
Pre ace 

About the Text 

We have developed this material for a sequence of courses on the theory and application of 
numerical approximation techniques. The text is designed primarily for junior-level math
ematics, science, and engineering majors who have completed at least the first year of the 
standard college calculus sequence. Familiarity with the fundamentals of matrix algebra 
and differential equations is also useful, but adequate introductory material on these topics 
is presented in the text so that those courses need not be prerequisites. 

Previous editions of Numerical Analysis have been used in a wide variety of situations. 
In some cases, the mathematical analysis underlying the development of approximation 
techniques was emphasized rather than the methods themselves; in others, the emphasis 
was reversed. The book has also been used as the core reference for courses at the beginning 
graduate level in engineering and computer science programs, and in first-year courses in 
introductory analysis offered at international universities. We have tried to adapt the book 
to fit these diverse users without compromising our original purpose: 

To give an introduction to modern approximation techniques; to explain how, why, 
and when they can be expected to work; and to provide a firm basis for future study of 
numerical analysis and scientific computing. 

The book contains sufficient material for a full year of study, but we expect many 
readers to use the text only for a single-tel III course. In such a course, students learn to 
identify the types of problems that require numerical techniques for their solution and see 
examples of the error propagation that can occur when numerical methods are applied. 
They accurately approximate the solutions of problems that cannot be solved exactly and 
learn techniques for estimating error bounds for the approximations. The remainder of the 
text serves as a reference for methods that are not considered in the course. Either the 
full-year or single-course treatment is consistent with the aims of the text. 

Virtually every concept in the text is illustrated by example, and this edition contains 
more than 2,000 class-tested exercises ranging from elementary applications of methods 
and algorithms to generalizations and extensions of the theory. In addition, the exercise 
sets include many applied problems from diverse areas of engineering, as well as from the 
physical, computer, biological, and social sciences. The applications chosen demonstrate 
concisely how numerical methods can be, and often must be, applied in real-life situations. 

A number of software packages have been developed to produce symbolic mathemat
ical computations. Predominant among them in the academic environment are Derive®, 
Maple®, and Mathematica®. Student versions of these software packages are available at 
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reasonable prices for most common computer systems. Although there are significant dif
ferences among the packages, both in perfolillance and price, all can perfOIm standard 
algebra and calculus operations. Having a symbolic computation package available can be 
very useful in the study of approximation techniques. The results in most of our examples 
and exercises have been generated using problems for which exact values can be deter
mined, since this penllits the perfonnance of the approximation method to be monitored. 
Exact solutions can often be obtained quite easily using symbolic computation. In addition, 
for many numerical techniques the error analysis requires bounding a higher ordinary or 
partial derivative of a function, which can be a tedious task and one that is not particularly 
instructive once the techniques of calculus have been mastered. Derivatives can be quickly 
obtained symbolically, and a little insight often perlilits a symbolic computation to aid in 
the bounding process as well. 

We have chosen Maple as our standard package because of its wide distribution, but 
Derive or Mathematica can be substituted with only minor modifications. Examples and 
exercises have been added whenever we felt that a computer algebra system would be of 
significant benefit, and we have discussed the approximation methods that Maple employs 
when it is unable to solve a problem exactly. 

New for This Edition 

The seventh edition includes two new major sections. The Preconditioned Conjugate Gra
dient method has been added to Chapter 7 to provide a more complete treatment of the 
numerical solution to systems of linear equations. It is presented as an iterative approxi
mation technique for solving positive definite linear systems. In this fOIm, it is particularly 
useful for approximating the solution to large sparse systems. 

In Chapter lOwe have added a section on Homotopy and Continuation methods. These 
methods provide a distinctly different technique for 'approximating the solutions to nonlin
ear systems of equations, one that has attracted a great deal of attention recently. 

We have also added extensive listings of Maple code throughout the book, since re
viewers found this feature useful in the sixth edition. We have updated all the Maple code 
to Release 6, the version that will be current by the time the book is printed. Those familiar 
with our past editions will find that virtually every page has been improved in some way. 
All the references have been updated and revised, and new exercises have been added. We 
hope you will find these changes beneficial to the teaching and study of numerical anal
ysis; most have been motivated by changes in the presentation of the material to our own 
students. 

Another important modification in this edition is a web site at 

hUp:llwww.as.ysu.edU/..-.faireslNumerical-Analysis/ 

On this web site we will place updated programs as the software changes and post 
responses to comments made by users of the book. We can also add new material that 
might be included in subsequent editions in the fOIm of PDF files that users can download. 
Our hope is that this will extend the life of the seventh edition while keeping the material 
in the book up to date. 

• • 
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As in previous editions, we give a detailed, structured algorithm without program listing 
for each method in the text. The algorithms are in a fonn that can be coded, even by those 
with limited programming experience. 

This edition includes a disk containing programs for solutions to representative exer
cises using the algorithms. The programs for each algorithm are written in Fortran, Pascal, 
and C. In addition, we have coded the programs using Maple and Mathematica, as well as 
in MATLAB ®, a computer software package that is widely used for linear algebra applica
tions. This should ensure that a set of programs is available for most common computing 
systems. 

A Student Study Guide is available with this edition that illustrates the calls required 
for these programs, which is useful for those with limited programming experience. The 
study guide also contains worked-out solutions to many of the problems. 

Brooks/Cole can provide instructors with an Instructor's Manual that provides an
swers and solutions to all the exercises in the book. Computation results in the Instructor's 
Manual were regenerated for this edition, using the programs on the disk to ensure com
patibility among the various programming systems. 

The algorithms in the text lead to programs that give correct results for the examples 
and exercises in the text, but no attempt was made to write general-purpose professional 
software. Specifically, the algorithms are not always written in a form that leads to the most 
efficient program in telms of either time or storage requirements. When a conflict occurred 
between writing an extremely efficient algorithm and writing a slightly different one that 
better illustrates the important features of the method, the latter path was invariably taken. 

About the Program Disk 

The CD on the inside back cover of the book contains programs for all the algorithms in 
the book, in numerous formats, as well as samples of the Student Study Guide for the book 
in both the PostScript® (PS) and the Adobe® Portable Document (PDF) formats. 

For each algoithm there is a C, Fortran, Maple, Mathematica, MATLAB, and Pascal 
program, and for some of these systems there are multiple programs that depend on the 
particular version of the software that is being run. Every program is illustrated with a 
sample problem that is closely correlated to the text. This permits the program to be run 
initially in the language of your choice to see the form of the input and output. The pro
grams can then be modified for other problems by making minor changes. The form of the 
input and output are, as nearly as possible, the same in each of the programming systems. 
This pennits an instructor using the programs to discuss them generically, without regard 
to the particular programming system an individual student uses. 

The programs are designed to run on a minimally configured computer. All that is re
quired is a computer running MS-DOS®, Windows®, or the Macintosh® operating system. 
You will, however, need appropriate software, such as a compiler for Pascal, Fortran, and 
C, or one of the computer algebra systems (Maple, Mathematica, and MATLAB). There 
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are six subdirectories on the disk, one for each of the computer languages and the accom
panying data files. 

All of the programs are given as ASCII files or worksheets. They can be altered using 
any editor or word processor that creates a standard ASCII file. (These are also commonly 
called "Text Only" files.) 

Extensive README files are included with the program files so that the peculiarities 
of the various programming systems can be individually addressed. The README files 
are presented both in ASCn fOlmat and as PDF files.~As new software is developed, the 
algorithms will be updated and placed on the web site for the book. 

Suggested Course Outlines 

Numerical Analysis is designed to allow instructors flexibility in the choice of topics, as 
well as in the level of theoretical rigor and in the emphasis on applications. In line with 
these aims, we provide detailed references for the results that are not demonstrated in 
the text and for the applications that are used to indicate the practical importance of the 
methods. The text references cited are those most likely to be available in college libraries 
and have been updated to reflect the most recent edition at the time this book was placed 
into production. We also include quotations from original research papers when we feel 
this material is accessible to our intended audience. 

The following flowchart indicates chapter prerequisites. The only deviation from this 
chart is described in the footnote at the bottom of the first page of Section 3.4. Most of the 
possible sequences that can be generated from this chart have been taught by the authors 
at Youngstown State University. 

Chapter I - ~ ~ 

ChaP.tm2 - i' Chap.ter 6 Chapter 3 

Ch~r 10 ,Chapter 7 
-, 

Chapter' 4'- Chapter 5 I. Chapter 8 ---:- - . : ~ •• 

Chapter 9 

" , ' 1 "!l i . Chapter 11 j4-

i GJuipter 1,2 
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IN bPgInoing chemistry courses, we the ideal gas IiJw, 

PV=NRT, 

which relates the pressure P, volume V, temperature T, and nllmber of 

moles N of an "ideal" gas. In this equation, R is a constant that depends 

on the measurement system. 

Suppose two experiments are conducted to test this law, using the 

same gas in each case. In the first expel bnent, 

P = l.OOatm, V = 0.100 m\ 

N = 0.00420 mol, R = 0.08206. 

The ideal gas Jaw predicts the temperature of the gas to be 

T = PV = (1.00)(0.100) = 290.15 K = 17·C. 
NR (0.00420)(0.08206) 

When we measure the temperature of the gas, we find that the true tem

perature is 15·C . 

• 
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We then repeat the experiment using the same values of Rand N, 

but increase the pressure by a factor of two and reduce the volume by 

the same factor. Since the product PV remains the same, the predicted 

temperature is still 17°C, but we find that the actual temperature of the 

gas is now 19°C. 

Clearly, the ideal gas law is suspect, but before concluding that the 
~ .. 

law is invalid in this situation, we should examine the data to see whether 

the error can be attributed to the experimental If so, we might 

be able to determine how much more accurate our experimental 

would need to be to ensure that an error of this magnitude could not 

occur. 

Analysis of the error involved in calculations is an important topic 

in numerical analysis and is introduced in Section 1.2. This particular 

application is considered in Exercise 28 of that section. 

This chapter contains a short review of those topics from elementary 

single· variable calculus that will be needed in later chapters, together 

with an introduction to convergence, error analysis, and the machine 

representation of numbers. 

1.1 Review of Calculus 

Definition 1.1 

Definition 1.2 

The concepts of limit and continuity of a function are fundamental to the study of calculus. 

A function f defined on a set X of real numbers has the limit L at Xo, written 

lim f(x) = L, 
x-="" xo 

if, given any real number E > 0, there exists a real number 8 > 0 such that I f (x) - L I < E, 

whenever x E X and 0 < Ix - xol < 8. (See Figure 1.1.) • 

Let f be a function defined on a set X of real numbers and Xo EX. Then f is cQntinuous 
• 

at Xo if 

lim f(x) = f(xo). 
x--+xo 

• 

The function f is continuous on the set X if it is continuous at each number in X. • 

. 
-- --.. ", ... ".",-,,-, --_. 
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Definition 1.3 

Theorem 1.4 
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y 

y = I(x) 
L+€ ---------------------

L f---------------:..,.<;t" 

L-€ ---------------

Xo - 8 Xo Xo + 8 x 

C(X) denotes the set of all functions that are continuous on X. When X is an interval 
of the real line, the parentheses in this notation are omitted. For example, the set of all 
functions continuous on the closed interval [a, b) is denoted C[a, b]. 

The limit of a sequence of real or complex numbers is defined in a similar manner. 

Let [xn}~1 be an infinite sequence of real or complex numbers. The sequence {xn}~ 1 has 
the limit x (converges to x) if, for any E > 0, there exists a positive integer N (E) such that 
IXn - xl < E, whenever n > N(E). The notation 

limxn=x, or Xn-+X as n-+oo, 
n-->oo 

means that the sequence {xn }: I converges to x. 

The following theorem relates the concepts of convergence and continuity. 

• 

If f is a function defined on a set X of real numbers and Xo EX, then the following 
statements are equivalent: 

a. f is continuous at Xo; 

h. If {xn}~1 is any sequence in X converging to Xo, then limn ..... oo f(x.) = f(xo) . 

• 
The functions we consider when discussing numerical methods are assumed to be con

tinuous since this is a minimal requirement for predictable behavior. Functions that are not 
continuous can skip over points of interest, which can cause difficulties when attempting 
to approximate a solution to a problem. More sophisticated assumptions about a func
tion generally lead to better approximation results. For example, a function with a smooth 
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Definition 1.5 

Figure 1.2 

TJreorem 1.6 

Theorem 1.7 
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graph will normally behave more predictably than one with numerous jagged features. The 
smoothness condition relies on the concept of the derivative. 

Let I be a function defined in an open interval containing Xo. The function I is differen
tiable at Xo if 

I
' () l' .:.-1 _(x...:....) ---=--1...:....( x-'-'-o) Xo = 1m-

x-+xo X - Xo 

exists. The number f' (xo) is called the derivative of I at Xo. A function that has a deriva
tive at each number in a set X is differentiable on X. 

The derivative of I at Xo is the slope of the tangent line to the graph of I at (xo, I (xo», 
as shown in Figure 1.2. • 

y 

The tangent line has slope l' (xo) 

y = I(x) 

x 

If the function I is differentiable at Xo, then I is continuous at xo. • 
The set of all functions that have n continuous derivatives on X is denoted en (X), and 

the set of functions that have derivatives of all orders on X is denoted Coo (X). Polynomial, 
rational, trigonometric, exponential, and logarithmic functions are in Coo(X), where X 
consists of all numbers for which the functions are defined. When X is an interval of the 
real line, we will again omit the parentheses in this notation. 

The next theorems are of fundamental importance in deriving methods for error esti
mation. The proofs of these theorems and the other unreferenced results in this section can 
be found in any standard calculus text. 

(Rolle's Theorem) 

Suppose IE qa, b] and I is differentiable on (a, b). If I(a) = I(b), then a number c in 
(a, b) exists with !'(c) = O. (See Figure 1.3.) • 
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Figure 1.4 

Theorem 1.9 
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y 

f(a) = feb) 

a 

(Mean value Theorem) 

f'(c) = 0 
I 
I 
I 
I 
I 
I 
I 

c 

y = f(x) 

b x 

If f E C[a, b] and f is differentiable on (a, b), then a number c in (a, b) exists with 

y 

f'(c) = feb) - f(a). (See Figure 1.4.) 
b-a 

Parallel lines 

Slopej' (c) 
y = f(x) 

feb) - f(a) 
Slope b - a 

a c b x 

(Extreme Value Theorem) 

5 

• 

If f E C[a, b], then c}, C2 E [a, b] exist with f(cd :s f(x) :s f(C2), for all x E [a, b]. 
In addition, if f is differentiable on (a, b), then the numbers c, and C2 occur either at the 
endpoints of [a, b] or where f' is zero. (See Figure 1.5.) • 

As mentioned in the preface, we will use the computer algebra system Maple whenever 
appropriate. Computer algebra systems are particularly useful for symbolic differentiation 
and plotting graphs. Both techniques are illustrated in Example 1. 
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Figure 1.5 

EXAMPLE 1 
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y 

a 

Find maxa<x<b I I (x) I for 

I y = I(x) 
I 
I 
I 
I 
I 
I 
I 

I(x) = 5 cos2x - 2x sin2x 

on the intervals [1,2] and [0.5, 1]. 

b x 

We first illustrate the graphing capabilities of Maple. To access the graphing package, 
enter the command 

>with(plots); 

The commands within the package are then displayed. We define I by entering 

The response from Maple is 

I := 5 cos(2x) - 2x sin(2x) 

To graph I on the interval [0.5, 2], use the command 

>plot(f,x=O.5 .. 2); 

The graph appears as shown in Figure 1.6, and we can determine the coordinates of any 
point of the graph by moving the mouse pointer to the desired point and clicking the left 
mouse button. This technique can be used to estimate axis intercepts and extrema of func
tions. 

