that,(ιTu/ιTv)vj = uj + xj .
For the converse, supposex = (ιTu/ιTv)v − u whereu came from the highest bidders.

Since,

ιTx = ιTu

ιTv
ιTv − ιTu = 0,

we see that(u, x) is a solution. Now, from the coordinatesi andj of x we get that(ui +xi)/

vi = (uj + xj )/vj . Therefore(u, x) is in proportion withv. The solution(u, x) is Pareto
optimal by theLemma 1. �

Example (Continuation). Let us calculate the solution established inTheorem 3for the
initial example. As before, both goods are assigned to agent 3, since he is the highest
bidder in both cases. Hence, we have thatuT = (0, 0, 250), vT = (100, 200, 250) and the
corresponding monetary compensations are given by

x = ιTu

ιTv
v − u = 250

550




100

200

250


 −




0

0

250


 =




45.45

90.90

−136.36


 .

so we have,

Agent 1 Agent 2 Agent 3

Amount received in goods 0 0 250
Amount received in cash 45.45 90.90 −136.36
Total inheritance’s value 100 200 250
Inheritance’s percentage 45.45 45.45 45.45

Every agent gets the same proportion of what he believes is the value of the inheritance
(45.45%) and there is no other solution where the agent with the lowest percent could be
higher (see proof ofTheorem 6).

Now, we consider the case when the agents do not have the same right over the inheritance.
As before, letαi be the percentage of the inheritance corresponding to agenti.

Definition 8. We will say that the solution(u, x) is in a weighted proportion withv if and
only if (ui + xi)αj vj = (uj + xj )αivi for everyi, j ∈ N .
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We will denote byα̂ the diagonal matrix corresponding to the vectorα ∈ R
N .

Theorem 4. The solution (u, x) is Pareto optimal and in a weighted proportion with v if
and only if u came from the highest bidders and x = (ιTu/αTv)α̂v − u.

The proof ofTheorem 4is similar to that ofTheorem 3.

3. Some properties and remarks

In this section, we establish some properties of the previous solutions. We start describing
four properties that we adapt fromMoulin (1992)to the present context: weak individual
rationality, resource and population monotonicity and population solidarity. We will say
that a procedure has theweak individual rationality property when each agent gets with it,
at least 1/nth of what he believes is the value of the whole inheritance. The procedure has
a resource monotonicity property if the welfare of no agent goes down when the goods to
be divided increase and we will say it has thepopulation monotonicity property if when
we incorporate an additional heir, keeping the same inheritance, none of the agents already
present should benefit. Furthermore, we will say the procedure has thepopulation solidarity
property if when a new agent shows up to share the same goods, the previous agents all
benefit or all suffer. A deeper discussion of these properties could be found inMoulin
(1992).

Moreover, we will say a procedure ishomogeneous of degree 1 if a change in the scale
of the items’s evaluation yield an equivalent change in the total amounts agents receive.

Theorem 5. Let (u, x) be the solution of (M, N, A) given by Theorem 1then

(a) Weak individual rationality, xi + ui ≥ (1/n)vi for every i ∈ N .
(b) Resource monotonicity, if P ⊆ Q ⊆ M then ϕi(P ) ≤ ϕi(Q) for every i ∈ N .
(c) Homogeneous of degree 1, the pair (µu, µx) is a solution of (M, N, µA) where µ is a

positive real number.
(d) Continuity on A, the solution (u, x) of (M, N, A) is a continuous function of A.

Proof.

(a) By the additivity ofϕi(M, N) in its first coordinate, it is enough consider just one item,
say itemk. Then

xi + ui = ck∑
j∈N akj

aki ≥ ck

nck

aki = 1

n
aki.

(b) It follows from the additivity ofϕi(M, N) in its first coordinate and by the positivity of
A.

(c) It is straightforward.
(d) Continuity follows from the fact thatckaki and

∑
j∈N akj are continuous as functions

of theaij’s and by the positivity of the denominator. �
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The solution ofTheorem 1does not have the population solidarity property: in the problem
with the matrix

A =
[

10 5 4
5 10 50

]

agent 2 is better off and agent 1 gets worse when agent 3 leaves.
In the solution ofTheorem 1, there is a common percentage

ck∑
j∈N akj

for each item each agent gets from the value he gives to it and in the solution ofTheorem 3
there is a common percentageιTu/ιTv each agent gets from the value he gives to the
inheritance.

Theorem 6. The solution (u, x) of Theorem 3has the following properties

(a) Weak individual rationality, xi + ui ≥ (1/n)vi for every i ∈ N .
(b) Resource monotonicity, if P ⊆ Q ⊆ M then ϕi(P ) ≤ ϕi(Q) for every i ∈ N .
(c) Population solidarity, if N ⊆ N ′ thenϕi(M, N ′) ≤ ϕi(M, N) for every i ∈ N or

ϕi(M, N) ≤ ϕi(M, N ′) for every i ∈ N .
(d) Homogeneous of degree 1, the pair (µu, µx) is a solution of (M, N, µA) where µ is a

positive real number.
(e) Continuity on A, the solution (u, x) of (M, N, A) is a continuous function of A.
(f ) There exists a λ ∈ R such that u + x = λv.
(g) max(u,x)∈Smini∈N(ui + xi)/vi = λ where S is the set of solutions.