We complete the example using the Extreme Value Theorem. First, consider the inter
val [1,2]. To ob!ain the first derivative g = I', enter 

>g:=diff(f,x); 

Maple gives 

g := -12 sin(2x) - 4x cos(2x) 
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Figure 1.1 
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2 

1 
x 

-1 

-2 

-3 

-4 

-5 

We can then solve g(x) = 0, for 1 < x < 2, with the command 

>fsolve(g,x,l .. 2); 

obtaining 1.358229874, and compute f(1.358229874) using 

>evalf(subs(x=1.358229874,f)); 

Since f(l) = -3.899329037 and f(2) = -0.241008124, we have, for the interval 
[1,2], a maximum value of f(2) = -0.241008124 as illustrated in Figure 1.7, and a 

-1 

-2 

-3 

-4 -r-.. 

-5 

1 1.2 1.4 1.6 1.8 2 
x 
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minimum of approximately f(1.358229874) = -5.675301338. Hence, 

max 15cos2x - 2x sin2xl ~ If(1.358229874) I = 5.675301338. 
J<x<2 - -

If we try to solve g(x) = 0, for 0.5 ::::: x ::::: 1, we find that when we enter 

>fsolve(g,x,O.5 .. 1); 

Maple responds with 

fsolve( -12 sin(2x) - 4x cos(2x), x, .5 .. 1) 

which indicates that Maple could not find a solution in [0.5, 1]. If you graph g, you will see 
that there is no solution in this interval, and the maximum occurs at an endpoint. Hence, 
f' is never 0 in [0.5, 1], as shown in Figure 1.8, and, since f(0.5) = 1.860040545 and 
f(l) = -3.899329037, we have 

max 15 cos 2x - 2x sin2xl = If(I)1 = 3.899329037. 
O.5<x<J • 

2 

1 

x 
0.6 0.7 0.8 0.9 1 

-1 

-2 

-3 

-4 

The other basic concept of calculus that will be used extensively is the Riemann inte
gral. 

Definition 1.10 The Riemann integral of the function f on the interval [a, b] is the following limit, pro
vided it exists: 

b n 

f(x) dx = lim L fez;) !:lXi, 
a max6xt-+O ;=1 
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where the numbers xo, XI, ..• ,Xn satisfy a = Xo :5 XI :5 ... :5 Xn = b, and where 
D.Xi = Xi - Xi-I, for each i = 1,2, ... , n, and Zi is arbitrarily chosen in the interval 
[Xi-I, xd. • 

Every continuous function f on [a, b] is Riemann integrable on [a, b]. This peImits 
us to choose, for computational convenience, the points Xi to be equally spaced in [a, b], 
and for each i = 1, 2, ... , n, to choose Zi = Xi. In this case, 

b b _ a n 

f(x) dx = lim L !(Xi), 
a n~oo n . ,=1 

where the numbers shown in Figure 1.9 as Xi are Xi = a + i(b - a)/n. 

y 

y = f(x) 

a = Xo Xl Xz '" Xj-l Xj • • • X 

1\vo other results will be needed in our study of numerical analysis. The first is a 
generalization of the usual Mean Value Theorem for Integrals. 

(Weighted Mean Value lbeorem for Integrals) 
Suppose f E era, b], the Riemann integral of g exists on [a, b], and g(x) does not change 
sign on [a, b]. Then there exists a number c in (a, b) with 

b b 

!(x)g(x) dx = f(c) g(x)dx. • a a 

When g (x) == 1, Theorem 1.11 is the usual Mean Value Theorem for Integrals. It gives 
the average value of the function f over the interval (a, b J as 

(See Figure 1.10.) 

1 
f(c) = b - a 

a 

b 

f(x) dx. 
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Figure 1.10 
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y 

y = f(x) 

fCc) 

a c b x 

The proof of Theorem 1.11 is not generally given in a basic calculus course but can be 
found in most analysis texts (see, for example, [Fu, p. 162]). 

The other theorem we will need that is not generally presented in a basic calculus 
course is derived by applying Rolle's Theorem successively to f, f', ... , and, finally, to 
f(n-I) . 

(Generalized Rolle's Theorem) 

Suppose f E C[a, b) is n times differentiable on (a, b). If f(x) is zero at the n + 1 distinct 
numbers Xo, ... , Xn in [a, b], then a number c in (a, b) exists with f(n) (c) = O. • 

The next theorem is the Intermediate Value Theorem. Although its statement seems 
reasonable, the proof is beyond the scope of the usual calculus course. It can, however, be 
found in most analysis texts (see, for example, [Fu, p. 67]). 

Value Theorem) 

If f E C[a, b) and K is any number between f(a) and feb), then there exists a number c 
in (a, b) for which fCc) = K. • 

Figure 1.11 shows one choice for the number that is guaranteed by the InteIIuediate 
Value Theorem. In this example there are two other possibilities. 

y 

f(a) 

K 

feb) 

(a, f(a» 

I 
I 
I 
I 
I 
I 

a c 

y = f(x) 

-----

(b, f(b» 

b x 

• 

• 

• 

-
• 

[ 

, 
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To show that x 5 - 2x 3 + 3x2 - I = ° has a solution in the interval [0, I], consider I(x) = 
x 5 - 2x 3 + 3x2 - I. Since 

1(0) = -I < 0 < 1=/(1) 

and I is continuous, the Intermediate Value Theorem implies that a number x exists with 
0< x < I, for which x 5 - 2x3 + 3x2 - I = O. • 

As seen in Example 2, the Intermediate Value Theorem is used to determine when 
solutions to certain problems exist. It does not, however, give an efficient means for finding 
these solutions. This topic is considered in Chapter 2. 

The final theorem in this review from calculus describes the Taylor polynomials. These 
polynomials are used extensively in numerical analysis. 

(n.ylor's Theorem) 

Suppose I E C[a, b], that l(n+1) exists on [a, b], and Xo E [a, b]. For every x E [a, b], 
there exists a number ~ (x) between xo and x with 

I(x) = Pn(x) + Rn(x), 

where 

f" (x ) I(n) (x ) 
Pn (x) = I(xo) + I' (xo)(x - xo) + 0 (x - xo)2 + ... + 0 (x - xo)n 

2! n! 

f-- I(k) (xo) k 

= ~ k' (x - xo) 
k=O . 

and 

R (x) = I(n+l)(~(x)) (x _ X )n+l. 
n (n+l)! 0 • 

Here Pn (x) is called the nth Taylor polynomial for I about Xo, and Rn (x) is called the 
remainder tenn (or truncation error) associated with Pn(x). The infinite series obtained 
by taking the limit of Pn (x) as n -+ 00 is called the Taylor series for I about Xo. In 
the case Xo = 0, the Taylor polynomial is often called a Maclaurin polynomial, and the 
Taylor series is called a Maclaurin series. 

The term truncation error refers to the error involved in using a truncated, or finite, 
summation to approximate the sum of an infinite series. 

Determine (a) the second and (b) the third Taylor polynomials for I(x) = cosx about 
Xo = 0, and use these polynomials to approximate cos(O.OI). (c) Use the third Taylor 
polynomial and its remainder telln to approximate foo.1 cos x dx. 

Since I E COO (lR), Taylor's Theorem can be applied for any n :::: O. Also, 

I'(x) = -sinx, I"(x) = -cosx, I"'(x) = sinx and 1(4)(x) = cosx, 
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Figure 1.12 
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so 

f(O) = 1, f'(O) = 0, f"(O) = -1 and f/l/(O) = o. 

8. For n = 2 and Xo = 0, we have 

I I . 
cosx = 1- 2"X2 + 6X3 sm~(x), 

where ~(x) is a number between 0 and x. (See Figure 1.12.) 

y 

1 /",....t-............. y = cos x 

7T 

With x = 0.01, the Taylor polynomial and remainder teIm are 

cosO.OI = 1 - ~(0.01)2 + ~(0.01)3 sin~(x) 

= 0.99995+0.16 x 1O-6sin~(x), 

x 

where 0 < ~(x) <·0.01. (The bar over the 6 in 0.16 is used to indicate that this 
digit repeats indefinjtely.) Since I sin ~(x)1 < 1 for all x, we have 

I cosO.OI - 0.999951 ::so 0.16 x 10-6, 

so the approximation 0.99995 matches at least the first five digits of cosO.OI, and 

0.9999483 ~ 0.99995 - 1.6 x 10-6 ::: cos 0.01 ::: 0.99995 + 1.6 x 10-6 

< 0.9999517. 

The error bound is much larger than the actual error. This is due in part to 
the poor bound we used for I sinHx)l. It can be shown that for all values of x, 
we have I sinxl ::: Ixl. Since 0 ::: ~ < 0.01, we could have used the fact that 
I sin~(x)1 ::so 0.01 in the error fonnula, producing the bound 0.16 x 10-8

. 
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b. Since fill (0) = 0, the third Taylor polynomial with remainder tenn about Xo = 0 
• 

IS 

1 2 1 4 -
cosx = 1 - 2x + 24x cos;(x), 

-where 0 < Hx) < 0.01. The approximating polynomial remains the same, and 
the approximation is still 0.99995, but we now have a much better accuracy as--surance. Since I cos; (x) I ~ 1 for all x, we have 

1 4 - 1 0 
24 x cos ~(x) ~ 24 (0.01)4(1) ~ 4.2 x to-I . 

So 

I cos om - 0.999951 ~ 4.2 x to- IO , 

and 

0.99994999958 = 0.99995 - 4.2 x to- lO 

< cos 0.01 < 0.99995 + 4.2 x to- lO = 0.99995000042. 

The first two parts of this example illustrate the two objectives of numerical 
analysis. The first is to find an approximation, which the Taylor polynomials in 
both parts provide. The second is to detennine the accuracy of the approximation. 
In this case, the third Taylor polynomial was much more informative than the 
second, even though both polynomials gave the same approximation. 

c. Using the third Taylor polynOlnial gives 

0.1 

o 

Therefore, 

0.1 

cosx dx = 
o 

1 2 
1- -x 

2 

1 
dx + 2 4 0 

1 3 = X --x 
6 

0.1 1 

o + 24 0 

1 1 
= 0.1 - -(0.1)3 + -

6 24 0 

0.1 

X4 cos~(x) dx. 

0.1 1 
cosx dx ~ 0.1 - -(0.1)3 = 0.09983. 

o 6 

A bound for the error in this approximation is determined from the integral of the -Taylor remainder term and the fact that 1 cos ~ (x) 1 ~ 1 for all x: 

1 1 0.1 

x4Icos~(x)1 dx 
24 o 

<-:-:-
- 24 0 

-

1 0.1 
4 --8 

X dx = 8.3 x 10 . 
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Since the true value of this integral is 

0.1 0.1 

cosx dx = sinx = sinO.l ~ 0.099833417, 
o 0 

the actual error for this approximation is 8.332 x 10-8, which is within the error 
bound. _ 

We could also use a CAS in Example 3. Using Maple, we define f by 

>f:=coS(X)i 

Maple allows us to place multiple statements on a line and to use a colon to suppress Maple 
responses. For example, we obtain the third Taylor polynomial with 

>s3:=taylor(f,x=O,4): p3: =convert (s3, polynom)i 

The first part computes the Taylor series with four terms (degree 3) and remainder ex
panded about Xo = O. The second part converts the series s3 to the polynomial p3 by 
dropping the remainder. To obtain 11 decimal digits of display we enter 

>Digits:=lli 

and evaluate f(O.OI), P3(0.01), and If(O.01) - P3(0.01)1 with 

>yl:=evalf(subs(x=O.Ol,f))i 
>y2:=evalf(subs(x=0.01,p3))i 
>err:=abs(yl-y2)i 

This produces YI = f(O.OI) = 0.99995000042, Y2 = P3(0.01) = 0.99995000000, and 
If(O.OI) - P3 (0.01) I = .42 x 10-9. 

To obtain a graph similar to Figure 1.12, enter 

>plot({ f,p3 },x=-Pi .. Pi); 

The commands for the integrals are 

>ql:=int(f,x=O .. 0.1)i 
>q2:=intCp3,x=0 .. 0.1)i 
>err:=abs(ql-q2)i 

which give the values 

0.1 

q1 = f(x) dx = 0.099833416647 and q2 = 
o 

with error 0.83314 x 10-7 . 

0.1 

P3(X) dx = 0.099833333333, 
o 

Parts (a) and (b) of the example show how two techniques can produce the same ap
proximation but have differing accuracy assurances. Remember that determining approx
imations is only part of our objective. An equally important part is to detennine at least a 
bound for the accuracy of the approximation. 
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EXERCISE SET 1.1 

1. Show that the following equations have at least one solution in the given intervals. 

a. x cos x - 2X2 + 3x - 1 = 0, [0.2,0.3] and [1.2, 1.3] 

b. (x - 2)2 -lnx = 0, [1,2] and [e, 4] 

c. 2x cos(2x) - (x - 2)2 = 0, [2, 3] and [3,4] 

d. x - (lnxY = 0, [4, S] 

2. Find intervals containing solutions to the following equations. 

a. x - 3-x = 0 

b. 4x 2 - eX = 0 

C. x 3 
- 2X2 - 4x + 3 = 0 

d. x 3 + 4.001x2 + 4.002x + 1.101 = 0 

3. Show that I' (x) is 0 at least once in the given intervals. 

a. I(x) = 1 _ex + (e - l)sin«7r/2)x), [0,1] 

b. l(x)=(x-l)tanx+xsin7rx, [0,1] 

c. l(x)=xsin7rx-(x-2)lnx, [1,2] 

d. I(x) = (x-2)sinxln(x+2), [-1,3] 

4. Find max"<x,,,b I/(x)1 for the following functions and intervals. 

a. I(x) = (2 - eX + 2x)/3, [0, I] 

b. I(x) = (4x - 3)/(x2 - 2x), [0.5,1] 

c. I(x) = 2x cos(2x) - (x - 2)2, [2,4] 

d. I(x) = 1 + e-cos(x-l), fl,2] 

5. Use the Intermediate Value Theorem and Rolle's Theorem to show that the graph of I(x) = 
x 3 + 2x + k crosses the x-axis exactly once, regardless of the value of the constant k. 

6. Suppose I E C[a, b] and f'(x) exists on (a, b). Show that if f'(x) =f 0 for all x in (a, b), 
then there can exist at most one number p in [a, b] with f(p) = O. 

7. Let I(x) = x 3• 

a. Find the second Taylor polynomial P2(X) about Xo = O. 

b. Find R2(0.S) and the actual error in using P2(0.S) to approximate f(O.S). 

c. Repeat part (a) using Xo = 1. 

d. Repeat part (b) using the polynomial from part (c). 

8. Find the third Taylor polynomial P3 (x) for the function f(x) = ./x + 1 about Xo = O. Ap
proximate J03 , ./0.75, ./1.25, and v'I3 using P3 (x), and find the actual errors. 

9. Find the second Taylor polynomial P2(x) for the function I(x) = eX cos x about Xo = O. 

a. Use P2(0.5) to approximate 1(0.5). Find an upper bound for error 1/(0.5) - P2(0.5)1 
using the error formula, and compare it to the actual error. 

b. Find a bound for the error If(x) - P2(x)1 in using P2(x) to approximate f(x) on the 
interval [0, 1). 

c. Approximate fol I (x) dx using fol P2 (x) dx. 

d. Find an upper bound for the error in (c) using fol IR2(X) dxl, and compare the bound to 
the actual ermr. 

10. Repeat Exercise 9 using Xo = 7r 16. 
11. Find the third Taylor polynomial P3(X) for the function I(x) = (x - 1) lnx about Xo = 1. 
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a. Use P3(0.5) to approximate 1(0.5). Find an upper bound for error 1/(0.5) - P3(0.5)1 
using the error fonnula, and compare it to the actual error. 

b. Find a bound for the error 1 I (x) - P3 (x) I in using P3 (x) to approximate I (x) on the 
interval [0.5, 1.5]. 

c. Approximate fol; I(x) dx using f:; P3(x) dx. 

d. Find an upper bound for the error in (c) using fo\5 IR3 (x) dxl, and compare the bound to 
the actual error. 

12. Let I(x) = 2x cos(2x) - (x - 2)2 and Xo = O. 

a. Find the third Taylor polynomial P3(x), and use it to approximate 1(0.4). 

b. Use the error formula in Taylor's Theorem to find an upper bound for the error 1 I (0.4) -
P3 (OA)I. Compute the actual error. 

c. Find the fourth Taylor polynomial P4(X), and use it to approximate 1(004). 

d. Use the error formula in Taylor's Theorem to find an upper bound for the error 1/(004) -
P4 (OA)I. Compute the actual error. 

13. Find the fourth Taylor polynomial P4 (x) for the function I(x) = xe
x2 about Xo = O. 

a. Find an upper bound for I/(x) - P4 (x)l, for 0 < x < 0.4. 

b. Approximate f~.4 j(x) dx using f~.4 P4 (x) dx. 

c. Find an upper bound for the error in (b) using foO.4 P4(x) dx. 

d. Approximate 1'(0.2) using P~(O.2), and find the error. 

14. Use the error term of a Taylor polynomial to estimate the error involved in using sinx "'" x to 
approximate sin 10. 

15. Use a Taylor polynomial about Jr / 4 to approximate cos 42° to an accuracy of 10-6
. 

16. Let I(x) = ex / 2 sin(x/3). Use Maple to determine the following. 

a. The third Maclaurin polynomial P3(X). 

b. j<4)(X) and a bound for the error I/(x) - P3(x)1 on [0, I]. 

17. Let I(x) = In(xz + 2). Use Maple to determine the following. 

a. The Taylor polynomial P3(x) for I expanded about Xo = 1. 

b. The maximum error I/(x) - P3 (x)l, for 0 < x < 1. -c. The Maclaurin polynomial P3 (x) for I. -d. The maximum error I/(x) - P3 (x)l, for 0 <x ~ 1. 
-

e. Does P3 (0) approximate I (0) better than P3 (I) approximates l(l)? 

18. Let I(x) = (1 - X)-I and Xo = O. Find the nth Taylor polynomial Pn (x) for I(x) about Xo. 

Find a value of n necessary for Pn(x) to approximate I(x) to within 10-6 on [0, 0.5). 

19. Let I(x) = eX and Xo = O. Find the nth Taylor polynomial Pn(x) for I(x) about Xo. Find a 
value of n necessary for Pn(x) to approximate I(x) to within 10-6 on [0,0.5]. 

20. Find the nth Maclaurin polynomial Pn(x) for I(x) = arctanx. 

21. The polynomial Pz(x) = I - ixz is to be used to approximate I(x) = cos x in [-!, iJ. Find 
a bound for the maximum error. 

22. The nth Taylor polynomial for a function I at Xo is sometimes referred to as the polynomial 
of degree at most n that "best" approximates I near xv. 

a. Explain why this description is accurate. 

b. Find the quadratic polynomial that best approximates a function I near Xo = I if the 
tangent line at Xo = I has equation y = 4x - I, and if 11/(1) = 6. 

23. A Maclaurin polynomial for ~ is used to give the approximation 2.5 to e. The error bound in 
this approximation is established to be E = i. Find a bound for the error in E. 
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24. The error junction defined by 

2 LX 2 erf(x) =.jii e-t dt 
. 1r 0 

gives the probability that anyone of a series of trials will lie within x units of the mean, assum
ing that the trials have a nonnal distribution with mean 0 and standard deviation ..fi12. This 
integral cannot be evaluated in tenns of elementary functions, so an approximating technique 
must be used. 

a. Integrate the Maclaurin series for e-x2 to show that 

2 00 (_I)kX2.Hl 
erf(x) - "---..,.--- .jii {:o (2k + I)k! . 

b. The error function can also be expressed in the fonn 

2 _ 2 00 2kx2HI 
erf(x) = e " L . 

.jii k=O I . 3 . 5· .. (2k + I) 

Verify that the two series agree for k = 1,2, 3, and 4. [Hint: Use the Maclaurin series for 
_x2 ] e . 

c. Use the series in part (a) to approximate erf(l) to within 10-7 • 

d. Use the same number of tenns as in part (c) to approximate erf(l) with the series in part 
(b). 

e. Explain why difficulties occur using the series in part (b) to approximate erf(x). 

25. A function I : [a, b) ~ lR is said to satisfy a Lipschitz condition with Lipschitz constant L 
on [a, b) if, for every x, y E [a, b), we have II(x) - l(y)1 :s Llx - YI. 

a. Show that if I satisfies a Lipschitz condition with Lipschitz constant L on an interval 
[a, b), then I E C[a, b). 

b. Show that if I has a derivative that is bounded on [a, b) by L, then I satisfies a Lipschitz 
condition with Lipschitz constant L on [a, b]. 

c. Give an example of a function that is continuous on a closed interval but does not satisfy 
a Lipschitz condition on the interval. 

26. Suppose I E era, b), that XI and X2 are in [a, b), and that CI and C2 are positive constants. 
Show that a number ~ exists between XI and X2 with 

27. Let IE C[a, b), and let p be in the open interval (a, b). 

a. Suppose I(p) #= O. Show that a 8 > 0 exists with I(x) #= 0, for all X in [p - 8, p + 8], 
with [p - 8, P + 8] a subset of [a, b). 

b. Suppose I(p) = 0 and k > 0 is given. Show that a 8 > 0 exists with II(x)1 < k, for all 
x in [p - 8, P + 8], with [p - 8, p + 8] a subset of [a, b). 
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1.2 Roundoff Errors and Computer Arithmetic 

The arithmetic perfOImed by a calculator or computer is different from the arithmetic in 
our algebra and calculus courses. From your past experience, you might expect that we 
always have as true statements such things as 2 + 2 = 4,4·4 = 16, and (v'3? = 3. In 
standard computational arithmetic we will have the first two but not always the third. To 
understand why this is true we must explore the world of finite-digit arithmetic. 

In our traditional mathematical world we peIInit numbers with an infinite number of 
digits. The arithmetic we use in this world defines v'3 as that unique positive number that 
when multiplied by itself produces the integer 3. In the computational world, however, each 
representable number has only a fixed, finite number of digits. This means, for example, 
that only rational numbers and not even all of these can be represented exactly. Since 
v'3 is not rational, it is given an approximate representation, one whose square will not 
be precisely 3, although it will likely be sufficiently close to 3 to be acceptable in most 
situations. In most cases, then, this machine arithmetic is satisfactory and passes without 
notice or concern, but at times problems arise because of this discrepancy. 

Roundoff error is produced when a calculator or computer is used to perfOIm real
number calculations. It occurs because the arithmetic performed in a machine involves 
numbers with only a finite number of digits, with the result that calculations are performed 
with only approximate representations of the actual numbers. In a typical computer, only 
a relatively small subset of the real number system is used for the representation of all the 
real numbers. This subset contains only rational numbers, both positive and negative, and 
stores the fractional part, together with an exponential part. 

In 1985, the IEEE (Institute for Electrical and Electronic Engineers) published a report 
called Binary Floating Point Arithmetic Standard 754-1985. FOImats were specified for 
single, double, and extended precisions, and these standards are generally followed by all 
microcomputer manufacturers using fioating-point hardware. For example, the numerical 
coprocessor for PCs implements a 64-bit (binary digit) representation for a real number, 
called a long real. The first bit is a sign indicator, denoted s. This is followed by an II-bit 
exponent, c, called the characteristic, and a 52 "bit binary fraction, f, called the mantissa. 
The base for the exponent is 2. 

Since 52 binary digits correspond to between 16 and 17 decimal digits, we can as
sume that a number represented in this system has at least 16 decimal digits of precision. 
The exponent of 11 binary digits gives a range of 0 to 211 - 1 = 2047. However, using 
only positive integers for the exponent would not peIInit an adequate representation of 
numbers with small magnitude. To ensure that numbers with small magnitude are equally 
representable, 1023 is subtracted from the characteristic, so the range of the exponent is 
actually from -1023 to 1024. 

To save storage and provide a unique representation for each fioating-point number, a 
normalization is imposed. Using this system gives a fioating-point number of the form 

Consider for example, the machine number 

010000000011101110010001 000000000. 

~ --

• 

r 
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The leftmost bit is zero, which indicates that the number is positive. The next 11 bits, 
10000000011, giving the characteristic, are equivalent to the decimal number 

The exponential part of the number is, therefore, 21027-1023 = 24. The final 52 bits specify 
that the mantissa is 

f = 1 . 
1 1 

+ 1 . 
2 

1 3 

2 + 1 . 
1 4 

2 + 1· 
1 5 

+ 1 . 
2 

1 8 
+ 1 . 

2 

1 12 

2 

As a consequence, this machine number precisely represents the decimal number 

1 1 1 1 1 I 

• 

(_I)S2C - 1023 (1 + f) = (_1)0.21027-1023 
1 + 2 + 8 + 16 + 32 + 256 + 4096 

= 27.56640625. 

However, the next smallest machine number is 

010000000011 1011100100001111111111111111111111111111111111111111, 

and the next largest machine number is 

o 10000000011 10 111 00 1000 1 0000000000000000000000000001. 

This means that our original machine number represents not only 27.56640625, but also 
half of the real numbers that are between 27.56640625 and its two nearest machine-number 
neighbors. To be precise, it represents any real number in the interval 

[27.5664062499999982236431605997495353221893310546875, 

27.5664062500000017763568394002504646778106689453125). 

The smallest normalized positive number that can be represented has all Os except for 
the rightmost bit of 1 and is equivalent to 

T 1023 . (1 + 2-52) ~ 10-308 , 

and the largest has a leading 0 followed by allIs and is equivalent to 

21024 . (2 - T 52 ) ~ 10308 . 

Numbers occurring in calculations that have a magnitude less than 2 -1023 . (1 + 2-52 ) result 
in underflow and are generally set to zero. Numbers greater than 2 1024 . (2 - 2-52 ) result 
in overflow and typically cause the computations to halt. 

The use of binary digits tends to conceal the computational difficulties that occur when 
a finite collection of machine numbers is used to represent all the real numbers. To examine 
these problems, we now assume, for simplicity, that machine numbers are represented in 
the normalized decimal floating-point form 

for each i = 2, ... ,k. Numbers of this form are called k-digit decimal machine numbers. 



20 

EXAMPLE 1 

C HAP T E R 1 • Mathematical Preliminaries 

Any positive real number within the numerical range of the machine can be normalized 
to the fOlm 

The floating-point form of y, denoted II(y), is obtained by tenninating the mantissa of y 
at k decimal digits. There are two ways of performing this termination. One method, called 
chopping, is to simply chop off the digits dk+ 1 dk+2 . .. to obtain 

The other method, called rounding, adds 5 x 1O,,-(k+l) to y and then chops the result to 

obtain a number of the form 

So, when rounding, if dk+1 2: 5, we add 1 to dk to obtain I/(y); that is, we round up. 

When dk+l < 5, we merely chop off all but the first k digits; so we round down. If we 
round down, then Oi = di, for each i = 1,2, ... ,k. However, if we round up, the digits 
might change. 

The number n has an infinite decimal expansion of the form n = 3.14159265 .... Written 
in nonnalized decimal form, we have 

n = 0.314159265 ... X 101
• 

The floating-point form of n using five-digit chopping is 

II(n) = 0.31415 x 101 = 3.1415. 

Since the sixth digit of the decimal expansion of n is a 9, the floating-point forIll of n using 
five-digit rounding is 

II(n) = (0.31415 + 0.00001) x 101 = 3.1416. • 
The error that results from replacing a number with its floating-point form is called 

roundoff error (regardless of whether the rounding or chopping method is used). The 
following definition describes two methods for measuring approximation errors. 

Definition 1.15 If p* is an approximation to p, the absolute enor is Ip - p*l, and the relative error is 

EXAMPLE 2 

Ip - p*1 . 
Ipi ,provided that p i= O. • 

Consider the absolute and relative errors in representing p by p* in the following 
example. 

a. If p = 0.3000 X 101 and p* = 0.3100 X 101, the absolute error is 0.1, and the 
relative error is 0.3333 x 10-1. 
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b. If P = 0.3000 X 10-3 and p* = 0.3100 X 10-3, the absolute error is 0.1 x 10-4 , 

and the relative error is 0.3333 x 10-1• 

c. If P = 0.3000 X 104 and p* = 0.3100 X 104, the absolute error is 0.1 x 103, and 
the relative error is again 0.3333 x 10-1. 

This example shows that the same relative error, 0.3333 x 10-1, occurs for widely 
varying absolute errors. As a measure of accuracy, the absolute error can be misleading 
and the relative error more meaningful since the relative error takes into consideration the 
size of the value. _ 

The following definition uses relative error to give a measure of significant digits of 
accuracy for an approximation. 

Definition 7.16 The number P* is said to approximate P to t significant digits (or figures) if t is the largest 
nonnegative integer for which 

'lable 1.1 

Ip-p*1 

Ip I -
Table 1.1 illustrates the continuous nature of significant digits by listing, for the various 

values of p, the least upper bound of Ip - p*l, denoted max Ip - p*l, when p' agrees with 
p to four significant digits. 

P 0.1 0.5 100 1000 5000 9990 10000 

max Ip - p*1 0.00005 0.00025 0.05 0.5 2.5 4.995 5. 

Returning to the machine representation of numbers, we see that the floating-point 
representation fl(y) for the number y has the relative error 

y - fl(y) 

y 
• 

If k decimal digits and chopping are used for the machine representation of 

y = O.dldz " . dkdk+1 •.. x IOn, 

then 

y - fl(y) O.dldz ... dkdk+l ... x Ion - O.dldz ... dk X 10" --
y 0.d1dz ... x 10" 

O.dk+ldk+Z ... x IOn
-

k 

- --
0.d1dz ... x Ion 

Since d1 "1= 0, the minimal value of the denominator is O. L The numerator is bounded 
above by 1. As a consequence. 

y - fl(y) < 1 x lO-k = lO-k+l. 
y - 0.1 
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In a similar manner, a bound for the relative error when using k-digit rounding arithmetic 
is 0.5 x IO-k+!. (See Exercise 24.) 

Note that the bounds for the relative error using k-digit arithmetic are independent 
of the number being represented. This result is due to the manner in which the machine 
numbers are distributed along the real line. Because of the exponential form of the char
acteristic, the same number of decimal machine numbers is used to represent each of the 
intervals [0.1,1], [1,10], and [10,100]. In fact, within the limits of the machine, the num
ber of decimal machine numbers in [IOn, lOn+!] is constant for all integers n. 

In addition to inaccurate representation of numbers, the arithmetic performed in a com
puter is not exact. The arithmetic involves manipulating binary digits by various shifting, or 
logical, operations. Since the actual mechanics of these operations are not pertinent to this 
presentation, we shall devise our own approximation to computer arithmetic. Although our 
arithmetic will not give the exact picture, it suffices to explain the problems that occur. (For 
an explanation of the manipulations actually involved, the reader is urged to consult more 
technically oriented computer science texts, such as [Ma], Computer System Architecture.) 

Assume that the floating-point representations f I (x) and f I (y) are given for the real 
numbers x and y and that the symbols EEl, 8, 0, e represent machine addition, subtrac
tion, multiplication, and division operations, respectively. We will assume a finite-digit 
arithmetic given by 

x EEl y = fl(fl(x) + fl(y)), x 0 y = fl(fl(x) x fl(y)), 

x 8 y = fl(fl(x) - fl(y)), x e y = fl(fl(x) -:- fl(y)). 

This arithmetic corresponds to performing exact arithmetic on the floating-point repre
sentations of x and y and then converting the exact result to its finite-digit floating-point 
representation. 

Rounding arithmetic is easily implemented in a CAS. The Maple command 

>Digits:=t; 

causes all arithmetic to be rounded to t digits. For example, f I (f I (x) + f I (y)) is performed 
using t-digit rounding arithmetic by 

>evalf(evalf(x)+evalf(y»; 

Implementing t -digit chopping arithmetic is more difficult and requires a sequence of steps 
or a procedure. Exercise 27 explores this problem. 