Proof.

(a) Clearly
∑

l∈N ul = ∑
i∈M max{aik| k ∈ N}, so,

ιTv =
∑
j∈N

∑
i∈M

aij ≤
∑
j∈N

∑
i∈M

max{aik| k ∈ N} =
∑
j∈N

∑
l∈N

ul = n ιTu

and its follows that

λ = ιTu

ιTv
≥ 1

n
.

(b) Let us consider two disjoint sets of goods, letu1, u2, v1 andv2 be the values for the
corresponding matrices and supposeλ1 andλ2 such that

λ1ι
Tv1 = ιTu1

λ2ι
Tv2 = ιTu2

without loss of generality, we can supposeλ2 ≥ λ1 so

ιTu1

ιTu1 + ιTu2
= λ1ι

Tv1

λ1ιTv1 + λ2ιTv2
≤ ιTv1

ιTv1 + ιTv2
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So,

ιTu1

ιTv1
≤ ιTu1 + ιTu2

ιTv1 + ιTv2

and therefore

ιTu1

ιTv1
v1 ≤ ιTu1 + ιTu2

ιTv1 + ιTv2
(v1 + v2).

(c) There is a common percentage associated with the solution when we considerN and
another when we considerN ′, so all the agents get more with the solution with higher
percentage.

(d) It is straightforward.
(e) Continuity follows from the fact thatιTu and ιTv are continuous as functions of the

aij’s.
(f ) If we takeλ = ιTu/ιTv then every agent getsιTu/ιTv of what he believes is the value

of the whole inheritance (vj ).
(g) Suppose a solution(ũ, x̃) such that

mini∈N

ũi + x̃i

vi

> λ = ιTu

ιTv

then(ũi + x̃i )/vi > λ for everyi ∈ N . So∑
i∈N

ũi =
∑
i∈N

(ũi + x̃i ) > λ
∑
i∈N

vi =
∑
i∈N

ui

therefore ιTũ > ιTu. But this is impossible, becauseu came from the highest
bidders. �

In particular, (g) proves that there is no solution where everybody gets a bigger percentage
of the inheritance. Among all solutions, where each player receives the same percentage
share of the inheritance in terms of his own valuation,Theorem 3gives the one with the
highest common percentage.

Some of the properties ofTheorem 3still hold for the more general solution ofTheorem 4.
For example, the percentage agentj gets is no lower thanαj and the solution is homogenous
of degree 1.

Formally, we can say that the procedure has the population monotonicity property ifN ⊆
N ′ thenϕi(M, N ′) ≤ ϕi(M, N) for everyi ∈ N , but neither the solution ofTheorem 1
nor the solution ofTheorem 3has it: ConsiderM = {1}, N = {1, 2}, N ′ = {1, 2, 3} and
A = [2, 3, 20] then we getϕ(M, N) = (11

5, 14
5) andϕ(M, N ′) = (11

3, 2, 131
3) using the

solution ofTheorem 1andϕ(M, N) = (11
5, 14

5) andϕ(M, N ′) = (13
5, 22

5, 16) if we use
the solution ofTheorem 3. The reason is that agent 3 is the only one that is willing to pay
a big amount for the item.

Now, suppose the rules had been explained to the agents and consider the moment they
have to declare their item’s value. They can lie if they want to, but if one of them says that
an item has a lower value than he believes it has, then it might happen that another agent
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gets the item for a lower price than the one he is willing to pay. And if he says the item has
a bigger value then he take a risk of getting the item at this price.

Both procedures could be applied even if some of the agents feel they do not have enough
money to pay an overassignment of goods. If one agent does not have enough money, he can
invite another person, such as an antique dealer, to present a bid for each item. This agent
could present the highest value between what he can afford and the bid of the other person.
Following this strategy, agents could hide his preferences from the others and discourage
them to manipulate the outcome. Moreover, the agents could invite jointly more people to
participate in the process with a corresponding zero percent over the rights of the inheritance.

Implicit in the model, we are assuming that agents value a collection of goods by adding
their individual worts and also that they have a quasi-linear utilities, i.e. linear utilities in
money.

Besides, both procedures could be used to solve the chore division problem (this problem
was posed byGardner (1978, p. 124)): suppose the agents need to divide a set of chores.
In this case, the agents would like to receive the smallest portion of the chores as possible.
So, it is enough to requestaij < 0 and to interpret−aij as how much agentj is willing to
receive for doing the chorei. Also, the problems of divorce could be solved without further
modifications.

A solution is envy-free if no agent thinks that someone else has a better share. Clearly, the
solutions presented here do not have this property, but it could be considered an advantage.
In a problem with just one item and three or more agents, assuming an envy-free solution
we need to assign the same monetary compensation to every agent that does not receive
the item. In the caseA = (1, 1000, 1001), it is debatable that any couple of agents get the
same monetary compensation. However, the procedures have a weaker property, neither
the highest bidder envies the other agents, nor any other agent envies the highest bidder.

4. Further reading

Su, F.E., 1999. Rental harmony: Sperner’s lemma in fair division. American Mathematical
Monthly 106, 930–942.
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