Suppose that x = ~, y = j, and that five-digit chopping is used for arithmetic calculations 
involving x and y. Table 1.2 lists the values of these computer-type operations on f l (x) = 
0.71428 x 10° and f/(y) = 0.33333 x 10°. • 

Operation Result Actual value Absolute error Relative error 

xEBy 0.10476 x 101 22/21 0.190 x 10-4 0.182x 10-4 

xey 0.38095 x 10° 8/21 0.238 x 10-5 0.625 X 10-5 

x0y 0.23809 x 10° 5/21 0.524 x 10-5 0.220 X 10-4 

yEf)x 0.21428 x 101 15/7 0.571 x 10-4 0.267 X 10-4 
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Since the maximum relative error for the operations in Example 3 is 0.267 X 10-4
, 

the arithmetic produces satisfactory five-digit results. Suppose, however, that we also have 
u = 0.714251, v = 98765.9, and w = 0.111111 X 10-4

, so that fl(u) = 0.71425 x 100, 
f I (v) = 0.98765 X 105, and f I (w) = 0.11111 X 10-4 . (These numbers were chosen to 
illustrate some problems that can arise with finite-digit arithmetic.) 

In Table 1.3, x e u results in a small absolute error but a large relative error. The sub
sequent division by the small number w or multiplication by the large number v magnifies 
the absolute error without modifying the relative error. The addition of the large and small 
numbers u and v produces large absolute error but not large relative error. 

Operation Result Actual value Absolute error Relative error 

x8u 0.30000 x 10-4 0.34714 X 10-4 0.471 X 10-5 0.136 
(x e u) EB w 0.29629 X 101 0.34285 X 101 0.465 0.136 
(x e u) @ v 0.29629 X 101 0.34285 X 101 0.465 0.136 

uEBv 0.98765 x 105 0.98766 X 105 0.161 X 101 0.163 X 10-4 

One of the most common error-producing calculations involves the cancellation of 
significant digits due to the subtraction of nearly equal numbers. Suppose two nearly equal 
numbers x and y, with x > y, have the k-digit representations 

and 

The floating-point form of x - y is 

fIUI(x) - fl(y» = 0.Up+IUp+2'" Uk X lOn- p
, 

where 

0.Up+IUp+2 ... Uk = 0.<Xp +l<Xp+2 ... <Xk - 0.{3p+l{3p+2 ... {3k· 

The floating-point number used to represent x - y has at most k - p digits of significance. 
However, in most calculation devices, x - y will be assigned k digits, with the last p 
being either zero or randomly assigned. Any further calculations involving x - y retain 
the problem of having only k - p digits of significance, since a chain of calculations is no 
more accurate than its weakest portion. 

If a finite-digit representation or calculation introduces an error, further enlargement of 
the error occurs when dividing by a number with small magnitude (or, equivalently, when 
multiplying by a number with large magnitude). Suppose, for example, that the number z 
has the finite-digit approximation z + 8, where the error 8 is introduced by representation 
or by previous calculation. Suppose we now divide by 6' = lO-n, where n > O. Then 

z 
- ;::::; fl 
e 

fl(z) 

fl(e) 
= (z + 8) x IOn. 
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Thus, the absolute error in this approximation, 181 x IOn, is the original absolute error, 181, 
multiplied by the factor 10". 

Let P = 0.54617 andq = 0.54601. The exact value ofr = p-q is r = 0.00016. Suppose 
the subtraction is performed using four-digit arithmetic. Rounding p and q to four digits 
gives p* = 0.5462 and q* = 0.5460, respectively, and r* = p* - q* = 0.0002 is the 
four-digit approximation to r. Since 

Ir - r* I _ 10.00016 - 0.00021 _ 0 25 
Irl - 10.000161 -., 

the result has only one significant digit, whereas p* and q* were accurate to four and five 
significant digits, respectively. 

If chopping is used to obtain the four digits, the four-digit approximations to p, q, and 
rare p* = 0.5461, q* = 0.5460, and r* = p* - q* = 0.0001. This gives 

Ir - r* I = 10.00016 - 0.00011 = 0.375 
Ir I 10.000161 ' 

which also results in only one significant digit of accuracy. • 
The loss of accuracy due to roundoff error can often be avoided by a reformulation of 

the problem, as illustrated in the next example. 

The quadratic fonnula states that the roots ofax2 + bx + c = 0, when a =1= 0, are 

-b+ Jb2 -4ac 
Xl = ----:----

2a 

-b - Jb2 -4ac 
and X2 = . 

2a 
(1.1) 

Using four-digit rounding arithmetic, consider this formula applied to the equation x 2 + 
62. lOx + 1 = 0, whose roots are approximately 

Xl = -0.01610723 and X2 = -62.08390. 

In this equation, b2 is much larger than 4ac, so the numerator in the calculation for Xl 

involves the subtraction of nearly equal numbers. Since 

Jb2 - 4ac = J(62.1O)2 - (4.000)(1.000)(1.000) = .J3856. - 4.000 = J3852. 

= 62.06, 

we have 

-62.10 + 62.06 -0.04000 
fl(xd = = = -0.02000, 

2.000 2.000 

a poor approximation to XI = -0.01611, with the large relative error 

1- 0.01611 + 0.020001 0- 1 
1-0.016111 ~ 2.4 xl. 

On the other hand, the calculation for X2 involves the addition of the nearly equal numbers 
-b and -.Jb2 - 4ac. This presents no problem since 

fl 
-62.10 - 62.06 -124.2 

(X2) = = = -62.10 
2.000 2.000 

• 
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has the small relative error 

1 - 62.08 + 62.101 4 
1 _ 62.081 ~ 3.2 x 10- . 

To obtain a more accurate four-digit rounding approximation for Xl, we change the 
form of the quadratic formula by rationalizing the numerator: 

-b + .Jb2 - 4ac -b - v'b2 - 4ac 
Xl = 

2a -b - v'b2 - 4ac 

which simplifies to an alternate quadratic formula 

-2c 
Xl = . 

b + v'b2 - 4ac 

Using (1.2) gives 

I
I _ -2.000 -2.000 
(XI) - 62.10 + 62.06 = 124.2 = -0.01610, 

which has the small relative error 6.2 x 10-4 . 

(1.2) 

• 
The rationalization technique can also be applied to give the following alternative 

quadratic formula for X2: 

-2c 
X2 = ' . 

b - v'b2 - 4ac 
(1.3) 

This is the form to use if b is a negative number. In Example 5, however, the mistaken use of 
this fonnula for X2 would result in not only the subtraction of nearly equal numbers, but also 
the division by the small result of this subtraction. The inaccuracy that this combination 
produces, 

-2c -2.000 -2.000 
II(x2) = b _ v'b2 _ 4ac = 62.10 _ 62.06 = 0.04000 = -50.00, 

has the large relative error 1.9 x 10-1. 

Accuracy loss due to roundoff error can also be reduced by rearranging calculations, 
as shown in the next example. 

Evaluate I(x) = x3 - 6.1x2 + 3.2x + 1.5 at X = 4.71 using three-digit arithmetic. 
Table 1.4 gives the intermediate results in the calculations. Carefully verify these re

sults to be sure that your notion of finite-digit arithmetic is correct. Note that the three-digit 
chopping values simply retain the leading three digits, with no rounding involved, and dif
fer significantly from the three-digit rounding values. 

x x2 x 3 6.1x2 3.2x 

Exact 4.71 22.1841 104.487111 135.32301 15.072 
Three-digit (chopping) 4.71 22.1 104. 134. 15.0 
Three-digit (rounding) 4.71 22.2 105. 135. 15.1 
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Exact: f(4.71) = 104.487111 - 135.32301 + 15.072 + 1.5 

= -14.263899; 

Three-digit (chopping): f(4.71) = «104. - 134.) + 15.0) + 1.5 = -13.5; 

Three-digit (rounding): f(4.71) = ((105. - 135.) + 15.1) + 1.5 = -13.4. 

The relative errors for the three-digit methods are 

-14.263899 + 13.5 

-14.263899 
~ 0.05, for chopping 

and 

-14.263899 + 13.4 
-14.263899 ~ 0.06, for rounding. 

As an alternative approach, f (x) can be written in a nested manner as 

f(x) = x 3 
- 6.1x2 + 3.2x + 1.5 = «x - 6.1)x + 3.2)x + 1.5. 

This gives 

Three-digit (chopping): f(4.71) = «4.71 - 6.1)4.71 + 3.2)4.71 + 1.5 = -14.2 

and a three-digit rounding answer of -14.3. The new relative errors are 

Three-digit (chopping): 
-14.263899 + 14.2 

-14.263899 
~ 0.0045; 

-14.263899 + 14.3 

-14.263899 
Three-digit (rounding): ~ 0.0025. 

Nesting has reduced the relative error for the chopping approximation to less than 10% 
of that obtained initially. For the rounding approximation the improvement has been even 
more dramatic; the error in this case has been reduced by more than 95%. • 

Polynomials should always be expressed in nested form before performing an evalu
ation, because this form minimizes the number of arithmetic calculations. The decreased 
error in Example 6 is due to the reduction in computations from four multiplications and 
three additions to two multiplications and three additions. One way to reduce roundoff 
error is to reduce the number of error-producing computations. 

E X ERe I S ESE T 1.2 

1. Compute the absolute error and relative error in approximations of p by p'. 

a. p = n, p' = 22/7 b. p = n, p' = 3.1416 

c. p = e, p' = 2.718 d. p = ./2, p' = 1.414 
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e. p = elO, p* = 22000 f. p = 10", p' = 1400 

g. p = 8!, p' = 39900 h. p = 9!, p' = ~18n(9/e)9 
2. Find the largest interval in which p' must lie to approximate p with relative error at most 10-4 

for each value of p. 

a. n b. e c. .J2 d. ;;n 
3. Suppose p' must approximate p with relative error at most 10-3 . Find the largest interval in 

which p' must lie for each value of p. 

a. 150 b. 900 c. 1500 d. 90 

4. Perform the following computations (i) exactly, (ii) using three-digit chopping arithmetic, and 
(iii) using three-digit rounding arithmetic. (iv) Compute the relative errors in parts (ii) and 
(iii). 

a. 

c. 

4 I 
-+-
5 3 

I 3 
---
3 11 

b. 

d. 

4 1 
- . -
5 3 

1 3 
3 + 11 

3 

20 
5. Use three-digit rounding arithmetic to perform the following calculations. Compute the abso

lute error and relative error with the exact value determined to at least five digits. 

6. 
7. 
8. 
9. 

10. 

11. 

a. 133 + 0.921 b. 133 - 0.499 

c. (121 - 0.327) - 119 
13 6 - --

e. 14 7 

2e - 5.4 

2 9 
- . -
9 7 

g. 

d. 

f. 

h. 

(121 - 119) - 0.327 

3 
-lOn +6e --

62 

1 
17 

Repeat Exercise 5 using four-digit rounding arithmetic. 

Repeat Exercise 5 using three-digit chopping arithmetic. 

Repeat Exercise 5 using four-digit chopping arithmetic. 

The first three nonzero terms of the Maclaurin series for the arctangent function are x -
(1/3)x 3 + (l/5)x5 Compute the absolute error and relative error in the following approxi
mations of n using the polynomial in place of the arctangent: 

1 1 
a. 4 arctan - + arctan -

2 3 
b. 16 arctan 

I 

5 
- 4 arctan 

I 
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The number e can be defined by e = L:O(l/n!), where n! = n(n - 1) ., ·2·1 for n of:. 0 and 
O! = 1. Compute the absolute error and relative error in the following approximations of e: 

5 1 10 1 
a. L n' b. L;;I 

n=O • n=O . 

Let 

• x cosx - smx 
f(x) = . • 

x -smx 

a. Find limx .... o f(x). 

b. Use four-digit rounding arithmetic to evaluate f(O.I). 

c. Replace each trigonometric function with its third Maclaurin polynomial, and repeat part 
(b). 

d. The actual value is f (0.1) = -1.99899998. Find the relative error for the values obtained 
in parts (b) and (c). 



28 C HAP T E R 1 • Mathematical Prelim/nones 

12. Let 

13. 

14. 

15. 

eX _.e-x 

f(x) = --
x 

a. Find limx-+o(eX - e-X)/x. 

h. Use three-digit rounding arithmetic to evaluate f(O.I). 

c. Replace each exponential function with it~ third Maclaurin polynomial, and repeat part 
(b). 

d. The actual value is f(O.I) = 2.003335000. Find the relative error for the values obtained 
in parts (a) and (b). 

Use four-digit rounding arithmetic and the formulas of Example 5 to find the most accurate 
approximations to the roots of the following quadratic equations. Compute the absolute errors 
and relative errors. 

a. ~X2 12\ + ~ = 0 
3 4 6 

b. 
1 2 123 1 
-x + x - - =0 
3 4 6 

C. l.oo2x2 - 11.00x + 0.01265 = 0 d. l.oo2x2 + 11.01x + 0.01265 = 0 

Repeat Exercise 13 using four-digit chopping arithmetic. 

Use the 64-bit long real format to find the decimal equivalent of the following floating-point 
machine numbers. 

a. 0 10000001010 

h. 1 1000000 10 10 

c. o 01111111111 

d. o 01111111111 

010 1 00 11 00000 

010100110000 

16. Find the next largest and smallest machine numbers in decimal form for the numbers given in 
Exercise 15. 

17. Suppose two points (xo, Yo) and (Xl, Yl) are on a straight line with Yl =! Yo. Two formulas are 
available to find the x-intercept of the line: 

XOYI - XIYO 
X= 

Yl - Yo 
and x =Xo-

a. Show that both formulas are algebraically correct. 

• 

Yl - Yo 

b. Use the data (xo, Yo) = (1.31,3.24) and (Xl, yd = (1.93,4.76) and three-digit rounding 
arithmetic to compute the x-intercept both ways. Which method is better and why? 

18. The Taylor polynomial of degree n for f (x) = eX is L7 o(x i / i !). Use the Taylor polynomial 
of degree nine and three-digit chopping arithmetic to find an approximation to e-5 by each of 
the following methods. 

9 (-5); 9 (-1); 5; -5 1 1 
a. e-

5 ~ L ., = L ., b. e = e5 ~ L:=o * . 
i=O I. i=O I. 

c. An approximate value of e-5 correct to three digits is 6.74 x 10-3 • Which formula, (a) or 
(b), gives the most accuracy, and why? 

19. The two-by-two linear system 

ax + by = e, 

ex +dy = f, 

where a, b, c, d, e, f are given, can be solved for X and Y as follows: 
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c 
set m = -, provided a =1= 0; 

a 

dl = d - mb; 

JI = J - me; 

JI 
y= -; 

dl 

(e - by) 
x= 

a 
• 

Solve the following linear systems using four-digit rounding arithmetic. 

8. 1. 13 Ox - 6.990y = 14.20 b. 1.013x - 6.099y = 14.22 

c. 8.1 lOx + 12.20y = -0.1370 d. -18.11x + 112.2y = -0.1376 

20. Repeat Exercise 19 using four-digit chopping arithmetic. 

21. 8. Show that the polynomial nesting technique described in Example 6 can also be applied 
to the evaluation of 

22. 

23. 

24. 

J(x) = 1.01e4x - 4.62e3x - 3.11e2x + 12.2ex - 1.99. 

b. Use three-digit rounding arithmetic, the assumption that e1.53 = 4.62, and the fact that 
enx = (eX)n to evaluate J(1.53) as given in part (a). 

c. Redo the calculation in part (b) by first nesting the calculations. 

d. Compare the approximations in parts (b) and (c) to the true three-digit result J(1.53) = 
-7.61. 

A rectangular parallelepiped has sides of length 3 cm, 4 cm, and 5 cm, measured to the nearest 
centimeter. What are the best upper and lower bounds for the volume of this parallelepiped? 
What are the best upper and lower bounds for the surface area? 

Let Pn(x) be the Maclaurin polynomial of degree n for the arctangent function. Use Maple 
carrying 75 decimal digits to find the value of n required to approximate iT to within 10-25 

using the following formulas. 
1 1 

8. 4 Pn 2 + Pn 3 b. 16~ ~ 
n 5 -4P n 

Suppose that Jl(y) is a k-digit rounding approximation to y. Show that 

y - Jl(y) ::: 0.5 x lO-HI. 
y 

1 
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[Hint: If dk+l < 5, then Jl(y) = 0.d1d2 • •• dk X 10". If dk+l > 5, then Jl(y) = 0.d1d2 . .. dk X 

10" + 100-k.] 

25. The binomial coefficient 

m m! - .,...,--,----
k k! (m - k)! 

describes the number of ways of choosing a subset of k objects from a set of m elements. 

8. Suppose decimal machine numbers are of the form 

±0.d1d2d3i4 x 10", with 1 ::: d1 ::: 9, 0 < d j < 9, if i = 2, 3, 4 and Inl < 15. 

What is the largest value of m for which the binomial coefficient (;) can be computed 
for all k by the definition without causing overflow? 
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b. Show that (7) can also be computed by 

m -k+ I 
• • • 

I 
• 

c. What is the largest value of m for which the binomial coefficient (~) can be computed by 
the formula in part (b) without causing overflow? 

d. Use the equation in (b) and four-digit chopping arithmetic to compute the number of 
possible 5-card hands in a 52-card deck. Compute the actual and relative errors. 

26. Let f E C[a, b] be a function whose derivative exists on (a, b). Suppose f is to be evaluated 
at Xo in (a, b), but instead of computing the actual value f(xo), the approximate value, j(xo), -is the actual value of fat Xo + E, that is, f(xo) = f(xo + E). 

-
3. Use the Mean Value Theorem to estimate the absolute error If(xo) - f(xo)1 and the -relative error If(xo) - f(xo)l/lf(xo)l, assuming f(xo) # O. 

b. If E = 5 X 10-6 and Xo - 1, find bounds for the absolute and relative errors for 

i. f(x) = eX ii. f(x) = sin x 

c. Repeat part (b) with E = (5 x 1O-6)xo and Xo = 10. 

27. The following Maple procedure chops a floating-point number x to t digits. 

chop:=proc(x,t); 
if x=O then 0 
else 

e:=trunc(evalf(log10(abs(x»»; 

end· , 
fi 

if e>O then e:=e+1 fi; 
x2:=evalf(trunc(x*10-{}(t-e»*10-{}(e-t»; 

Verify the procedure works for the following values. 

3. x = 124.031, t = 5 b. x = 124.036, t = 5 

c. x = -124.031, t = 5 

e. x = 0.00653, t = 2 

g. x = -0.00653, t = 2 

d. x = -124.036, t = 5 

f. x = 0.00656, t = 2 

h. x = -0.00656, t = 2 

28. The opening example to this chapter described a physical experiment involving the tempera
ture of a gas under pressure. In this application, we were given P = 1.00 atm, V = 0.100 m3, 

N = 0.00420 mol, and R = 0.08206. Solving for T in the ideal gas law gives 

T = -::-:P-=-V _ . (1.00)(0.100) = 290.15 K = l70C. 
N R (0.00420)(0.08206) 

In the laboratory, it was found that Twas lYC under these conditions, and when the pressure 
was doubled and the volume halved, T was 19°C. Assume that the data are rounded values 
accurate to the places given, and show that both laboratory figures are within the bounds of 
accuracy for the ideal gas law. 
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1.3 Algorithms and Convergence 

EXAMPLE 1 

Throughout the text we will be examining approximation procedures, called algorithms, 
involving sequences of calculations. An algorithm is a procedure that describes, in an 
unambiguous manner, a finite sequence of steps to be perfoImed in a specified order. The 
object of the algorithm is to implement a procedure to solve a problem or approximate a 
solution to the problem. 

We use a pseudocode to describe the algorithms. This pseudocode specifies the fOIm 
of the input to be supplied and the foun of the desired output. Not all numerical procedures 
give satisfactory output for arbitrarily chosen input. As a consequence, a stopping tech
nique independent of the numerical technique is incorporated into each algorithm to avoid 
infinite loops. 

Two punctuation symbols are used in the algorithms: 

A period (.) indicates the teImination of a step, 

a semicolon (;) separates tasks within a step. 

Indentation is used to indicate that groups of statements are to be treated as a single entity. 
Looping techniques in the algorithms are either counter-controlled, such as, 

For i=1,2, ... ,n 

Set Xi = ai + i . h 

or condition-controlled, such as 

While i < N do Steps 3-6. 

To allow for conditional execution, we use the standard 

If ... then 

or 

If ... then 

else 

constructions. 
The steps in the algorithms follow the rules of structured program construction. They 

have been arranged so that there should be minimal difficulty translating pseudocode into 
any programming language suitable for scientific applications. 

The algorithms are liberally laced with comments. These are written in italics and 
contained within parentheses to distinguish them from the algorithmic statements. 

An algorithm to compute 

N 

L Xl+ X2+"'+ XN, 
;=1 
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where N and the numbers XI, X2, ... , XN are given, is described by the following: 

INPUT N,xI,x2, ... ,xn . 

OUTPUT SUM = 'Lf I Xj. 

Step 1 Set SUM = o. (Initialize accumulator.) 

Step 2 For i = 1, 2, ... , N do 
set SUM = SUM + Xj. (Add the next term.) 

Step 3 OUTPUT (SUM); 
STOP. 

The Nth Taylor polynomial for f (x) = In x expanded about Xo = 1 is 

N (-li+1 . 
PN(x) = L . (x -I)', 

. I I ,= 

and the value of In 1.5 to eight decimal places is 0.40546511. Suppose we want to compute 
the minimal value of N required for 

lIn 1.5 - PN (1.5)1 < 10-5 

without using the Taylor polynomial remainder teull. From calculus we know that if 
'L:' I an is an alternating series with limit A whose terms decrease in magnitude, then A 

and the Nth partial sum AN = L~ I an differ by less than the magnitude of the (N + l)st 
tel Ill; that is, 

The following algorithm uses this bound. 

INPUT value x, tolerance TOL, maximum number of iterations M. 
OUTPUT degree N of the polynomial or a message of failure. 
Step 1 Set N = 1; 

Y = x-I; 
SUM = 0; 
POWER = y; 
TERM = y; 
SIGN = -1. (Used to implement alternation of signs.) 

Step 2 While N < M do Steps 3-5. 

Step 3 Set SIGN = -SIGN; (Alternate the signs.) 
SUM = SUM + SIGN· TERM; (Accumulate the telms.) 
POWER = POWER· y; 
TERM = POWER/eN + 1). (Calculate the next term.) 
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Step 4 If JTERMJ < TOL then (Testfor accuracy.) 
OUTPUT (N); 
STOP. (The procedure was successful.) 

Step 5 Set N = N + 1. (Prepare for the next iteration.) 

Step 6 OUTPUT (,Method Failed'); (The procedure was unsuccessful.) 
STOP. 
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The input for our problem is x = 1.5, TOL = 10-5, and perhaps M = 15. This choice 
of M provides an upper bound for the number of calculations we are willing to perform, 
recognizing that the algorithm is likely to fail if this bound is exceeded. Whether the output 
is a value for N or the failure message depends on the precision of the computational device 
being used. _ 

We are interested in choosing methods that will produce dependably accurate results 
for a wide range of problems. One criterion we will impose on an algorithm whenever 
possible is that small changes in the initial data produce correspondingly small changes 
in the final results. An algorithm that satisfies this property is called stable; otherwise 
it is unstable. Some algorithms are stable only for certain choices of initial data. These 
are called conditionally stable. We will characterize the stability properties of algorithms 
whenever possible. 

To further consider the subject of roundoff error growth and its connection to algorithm 
stability, suppose an error with magnitude Eo > 0 is introduced at some stage in the 
calculations and that the magnitude of the error after n subsequent operations is denoted 
by En. The two cases that arise most often in practice are defined as follows. 

Definition 7.17 Suppose that Eo > 0 denotes an initial error and En represents the magnitude of an error 
after n subsequent operations. If En ~ enEo, where e is a constant independent of n, then 
the growth of error is said to be linear. If En ~ en Eo, for some e > 1, then the growth of 
error is called exponential. _ 

EXAMPLE 3 

Linear growth of error is usually unavoidable, and when e and Eo are small the re
sults are generally acceptable. Exponential growth of error should be avoided, since the 
tenn en becomes large for even relatively small values of n. This leads to unacceptable 
inaccuracies, regardless of the size of Eo. As a consequence, an algorithm that exhibits 
linear growth of error is stable, whereas an algorithm exhibiting exponential error growth 
is unstable. (See Figure 1.13 on page 34.) 

The recursive equation 

10 
Pn = 3 Pn-I - Pn-2, for n = 2, 3, ... 

has the solution 

Pn = Cl 
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Figure 1.13 
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• 

Unstable exponential growth 
• En = C"Eo 

• 

• 

• • 
• 
• • 

• • 
• Stable linear growth 

En = CnEo 

• • 

1234567 8 n 

for any constants CI and C2 since 

10 10 1 n-2 

+ C2 3n- 2 3 Pn - 1 - Pn-2 = 3 - CI -
3 

-
3 

1 n-2 10 1 10 + C23n- 2 ·3- 1 - CI · - - 1 - -
3 3 3 3 

1 n-2 1 1 n 

+ C23n-2(9) = CI + C2 3n = Pn· - CI - - -
3 9 3 

If PO = 1 and PI = j, we have CI = 1 and C2 = 0, so Pn = G r for all n. Suppose that 
five-digit rounding arithmetic is used to compute the terms of the sequence given by this 
equation. Then Po = 1.0000 and PI = 0.33333, which requires modifying the constants 
to CI = 1.0000 and C2 = -0.12500 X 10-5

. The sequence {PnJ;:O 0 generated is then given 
by 

Pn = 1.0000 
1 n 

- - 0.12500 X 10-5 (3)n, 
3 

and the roundoff error, 

Pn - Pn = 0.12500 x 1O-5(3n), 

grows exponentially with n. This is reflected in the extreme inaccuracies after the first few 
tenns, as shown in Table 1.5. . 

On the other hand, the recursive equation 

Pn = 2pn-1 - Pn-2, for n = 2,3, ... 
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n Computed Pn Correct Pn Relative Error 

0 0.10000 x 101 0.10000 X 101 

1 0.33333 x 10° 0.33333 x 10° 
2 0.11110 x 10° 0.11111 x 10° 9 X 10-5 

3 0.37000 X 10-1 0.37037 X 10-1 1 X 10-3 

4 0.12230 X 10-1 0.12346 X 10-1 9 X 10-3 

5 0.37660 X 10-2 0.41152 X 10-2 8 X 10-2 

6 0.32300 X 10-3 0.l3717 X 10-2 8 X 10-1 

7 -0.26893 X 10-2 0.45725 X 10-3 7 x 10° 
8 -0.92872 X 10-2 0.15242 X 10-3 6 X 101 

has the solution Pn = C1 + C2n for any constants C] and C2 because 

2pn-1 - Pn-2 = 2(cI + c2(n - 1)) - (CI + c2(n - 2)) 

= CI (2 - 1) + C2 (2n - 2 - n + 2) = CI + C2n = Pn. 

If Po = 1 and PI = j, the constants in this equation become CI = 1 and Cz = - ~ , 
so Pn = 1 - ~n. Five-digit rounding arithmetic in this case results in Po = 1.0000 and 
PI = 0.33333. As a consequence, the five-digit rounding constants are 81 = 1.0000 and 
8z = -0.66667. Thus, 

and the roundoff error is 

Pn = 1.0000 - 0.66667n, 
• 

~ 

Pn - Pn = 
2 

0.66667 - - n, 
3 

which grows linearly with n. This is reflected in the stability found in Table 1.6. • 

n Computed Pn Correct Pn Relative Error 

0 0.10000 x 101 0.10000 X 101 

1 0.33333 x 10° 0.33333 x 10° 
2 -0.33330 x 10° -0.33333 x 10° 9 X 10-5 

3 -0.10000 X 101 -0.10000 X 101 0 
4 -0.16667 X 101 -0.16667 X 101 0 
5 -0.23334 X 101 -0.23333 X 101 4 X 10-5 

6 -0.30000 X 101 -0.30000 X 101 0 
7 -0.36667 X 101 -0.36667 X 101 0 
8 -0.43334 X 101 -0.43333 X 101 2 X 10-5 

The effects of roundoff error can be reduced by using high-order-digit arithmetic such 
as the double- or multiple-precision option available on most computers. Disadvantages in 
using double-precision arithmetic are that it takes more computation time and the growth 
of roundoff error is not eliminated but is only postponed until subsequent computations are 
perfOImed. 
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One approach to estimating roundoff error is to use interval arithmetic (that is, to 
retain the largest and smallest possible values at each step), so that, in the end, we obtain 
an interval that contains the true value. Unfortunately, a very small interval may be needed 
for reasonable implementation. 

Since iterative techniques involving sequences are often used, this section concludes 
with a brief discussion of some terminology used to describe the rate at which convergence 
occurs when employing a numerical technique. In general, we would like the technique to 
converge as rapidly as possible. The following definition is used to compare the conver
gence rates of various methods. 

Definition UB Suppose {,Bn}~l is a sequence known to converge to zero, and {an}~ 1 converges to a 
number a. If a positive constant K exists with 

EXAMPLE 4 

'Jable 1.7 

Ian - a I ::: K l,Bn I, for large n, 

then we say that {an} ~ 1 converges to a with rate of convergence 0 (,Bn). (This expression 
is read "big oh of ,Bn .") It is indicated by writing an = a + O(,Bn). • 

Although Definition 1.18 permits {an}~l to be compared with an arbitrary sequence 
(,Bn}~l' in nearly every situation we use 

1 
,Bn = n P ' 

for some number p > O. We are generally interested in the largest value of p with an = 
a + O(1/n P). 

Suppose that, for n > 1, 

n+l 
and 

A n + 3 
an = 3' 

n 

Although both limn -+oo an = 0 and limn-+oo an = 0, the sequence {an} converges to this 
limit much faster than the sequence {an}, using five-digit rounding arithmetic, as shown in 
Table 1.7. 

n 

and 

I 

2. ()()()()() 
4.00000 

2 

0.75000 
0.62500 

3 

0.44444 
0.22222 

4 

0.31250 
0.10938 

5 

0.24000 
0.064000 

Ifwelet,Bn = l/nandPn = 1/n2,weseethat 

n+l 
Ian - 01 = 2 

n 

n+n 1 
::: = 2 . - = 2,Bn 

n2 n 

A n + 3 n + 3n 1 A 

lan-Ol= 3 < 3 =4' z =4,Bn, 
n n n 

6 

0.19444 
0.041667 

7 

0.16327 
0.029155 
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so 

an = 0+ 0 
1 1 

and an = 0 + 0 n2 . 
n 

The rate of convergence of {an} to zero is similar to the convergence of {I In} to zero, 
whereas {an} converges to zero at a rate similar to the more rapidly convergent sequence 
{I/n2}. _ 

We also use the "big oh" notation to describe the rate at which functions converge. 

Definition 1.19 Suppose that limh->O G (h) = 0 and limh->o F (h) = L. If a positive constant K exists with 

EXAMPLE 5 

. IF(h) - LI :s KIG(h)l, for sufficiently small h, 

then we write F(h) = L + O(G(h». _ 

The functions we use for comparison generally have the form G(h) = h P , where 
p > O. We are interested in the largest value of p for which F(h) = L + O(h P ). 

In Example 3(b) of Section 1.1 we found that the third Taylor polynomial gives 

1 2 1 4 -
cosh = 1- 2h + 24h cos;(h), 

-
for some number; (h) between zero and h. Consequently, 

1 2 1 4 -
cosh + 2h = 1 + 24h cos;(h). 

This result implies that 

1 
cosh + "2h2 = 1 + O(h4), 

since I(cosh + ~h2) - 11 = 1i4 cos€(h)lh4 < 2~h4. The implication is that as h -+ 0, 
cos h + ; h2 converges to its limit, 1, about as fast as h4 converges to O. -

E X ERe I S ESE T 1.3 

1. a. Use three-digit chopping arithmetic to compute the sum LiD 1 (11 i 2 ) first by : + ! + 
... + l~ and then by Tfxi + il + ... + t· Which method is more accurate, and why? 

b. Write an algorithm to sum the finite series L~ 1 Xi in reverse order. 

2. The number e is defined by e = L:O(1ln!), where n! = n(n - 1)···2 . 1 for n :f. 0 and 
O! = 1. Use four-digit chopping arithmetic to compute the following approximations to e, and 
determine the absolute and relative errors. 
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a. 
5 1 

e~L-
_A n! 

n= 

b. 
5 1 

e ~ '"' -:-:--------,-:-ko (5 - i)! 

10 1 10 1 
c. e ~ '"' - d. e ~ '"' -:-:-::---:-:-1=0 n! ko (10 - i)! 

3. The Maclaurin series for the arctangent function converges for -1 < x < I and is given by 

n U-I 

arctanx = lim Pn(x) = lim '"'(_1)i+12~ . 
n-+oo n-+oo ~ 1 - 1 

.=1 

a. Use the fact that tan n /4 = 1 to determine the number of n terms of the series that need 
to be summed to ensure that 14Pn (l) - nl < 10-3• 

b. The C++ programming language requires the value of n to be within 10-10 • How many 
terms of the series would we need to sum to obtain this degree of accuracy? 

4. Exercise 3 details a rather inefficient means of obtaining an approximation to 7r. The method 
can be improved substantially by observing that 7r /4 = arctan! + arctan ~ and evaluating the 
series for the arctangent at ~ and at ~. Determine the number of terms that must be summed 
to ensure an approximation to n to within 10-3 • 

5. Another formula for computing n can be deduced from the identity n /4 = 4 arctan; -
arctan 2~9. Determine the number of terms that must be summed to ensure an approximation 
to n to within 10-3 . 

6. Find the rates of convergence of the following sequences as n ~ 00. 

1 1 
a. lim sin - = 0 b. lim sin - = 0 

n-J>oo n n~oo n2 

1 2 
c. lim sin - = 0 d. lim [In(n + 1) - In(n)] = 0 

n-+oo n n-+oo 

7. Find the rates of convergence of the following functions as h ~ o. 
sinh 1 - cosh 

a. lim =1 b. lim =0 
h-+O h h-+O h 

sinh - hcosh 1 - eh 

c. lim = 0 d. lim = -1 
h-+O h h-+O h 

8. a. How many multiplications and additions are required to determine a sum of the form 

b. Modify the sum in part (a) to an equivalent form that reduces the number of computations. 

9. Let P(x) = anxn + an_IXn
-

1 + ... + alx + ao be a polynomial, and let Xo be given. Construct 
an algorithm to evaluate P(xo) using nested multiplication. 

10. Example 5 of Section 1.2 gives alternative formulas for the roots XI and X2 ofax2 +bx +c = o. 
Construct an algorithm with input a, b, c and output XI, X2 that computes the roots XI and X2 
(which may be equal or be complex conjugates) using the best formula for each root. 

U. Construct an algorithm that has as input an integer n ?: 1, numbers Xo, X I , . .. , Xn , and a 
number x and that produces as output the product (x - xo)(x - XI) ... (x - xn). 

12. Assume that 

1 - 2x 2x - 4x 3 4x3 - 8x 7 

+ + + ... = 
1 - X + x2 1 - x 2 + X4 1 - X4 + x 8 

1 + 2x 

1 +x +x2 ' 
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for x < 1, and let x = 0.25. Write and execute an algorithm that determines the number of 
terms needed on the left side of the equation so that the left side differs from the right side by 
less than 10-6 

13. a. Suppose that 0 < q < p and that an = a + 0 (n- p ). Show that an = a + 0 (n- q ). 

b. Make a table listing lin, Iln 2 , Iln 3 , and IIn4 for n = 5,10,100, and 1000, and discuss 
the varying rates of convergence of these sequences as n becomes large. 

14. a. Suppose that 0 < q < p and that F(h) = L + 0 (h P). Show that F(h) = L + 0 (hq). 

b. Make a table listing h, h 2
, h3

, and h4 for h = 0.5,0.1,0.01, and 0.001, and discuss the 
varying rates of convergence of these powers of h as h approaches zero. 

15. Suppose that as x approaches zero, 

Let C1 and C2 be nonzero constants, and define 

Show that if Y = minimum {a, .B}, then as x approaches zero, 

a. F(x) = C1L] + czL z + O(xY) b. G(x) = L1 + L2 + O(xY). 

16. The sequence {Fn} described by Fo = I, F1 = I, and Fn+2 = Fn + Fn+1, if n > 0, is called 
a Fibonacci sequence. Its terms occur naturally in many botanical species, particularly those 
with petals or scales arranged in the form of a logarithmic spiral. Consider the sequence {xn }, 

where Xn = Fn+11 Fn. Assuming that limn .... oo Xn = x exists, show that x = (l + ./5)/2. This 
number is called the golden ratio. 

17. The Fibonacci sequence also satisfies the equation 

1 
n 

1 +./5 
n 

1 -./5 
./5 2 2 

a. Write a Maple procedure to calculate F100 • 

-
b. Use Maple with the default value of Digi ts followed by evalf to calculate F 100 . 

c. Why is the result from part (a) more accurate than the result from part (b)? 

d. Why is the result from part (b) obtained more rapidly than the result from part (a)? 
-

e. What results when you use the command simplify instead of evalf to compute F100? 

18. The harmonic series I + ~ + ~ + ! + ... diverges, but the sequence Yn = I + ~ + ... + ~ -In n 
converges, since {Yn} is a bounded, nOnincreasing sequence. The limit Y = 0.5772156649 ... 
of the sequence {Yn} is called Euler's constant. 

a. Use the default value of Digi ts in Maple to determine the value of n for Yn to be within 
10-2 of y. 

b. Use the default value of Digi ts in Maple to determine the value of n for Yn to be within 
1O-3 0fy. 

c. What happens if you use the default value of Digits in Maple to determine the value of 
n for Yn to be within 10-4 of y? 
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1.4 Numerical Software 

Computer software packages for approximating the numerical solutions to problems are 
available in many forms. With this book, we have provided programs written in C, FOR
TRAN, Maple, Mathematica, MATLAB, and Pascal that can be used to solve the prob
lems given in the examples and exercises. These programs will give satisfactory results for 
most problems that you may need to solve, but they are what we call special-purpose pro
grams. We use this term to distinguish these programs from those available in the standard 
mathematical subroutine libraries. The programs in these packages will be called general 
purpose. 

The programs in general-purpose software packages differ in their intent from the 
algorithms and programs provided with this book. General-purpose software packages 
consider ways to reduce errors due to machine rounding, underflow, and overflow. They 
also describe the range of input that will lead to results of a certain specified accuracy . 

• 

Since these are machine-dependent characteristics, general-purpose software packages use 
parameters that describe the floating-point characteristics of the machine being used for 
computations. 

To illustrate some differences between programs included in a general-purpose pack
age and a program that we would provide for use in this book, let us consider an algorithm 
that computes the Euclidean norm of an n-dimensional vector x = (XI, X2, ... ,xnr. This 
norm is often required within larger programs and is defined by 

n 1/2 

IIxl12 = LX; • 

i=1 

The nonn gives a measure for the distance from the vector x to the vector O. For example, 
the vector x = (2, 1,3, -2, -1)1 has 

so its distance from 0 = (0, 0, 0, 0, 0)1 is .Ji9 ~ 4.36. 
An algorithm of the type we would present for this problem is given here. It includes 

no machine-dependent parameters and provides no accuracy assurances, but it will give 
accurate results "most of the time." 

INPUT n, XI, X2,'" ,Xn . 

OUTPUT NORM. 

Step 1 Set SUM = 0. 

Step 2 For i = 1, 2, ... ,n set SUM = SUM + x;. 

Step 3 Set NORM = SUMI/2. 

Step 4 OUTPUT (NORM); 
STOP. 
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A program based on this algorithm is easy to write and understand. However, the pro
gram could fail to give sufficient accuracy for a number of reasons. For example, the mag
nitude of some of the numbers might be too large or too small to be accurately represented 
in the floating-point system of the computer. Also, the normal order for performing the cal
culations might not produce the most accurate results, or the standard software square-root 
routine might not be the best available for the problem. Matters of this type are considered 
by algorithm designers when writing programs for general-purpose software. These pro
grams are often used as subprograms for solving larger problems, so they must incorporate 
controls that we will not need. 

Let us now consider an algorithm for a general-purpose software program for comput
ing the Euclidean norm. First, it is possible that although a component Xi of the vector is 
within the range of the machine, the square of the component is not. This can occur when 
some IXi I is so small that x; causes underflow or when some IXi I is so large that x; causes 
overflow. It is also possible for all these terms to be within the range of the machine, but 
overflow occurs from the addition of a square of one of the teuns to the previously com
puted sum. 

Since accuracy criteria depend on the machine on which the calculations are being 
performed, machine-dependent parameters are incorporated into the algorithm. Suppose 
we are working on a hypothetical computer with base 10, having t > 4 digits of precision, 
a minimum exponent em in, and a maximum exponent emax. Then the set of floating -point 
numbers in this machine consists of 0 and the numbers of the form 

x = f· We, where f = ±(f,1O- 1 + fz 10-2 + ... + j; 10-1
), 

where 1 < II ::: 9 and 0 < fi ::: 9, for each i = 2, ... , t, and where emin < e < emax. 
These constraints imply that the smallest positive number represented in the machine is 
a = lOemin-', so any computed number x with Ix I < a causes underflow and results 
in x being set to O. The largest positive number is A = (1 - 10-1

) lOemax , and any com
puted number x with Ix I > A causes overflow. When underflow occurs, the program will 
continue, often without a significant loss of accuracy. If overflow occurs, the program will 
fail. 

The algorithm assumes that the floating-point characteristics of the machine are de
scribed using parameters N, s, S, y, and Y. The maximum number of entries that can be 
summed with at least t /2 digits of accuracy is given by N. This implies the algorithm will 
proceed to find the norm of a vector x = (x" X2, ... ,xnr only if n < N. To resolve the 
underflow-overflow problem, the nonzero floating-point numbers are partitioned into three 
groups: small-magnitude numbers x, those satisfying 0 < Ixl < y; medium-magnitude 
numbers x, where y < Ix I < Y; and large-magnitude numbers x, where Y < Ix I. The 
parameters y and Y are chosen so that there will be no underflow-overflow problem in 
squaring and summing the medium-magnitude numbers. Squaring small-magnitude num
bers can cause underflow, so a scale factor S much greater than 1 is used with the result 
that (Sx)2 avoids the underflow even when x 2 does not. Summing and squaring numbers 
having a large magnitude can cause overflow, so in this case, a positive scale factor s much 
smaller than 1 is used to ensure that (sx)2 does not cause overflow when calculated or 
incorporated into a sum, even though x 2 would. 

To avoid unnecessary scaling, y and Y are chosen so that the range of medium
magnitude numbers is as large as possible. The algorithm that follows is a modification 
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of one described in [Brow, W, p. 471]. It incorporates a procedure for scaling the compo
nents of the vector that are small in magnitude until a component with medium magnitude 
is encountered. It then unscales the previous sum and continues by squaring and summing 
small and medium numbers until a component with a large magnitude is encountered. Once 
a component with large magnitude appears, the algorithm scales the previous sum and pro
ceeds to scale, square, and sum the remaining numbers. The algorithm assumes that, in 
transition from small to medium numbers, un scaled small numbers are negligible when 
compared to medium numbers. Similarly, in transition from medium to large numbers, un
sealed medium numbers are negligible when compared to large numbers. Thus, the choices 
of the scaling parameters must be made so that numbers are equated to 0 only when they 
are truly negligible. Typical relationships between the machine characteristics as described 
by t, (j, A, emi n, emax, and the algorithm parameters N, s, S, y, and Yare given after the 
algorithm. 

The algorithm uses three flags to indicate the various stages in the summation process. 
These flags are given initial values in Step 3 of the algorithm. FLAG I is 1 until a medium 
or large component is encountered; then it is changed to O. FLAG 2 is 0 while small num
bers are being summed, changes to 1 when a medium number is first encountered, and 
changes back to 0 when a large number is found. FLAG 3 is initially 0 and changes to 1 
when a large number is first encountered. Step 3 also introduces the flag DONE, which is 
o until the calculations are complete, and then changes to 1. 

INPUT N, s, S, y, Y, A, n, Xl, X2, .•• ,Xn . 

OUTPUT NORM or an appropriate error message. 

Step 1 If n :::: 0 then OUTPUT (The integer n must be positive.'); 
STOP. 

Step 2 If n :::: N then OUTPUT (,The integer n is too large.'); 
STOP. 

Step 3 Set SUM = 0; 
FLAGI = I; (The small numbers are being summed.) 
FLAG2 = 0; 
FLAG3 = 0; 
DONE = 0; 
i = 1. 

Step 4 While (i < n and FlAG! = 1) do Step 5. 

Step 5 If JXi J < y then set SUM = SUM +(SXi )2; 
i=i+1 

else set FLAGI = O. (A non-small number encountered.) 

Step 6 Iii > n then set NORM = (SUM)I/2/S; 

DONE = 1 
else set SUM = (SUM/S)/S; (Scaleforlargernumbers.) 

FLAG2 = 1. 

Step 7 While (i :::: nand FLAG2 = 1) do Step 8. (Sum the medium-sized numbers.) 

--

. ,. 

r 
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Step 8 If IXi I < Y then set SUM = SUM + x;; 
i = i + 1 

43 

else set FLAG2 = O. (A large number has been encountered.) 

Step 9 If DONE = 0 then 
if i > n then set NORM = (SUM)I/2; 

DONE = 1 
else set SUM = «SUM)s)s; (Scale the large numbers.) 

FLAG3 = 1. 

Step 10 While (i ~ nand FLAG3 = 1) do Step 11. 

Step 71 Set SUM = SUM +(SXi)2; (Sum the large numbers.) 
i=i+l. 

Step 12 If DONE = 0 then 
if SUM1/ 2 < AS then set NORM = (SUM) 1/2 Is; 

DONE = 1 
else set SUM = A. (The norm is too large.) 

Step 13 If DONE = 1 then OUTPUT (,NolIn is', NORM) 
else OUTPUT ('Norm>', NORM, 'overflow occurred'). 

Step 14 STOP. 

The relationships between the machine characteristics t, a, A, emin, em ax , and the 
algorithm parameters N, s, S, y, and Y were chosen in [Brow, W, p. 471] as: 

N = lOeN , where eN = l(t - 2)/2J, the greatest integer less than or equal to 
(t - 2)/2; 

s=lOes , where es =L-(emax+eN)/2J; 

S = lOes , where es = 1(1 - emin)/21, the smallest integer greater than or equal 
to (1 - emin)/2; 

y = lOey, where ey = ICemin + t - 2)/21; 

Y = lOey , where ey = LCemax - eN )/2J. 

The reliability built into this algorithm has greatly increased the complexity compared to 
the algorithm given earlier in the section. 

There are many forms of general-purpose numerical software available commercially 
and in the public domain. Most of the early software was written for mainframe computers, 
and a good reference for this is Sources and Development of Mathematical Software, edited 
by Wayne Cowell [Co]. Now that the desktop computer has become sufficiently powerful, 
standard numerical software is available for personal computers and workstations. Most of 
this numerical software is written in FORTRAN, although some packages are written in C, 
C++, and FORTRAN90. 

ALGOL procedures were presented for matrix computations in 1971 in [WRJ. A pack
age of FORTRAN subroutines based mainly on the ALGOL procedures was then devel
oped into the EISPACK routines. These routines are documented in the manuals published 
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by Springer-Verlag as part of their Lecture Notes in Computer Science series [Sm,B] and 
[Gar]. The FORTRAN subroutines are used to compute eigenvalues and eigenvectors for 
a variety of different types of matrices. The EISPACK project was the first large-scale 
numerical software package to be made available in the public domain and led the way 
for many packages to follow. EISPACK is maintained by netlib and can be found on the 
Internet at http://www.netlib.org/eispack. 

UNPACK is a package of FORTRAN subroutines for analyzing and solving systems 
of linear equations and solving linear least squares problems. The documentation for this 
package is contained in [DBMS] and located at http://www.netlib.org/linpack. A step-by
step introduction to UNPACK, EISPACK, and BLAS (Basic Linear Algebra Subprograms) 
is given in [CV]. 

The LAPACK package, first available in 1992, is a library of FORTRAN subroutines 
that supercedes UNPACK and EISPACK by integrating these two sets of algorithms into 
a unified and updated package. The software has been restructured to achieve greater ef
ficiency on vector processors and other high-perfOimance or shared-memory multipro
cessors. LAPACK is expanded in depth and breadth in version 3.0, which is available 
in FORTRAN, FORTRAN90, C, C++, and JAVA. FORTRAN90, C, and JAVA are only 
available as language interfaces or translations of the FORTRAN libraries of LAPACK. 
The package BLAS is not a part of LAPACK, but the code for BLAS is distributed with 
LAPACK. The LAPACK User's Guide, 3rd ed. [An] is available from SIAM or on the 
Internet at http://www.netlib.org/lapack/lugllapacklug.html. The complete LAPACK or 
individual routines from LAPACK can be obtained through netlib at netliborn1.gov, netli
bresearch.att.com, or http://www.netlib.org/lapack. 

Other packages for solving specific types of problems are available in the public do
main. Information about these programs can be obtained through electronic mail by send
ing the line "help" to one of the following addresses: netlibresearch.att.com, netlibornl.gov, 
netlibnac.no, or netlibdraci.cs.uow.edu.au or to the uucp address uunet!research!netlib. As 
an alternative to netlib, you can use Xnetlib to search the database and retrieve software. 
More infOlIllation can be found in the article Software Distribution using Netlib by Don
garra, Roman, and Wade [DRW). 

These software packages are highly efficient, accurate, and reliable. They are thor
oughly tested, and documentation is readily available. Although the packages are portable, 
it is a good idea to investigate the machine dependence and read the documentation thor
oughly. The programs test for almost all special contingencies that might result in error 
and failures. At the end of each chapter we will discuss some of the appropriate general
purpose packages. 

Commercially available packages also represent the state of the art in numerical meth
ods. Their contents are often based on the public-domain packages but include methods in 
libraries for almost every type of problem. 

IMSL (International Mathematical and Statistical Libraries) consists of the libraries 
MATH, STAT, and SFUN for numerical mathematics, statistics, and special functions, re
spectively. These libraries contain more than 900 subroutines originally available in FOR
TRAN 77 and now available in C, FORTRAN90, and JAVA. These subroutines solve the 
most common numerical analysis problems. In 1970 IMSL became the first large-scale 
scientific library for mainframes. Since that time, the libraries have been made available 
for computer systems ranging from supercomputers to personal computers. The libraries 
are available commercially from Visual Numerics, 9990 Richmond Ave S400, Houston, 
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TX 77042-4548, with Internet address http://www.vni.com. The packages are delivered 
in compiled fOlln with extensive documentation. There is an example program for each 
routine as well as background reference information. IMSL contains methods for linear 
systems, eigensystem analysis, interpolation and approximation, integration and differen
tiation, differential equations, transforms, nonlinear equations, optimization, and basic ma
trix/vector operations. The library also contains extensive statistical routines. 

The Numerical Algorithms Group (NAG) has been in existence in the United Kingdom 
since 1970. NAG offers more than 1000 subroutines in a FORTRAN 77 library, about 
400 subroutines in a C library, over 200 subroutines in a FORTRAN 90 library, and an 
MPI FORTRAN numerical library for parallel machines and clusters of workstations or 
personal computers. A subset of their FORTRAN 77 library (the NAG Foundation Library) 
is available for personal computers and workstations where work space is limited. The 
NAG C Library, the FORTRAN 90 library, and the MPI FORTRAN library offer many of 
the same routines as the FORTRAN Library. The NAG user's manual includes instructions 
and examples, along with sample output for each of the routines. A useful introduction 
to the NAG routines is [Ph]. The NAG library contains routines to perform most standard 
numerical analysis tasks in a manner similar to those in the IMSL. It also includes some 
statistical routines and a set of graphic routines. The library is commercially available 
from Numerical Algorithms Group, Inc., 1400 Opus Place, Suite 200, Downers Grove, IL 
60515-5702, with Internet address http://www.nag.com. 

The IMSL and NAG packages are designed for the mathematician, scientist, or engi
neer who wishes to call high-quality FORTRAN subroutines from within a program. The 
documentation available with the commercial packages illustrates the typical driver pro
gram required to use the library routines. The next three software packages are stand-alone 
environments. When activated, the user enters commands to cause the package to solve a 
problem. However, each package allows programming within the command language. 

MATLAB is a matrix laboratory that was originally a Fortran program published by 
Cleve Moler [Mo]. The laboratory is based mainly on the EISPACK and UNPACK subrou
tines, although functions such as nonlinear systems, numerical integration, cubic .splines, 
curve fitting, optimization, ordinary differential equations, and graphical tools have been 
incorporated. MATLAB is currently written in C and assembler, and the PC version of this 
package requires a numeric coprocessor. The basic structure is to perforIll matrix opera
tions, such as finding the eigenvalues of a matrix entered from the command line or froIll an 
external file via function calls. This is a powerful self-contained system that is especially 
useful for instruction in an applied linear algebra course. MATLAB has been available 
since 1985 and can be purchased from The MathWorks Inc., Cochituate Place, 24 Prime 
Park Way, Natick, MA 01760. The electronic mail address of The Mathworks is infomath
works.com, and the Internet address is http://www.mathworks.com. MATLAB software is 
designed to run on many computers, including IBM PC compatibles, APPLE Macintosh, 
and SUN workstations. A student version of MATLAB does not require a coprocessor but 
will use one if it is available. 

The second package is GAUSS, a mathematical and statistical system produced by 
Lee E. Ediefson and Samuel D. Jones in 1985. It is coded mainly in assembler and 
based primarily on EISPACK and UNPACK. As in the case of MATLAB, integra
tion/differentiation, nonlinear systems, fast Fourier transforIIls, and graphics are available. 
GAUSS is oriented less toward instruction in linear algebra and more toward statistical 
analysis of data. This package also uses a numeric coprocessor if one is available. It can 
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be purchased from Aptech Systems, Inc., 23804 S.B. Kent-Kangley Road, Maple ValIey, 
WA 98038 (infoaptech.com). 

The third package is Maple, a computer algebra system developed in 1980 by the 
Symbolic Computational Group at the University of Waterloo. The design for the orig
inal Maple system is presented in the paper by B.W. Char, K.O. Geddes, WM. Gen
tlemen, and G.H. Gonnet [CGGG]. Maple has been available since 1985 and can be 
purchased from Waterloo Maple Inc., 57 Erb Street, Waterloo, ON N2L 6C2. The elec
tronic mail address of Waterloo Maple is infomaplesoft.com, and the Internet address is 
http://www.maplesoft.com. Maple, which is written in C, has the ability to manipulate 
infonnation in a symbolic manner. This symbolic manipulation allows the user to obtain 
exact answers instead of numerical values. Maple can give exact answers to mathematical 
problems such as integrals, differential equations, and linear systems. It contains a pro
gramming structure and permits text, as well as commands, to be saved in its worksheet 
files. These worksheets can then be loaded into Maple and the commands executed. Be
cause of the properties of symbolic computation, numerical computation, and worksheets, 
Maple is the language of choice for this text. Throughout the book Maple commands will 
be embedded into the text. 

Numerous packages are available that can be classified as supercalculator packages for 
the Pc. These should not be confused, however, with the general-purpose software listed 
here. If you have an interest in one of these packages, you should read Supercalculators on 
the PC by B. Simon and R. M. Wilson [SW]. 

Additional infonnation about software and software libraries can be found in the books 
by Cody and Waite [CW] and by Kockler [Ko], and in the 1995 article by Dongarra and 
Walker [DW]. More infOImation about floating-point computation can be found in the book 
by Chaitini-Chatelin and Frayse [CF] and the article by Goldberg [Go]. 

Books that address the application of numerical techniques on parallel computers in
clude those by Schendell [Sche], Phillips and Freeman [PF], and Golub and Ortega [GO]. 



Solutions 0 uations 

in One Varia e 
• • • 

T be growth of a population can be modeled over short periods of time 

by assuming that the population glowS continuously with time at a rate 

proportional to the number present at that time. If we let N(t) denote the 

number at time t and ,\ denote the constant birth rate of the population, 

then the population satisfies the differential equation 

dN(t) = AN(t). 
dt 

The solution to this equation is N(t) = NoeN , where No denotes the initial 

population. 

P(1o.) 

3000 

1564 
1435 

1000 

435 
P(1o.) = l000eA + (e A - 1) 

A 

1 
Birth rate 
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This exponential model is valid only when the population is isolated, 

with no immigration. If immigration is permitted at a constant rate v, 

then the differential equation becomes 

dN(t) 
dt = AN(t) + v, 

whose solution is 

Suppose a certain population contains 1,000,000 individuals ini

tially, that 435,000 individuals immigrate into the community in the first 

year, and that 1,564,000 individuals are present at the end of one year. 

To determine the birth rate of this population, we must solve for A in the 

equation 

>. 435,000 >. 
1,564,000 = 1,000,OOOe + X (e - 1). 

The numerical methods discussed in this chapter are used to approxi

mate solutions of equations of this type, when the exact solutions cannot 

be obtained by algebraic methods. The solution to this particular prob

lem is considered in Exercise 20 of Section 2.3. 

2.1 The Bisection Method 

In this chapter, we consider one of the most basic problems of numerical approximation, 
the root-finding problem. This process involves finding a root, or solution, of an equation 
of the forill 1 (x) = 0, for a given function I. A root of this equation is also called a zero of 
the function f. The problem of finding an approximation to the root of an equation can be 
traced back at least as far as 1700 B. c. A cuneifoIIll table in the Yale Babylonian Collection 
dating from that period gives a sexigesimal (base-60) number equivalent to 1.414222 as an 
approximation to ../2, a result that is accurate to within 10-5. This approximation can be 
found by applying a technique described in Exercise 19 of Section 2.2. 

The first technique, based on the Intermediate Value Theorem, is called the Bisection, 
or Binary-search, method. Suppose 1 is a continuous function defined on the interval 
[a, b], with I(a) and I(b) of opposite sign. By the Intermediate Value Theorem, there 
exists a number p in (a, b) with I(p) = O. Although the procedure will work when there 
is more than one root in the interval (a, b), we assume for simplicity that the root in this 
interval is unique. The method calls for a repeated halving of subintervals of [a, b] and, at 
each step, locating the half containing p. 

- ---____ a __ '_-__ ""'" """" ~" 
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To begin, set al = a and b l = b, and let PI be the midpoint of [a, b J; that is, 

- • 

If f(PI) = 0, then P = PI, and we are done. If f(PI) 1= 0, then f(PI) has the same sign 
as either f(al) or f(bd. When f(pd and f(al) have the same sign, P E (PI, bl), and 
we set az = PI and bz = bl . When f(PI) and f(al) have opposite signs, P E (ai, PI), 
and we set az = al and bz = PI. We then reapply the process to the interval [az, bz]. This 
produces the method described in Algorithm 2.1. (See Figure 2.1.) 

y 

feb) 

y = f(x) 

a = ar b = hI x 

f(P2) 
f(a) 

al PI hi 
I I , 

a2 P2 b2 
I I I 

a3 P3 b3 
I I 

Bisedion 

To find a solution to f(x) = 0 given the continuous function f on the interval [a, b], where 
f(a) and feb) have opposite signs: 

INPUT endpoints a, b; tolerance TOL; maximum number of iterations No. 

OUTPUT approximate solution P or message of failure. 

Step 1 Seti = 1; 
FA = f(a). 

Step 2 While i :5 No do Steps 3-6. 

Step 3 Set P = a + (b - a)/2; (Compute Pi.) 
FP = f(p). 
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Step 4 If FP = 0 or (b - a)/2 < TOL then 
OUTPUT (p); (Procedure completed successfully.) 
STOP. 

Step 5 Set i = i + 1. 

Step 6 If FA· FP > 0 then set a = p; (Compute ai, bi .) 
FA=FP 

else set b = p. 

Step 7 OUTPUT (,Method failed after No iterations, No =', No); 
(The procedure was unsuccessful.) 
STOP. • 

Other stopping procedures can be applied in Step 4 of Algorithm 2.1 or in any of 
the iterative techniques in this chapter. For example, we can select a tolerance E > 0 and 
generate PI, ... , PN until one of the following conditions is met: 

IPN - PN-Ji < E, 

IPN - PN-II 

IPNI 
< E, 

If(PN)1 < E. 

(2.1 ) 

PN =I 0, or (2.2) 

(2.3) 

Unfortunately, difficulties can arise using any of these stopping criteria. For example, 
there are sequences {Pn}:; 0 with the property that the differences Pn - Pn-I converge to 
zero while the sequence itself diverges. (See Exercise 15.) It is also possible for f (Pn) to be 
close to zero while Pn differs significantly from p. (See Exercise 14.) Without additional 
knowledge about f or p, Inequality (2.2) is the best stopping criterion to apply because it 
comes closest to testing relative error. 

When using a computer to generate approximations, it is good practice to set an upper 
bound on the number of iterations. This will eliminate the possibility of entering an infinite 
loop, a situation that can arise when the sequence diverges (and also when the program is 
incorrectly coded). This was done in Step 2 of Algorithm 2.1 where the bound No was set 
and the procedure terminated if i > No. 

Note that to start the Bisection Algorithm, an interval [a, b] must be found with f(a)· 

f (b) < O. At each step the length of the interval known to contain a zero of f is reduced 
by a factor of 2; hence it is advantageous to choose the initial interval [a, b] as small as 
possible. For example, if f (x) = 2x 3 - x 2 + x-I, we have both 

f(-4)· f(4) < 0 and f(O)· f(l) < 0, 

so the Bisection Algorithm could be used on either of the intervals [-4,4] or [0, 1]. Start
ing the Bisection Algorithm on [0, 1] instead of [-4,4] will reduce by 3 the number of 
iterations required to achieve a specified accuracy. 

, 
, , 

, , 

-
• 

[ 
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The following example illustrates the Bisection Algorithm. The iteration in this exam
ple is terminated when the relative error is less than 0.0001; that is, when 

Ip - Pn I 
Ip I 

The equation f(x) = x 3 + 4x 2 - 10 = 0 has a root in [1,2] since f(l) 
f (2) = 14. The Bisection Algorithm gives the values in Table 2.1. 

n an bn Pn 

1 1.0 2.0 1.5 
2 1.0 l.5 1.25 
3 1.25 1.5 1.375 
4 1.25 1.375 1.3125 
5 1.3125 1.375 1.34375 
6 1.34375 1.375 1.359375 
7 1.359375 1.375 1.3671875 
8 1.359375 1.3671875 1.36328125 
9 1.36328125 1.3671875 1.365234375 

10 1.36328125 1.365234375 1.364257813 
11 1.364257813 1.365234375 1.364746094 
12 1.364746094 1.365234375 1.364990235 
13 1.364990235 1.365234375 1.365112305 

-5 and 

!(Pn) 

2.375 
-1.79687 

0.16211 
-0.84839 
-0.35098 
-0.09641 

0.03236 
-0.03215 

0.000072 
-0.01605 
-0.00799 
-0.00396 
-0.00194 

After 13 iterations, PI3 = 1.365112305 approximates the root P with an error 

Ip - pBi < Ib l4 - al41 = 11.365234375 - 1.3651123051 = 0.000122070. 

Since lal41 < Ipl, 

Ip - PI3I Ib l4 - al41 90 10-5 =---=----'- < < . x , 
Ipi la141-

so the approximation is correct to at least four significant digits. The correct value of p, 
to nine decimal places, is p = 1.365230013. Note that P9 is closer to p than is the final 
approximation PI3. You might suspect this is true since If(p9)1 < If(p13)I, but we cannot 
be sure of this unless the true answer is known. _ 

The Bisection method. though conceptually clear, has significant drawbacks. It is slow 
to converge (that is, N may become quite large before Ip - PN I is sufficiently small), and 
a good intermediate approximation can be inadvertently discarded. However, the method 
has the important property that it always converges to a solution, and for that reason it is 
often used as a starter for the more efficient methods we will present later in this chapter. 
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Suppose that 1 E C[a, b] and I(a)· I(b) < 0: The Bisection method generates a sequence 
{Pn}~ 1 approximating a zero P of 1 with 

b-a 
IPn - pi::::: 2n ' when n ~ 1. 

For each n ~ I, we have 

Since Pn = !(an + bn ) for all n ~ I, it follows that 

Since 

I b-a 
IPn - pi ::::: '2(bn - an) = 2n . 

I 
IPn - pi ::::: (b - a)2iI' 

the sequence {Pn} ~ 1 converges to P with rate of convergence 0 (fn); that is, 

I 
Pn = p+ 0 - . 

2n 

• 

• • • 

It is important to realize that Theorem 2.1 gives only a bound for approximation error 
and that this bound may be quite conservative. For example, this bound applied to the 
problem in Example I ensures only that 

, 

but the actual error is much smaller: 

Ip - P91 = 11.365230013 -1.3652343751 R;j 4.4 x 10-6 • 

To determine the number of iterations necessary to solve I(x) = x 3 + 4x2 - 10 = 0 with 
accuracy 10-3 using al = 1 and b l = 2 requires finding an integer N that satisfies 

To detennine N we will use logarithms. Although logarithms to any base would suf
fice, we will use base-IO logarithms since the tolerance is given as a power of 10. Since 
2-N < 10-3 implies that loglO 2-N < 10glO 10-3 = -3, we have 

3 
-N log 10 2 < -3 and N > ~ 9.96. 

10glO 2 

Hence, ten iterations will ensure an approximation accurate to within 10-3• Table 2.1 on 
page 51 shows that the value of P9 = 1.365234375 is accurate to within 10-4• Again, it 
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is important to keep in mind that the error analysis gives only a bound for the number of 
iterations, and in many cases this bound is much larger than the actual number required . 

• 
, 

The bound for the number of iterations for the Bisection method assumes that the 
calculations are perfOlmed using infinite-digit arithmetic. When implementing the method 
on a computer, consideration must be given to the effects of roundoff error. For example, 
the computation of the midpoint of the interval [an, bn] should be found from the equation 

instead of from the algebraically equivalent equation 

• 

The first equation adds a small correction, (bn - an)/2, to the known value an. When 
bn - an is near the maximum precision of the machine this correction might be in error, but 
the error would not significantly affect the computed value of Pn. However, when bn - an 
is near the maximum precision of the machine, it is possible for (an + bn)/2 to return a 
midpoint that is not even in the interval (an, bnJ. 

As a final remark, to detenuine which subinterval of [an, bnl contains a root of f, it is 
better to make use of the signum function, which is defined as 

-1 , 
sgn(x) = 0, 

if x < 0, 

if x = 0, 

1, ifx > O. 

The test 

instead of 

gives the same result but avoids the possibility of overflow or underflow in the multiplica
tion of f(an) and f(Pn). 

EXERCISE SET 2.1 

1. Use the Bisection method to find P3 for f(x) = ..;x - cos x on [0, I], 

2. Let f(x) = 3(x + l)(x - t)(x - 1). Use the Bisection method on the following intervals to 
find P3. 

B. [-2, l.5) b. [-1.25,2.5) 

3. Use the Bisection method to find solutions accurate to within 10-2 for x 3 -7x2 + 14x - 6 = 0 
on each interval. 

B. [0, 1) b. [1, 3.2) c. [3.2.4] 
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4. Use the Bisection method to find solutions accurate to within 10-2 for X4 - 2x 3 
- 4x2 + 4x + 

4 = 0 on each interval. 

B. [-2, -I] b. [0,2] c. [2,3] d. [-1,0] 

5. Use the Bisection method to find a solution accurate to within 10-3 for x = tan x on [4, 4.5]. 

6. Use the Bisection method to find a solution accurate to within 10-3 for 2+cos(eX -2) _ex = 0 
on [0.5, 1.5]. 

7. Use the Bisection method to find solutions accurate to within 10-5 for the following problems. 

B. x - 2-X = 0 for 0 < x < 1 - -
b. e - x 2 + 3x - 2 = 0 for 0 < x < 1 

c. 2x cos(2x) - (x + 1)2 = 0 for -3 < x <-2 and -1 < x :::: 0 

d. x cos x - 2X2 + 3x - 1 = 0 for 0.2 < x < 0.3 and 1.2 < x < 1.3 

8. Let I(x) = (x + 2)(x + 1)2x (x - 1)3(X - 2). To which zero of I does the Bisection method 
converge when· applied on the following intervals? 

B. [-1.5,2.5] b. [-0.5,2.4] c. [-0.5,3] d. [-3, -0.5] 

9. Let I(x) = (x + 2)(x + I)x(x - 1)3(X - 2). To which zero of I does the Bisection method 
converge when applied on the following intervals? 

B. [-3,2.5] b. [-2.5,3] c. [-1.75,1.5] d. [-1.5,1.75] 

10. Find an approximation to .J3 correct to within 10-4 using the Bisection Algorithm. [Hint: 
Consider I(x) = x 2 - 3.] 

11. Find an approximation to m correct to within 10-4 using the Bisection Algorithm. 

12. Use Theorem 2.1 to find a bound for the number of iterations needed to achieve an approxi
mation with accuracy 10-3 to the solution of x 3 + x - 4 = 0 lying in the interval [1,4]. Find 
an approximation to the root with this degree of accuracy. 

13. Use Theorem 2.1 to find a bound for the number of iterations needed to achieve an approxi
mation with accuracy 10-4 to the solution of x 3 - x-I = 0 lying in the interval [I, 2]. Find 
an approximation to the root with this degree of accuracy. 

14. Let I(x) = (x - 1)10, P = I, and Pn = 1 + lin. Show that I/(Pn)1 < 10-3 whenever n > 1 
but that I P - Pn I < 10-3 requires that n > 1000. 

15. Let {Pnl be the sequence defined by Pn = 2:::=1 !. Show that (Pnl diverges even though 
lim,,-+oo(Pn - Pn-d = O. 

16. The function defined by I (x) = sin 1r x has zeros at every integer. Show that when -1 < a < 
o and 2 < b < 3, the Bisection method converges to 

B. 0, if a + b < 2 b. 2, if a + b > 2 c. I, if a + b = 2 

17. A trough of length L has a cross section in the shape of a semicircle with radius r (See the 
accompanying figure.) When filled with water to within a distance h of the top, the volume V 
of water is 

h 
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Suppose L = 10ft, r = 1 ft, and V = 12.4 ft3. Find the depth of water in the trough to within 
0.0 I ft. 

18. A particle starts at rest on a smooth inclined plane whose angle e is changing at a constant rate 

de - = w < O. 
dt 

At the end of t seconds, the position of the object is given by 

x(t) = - .....;;g~ 
2w2 

ewt _ e-wt 

---- ...,. sin wt . 
2 

Suppose the particle has moved 1.7 ft in 1 s. Find, to within 10-5 , the rate w at which e 
changes. Assume that g = 32.17 ftls2. 

8(t) 

2.2 Fixed-Point Iteration 

EXAMPLE 1 

A number p is a fixed point for a given function g if g(p) = p. In this section we consider 
the problem of finding solutions to fixed-point problems and the connection between the 
fixed-point problems and the root-finding problems we wish to solve. 

Root-finding problems and fixed-point problems are equivalent classes in the follow-
• mg sense: 

Given a root-finding problem f(p) = 0, we can define functions g with a fixed point 
at p in a number of ways, for example, as g(x) = x - f(x) or as g(x) = x + 3f(x). 
Conversely, if the function g has a fixed point at p, then the function defined by f(x) = 
x - g(x) has a zero at p. 

Although the problems we wish to solve are in the root-finding form, the fixed-point 
forIll is easier to analyze, and certain fixed-point choices lead to very powerful root-finding 
techniques. 

We first need to become comfortable with this new type of problem and to decide 
when a function has a fixed point and how the fixed points can be approximated to within 
a specified accuracy. 

The function g(x) = x 2 
- 2, for -2 :s x :s 3, has fixed points at x = -1 and x = 2 since 

This can be seen in Figure 2.2. • 
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The following theorem gives sufficient conditions for the existence and uniqueness of 
a fixed point. 

a. If g E qa, b] and g(x) E [a, b] for all x E [a, b], then g has a fixed point in 
[a, b]. 

b. If, in addition, g'(x) exists on (a, b) and a positive constant k < 1 exists with 

Ig'(x)1 ~ k, for all x E (a, b), 

then the fixed point in [a, b] is unique. (See Figure 2.3.) • 
, 

y 

y=x 
1-----------
I I 
I I 

I 

b 

I I 
I I 
I I 
I I 

I 

: .......... -l y = g(x) 
I I 
I ----- ______ 1 

p = g(p) 

a 

a p b x 



EXAMPLE Z 

2.2 Fixed-Point Iteration 57 

a_ If g(a) = a or g(b) = b, then g has a fixed point at an endpoint. If not, then 
g(a) > a and g(b) < b. The function hex) = g(x) - x is continuous on [a, b], 
with 

h(a) = g(a) - a > 0 and h(b) = g(b) - b < O. 

The Intermediate Value Theorem implies that there exists p E (a, b) for which 
h(p) = O. This number p is a fixed point for g since 

0= h(p) = g(p) - p implies that g(p) = p. 

b. Suppose, in addition, that Ig'(x)1 ::::: k < 1 and that p and q are both fixed points 
in [a, b]. If p =1= q, then the Mean Value Theorem implies that a number ~ exists 
between p and q, and hence in [a, b], with 

Thus, 

g(p) - g(q) = g' (0. 
p-q 

Ip - ql = Ig(p) - g(q)1 = Ig'(~)lIp - ql :::: kip - ql < Ip - ql, 

which is a contradiction. This contradiction must come from the only supposition, 
p =1= q. Hence, p = q and the fixed point in [a, b] is unique. • • • 

a. Let g (x) = (x 2 - 1) /3 on [-1, 1]. The Extreme Value Theorem implies that the 
absolute minimum of g occurs at x = 0 and g(O) = - j. Similarly, the absolute 
maximum of g occurs at x = ±1 and has the value g(±l) = O. Moreover, g is 
continuous and 

, 2x 2 
Ig(x)l= 3 <3' forallxE(-I,I). 

So g satisfies all the hypotheses of Theorem 2.2 and has a unique fixed point in 
[-1,1]. 

In this example, the unique fixed point p in the interval [-1, 1] can be deter
mined algebraically. If 

p2 -1 
P = g(p) = ,then p2 - 3p - 1 = 0, 

3 

which, by the quadratic fOImula, implies that 

1 
p = 2 (3 - JI3). 

Note that g also has a unique fixed point p = ! (3 + ,JI3) for the interval 

[3,4]. However, g(4) = 5 and g'(4) = ~ > 1, so g does not satisfy the hypotheses 
of Theorem 2.2 on [3,4]. Hence, the hypotheses of Theorem 2.2 are sufficient to 
guarantee a unique fixed point but are not necessary. (See Figure 2.4.) 
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b. Let g(x) = 3-x . Since g' (x) = _3-x In 3 < ° on [0, 1], the function g is decreas
ing on [0, 1]. So 

1 
g(l) -:- 3 :5 g(x) :S 1 = g(O), for 0 < x < 1. 

Thus, for x E [0, 1], we have g(x) E [0, 1], and g has a fixed point in [0, 1]. Since 

g' (0) = -In 3 = -1.098612289, 

y 

y=x 

1 

1 x 
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y 

P2 = g(PI) 

P3 = g(P2) 

PI = g(po) 
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Ig'(x)1 1:. Ion (0, 1), and Theorem 2.2 cannot be used to determine uniqueness. 
However, g is always decreasing, and it is clear from Figure 2.5 that the fixed 
point must be unique. -

To approximate the fixed point of a function g, we choose an initial approximation 
Po and generate the sequence {Pn}:;' 0 by letting Pn = g(Pn-I), for each n ~ 1. If the 
sequence converges to P and g is continuous, then 

P = lim Pn = lim g(Pn-l) = g (lim Pn-l) = g(p), 
n-HXJ n ---+ 00 n ....... H)O 

and a solution to x = g(x) is obtained. This technique is called fixed-point iteration, or 
functional iteration. The procedure is detailed in Algorithm 2.2 and illustrated in Figure 
2.6. 

y =x y y=x 

(Pz, P3) y = g(x) 
P3 = g(P2) 

(PI,P2) 
P2 = g(PI) (P2' P2) 

PI = g(po) 

y = g(x) 

PI P3 P2 Po x Po PI P2 x 

(a) (b) 

Fixed-Point Iteration 

To find a solution to P = g(p) given an initial approximation Po: 

INPUT initial approximation Po; tolerance TOL; maximum number of iterations No. 

OUTPUT approximate solution P or message of failure. 

Step 1 Seti = 1. 

Step 2 While i :s No do Steps 3-6. 

Step3 Setp=g(po). (Compute Pi.) 

Step 4 If Ip - Pol < TOL then 
OUTPUT (p); (The procedure was successful.) 
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STOP. 

Step 5 Set i = i + 1. 

Step 6 Set Po = p. (Update Po.) 

Step 7 OUIPUT ('The method failed after No iterations, No =', No); 
(The procedure was unsuccessful.) 
STOP. 

The following example illustrates functional iteration. 

• 

The equation x 3 +4x2 -10 = 0 has a unique root in [1, 2]. There are many ways to change 
the equation to the fixed-point fOHn x = g(x) using simple algebraic manipulation. For 
example, to obtain the function g described in part (c), we can manipulate the equation 
x 3 + 4x2 

- 10 = 0 as follows: 

2 1 3 
so x = 4'(10 - x ), 

and 

To obtain a positive solution, g3(X) is chosen. It is not important to derive the functions 
shown here, but you should verify that the fixed point of each is actually a solution to the 
original equation, x 3 + 4x2 - 10 = O. 

a. X=gl(X)=x-x 3 -4x2 +1O 

h. x = g2(X) = 
10 1/2 

--4x 
X 

d. X=g4(X)= 
4+x 

x3 +4x2 - 10 
e. x = g5 (x) = x - -.,..--;;----

3x2 + 8x 

With Po = 1.5, Table 2.2 lists the results of the fixed-point iteration for all five choices 
of g. _ . 

The actual root is 1.365230013, as was noted in Example 1 of Section 2.1. Comparing 
the results to the Bisection Algorithm given in that example, it can be seen that excellent 
results have been obtained for choices (c), (d), and (e), since the Bisection method requires 
27 iterations for this accuracy. It is interesting to note that choice (a) was divergent and that 
(b) became undefined because it involved the square root of a negative number. • 

Even though the various functions in Example 3 are fixed-point problems for the same 
root-finding problem, they differ vastly as techniques for approximating the solution to 
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n (a) (b) (c) (d) (e) 

0 1.5 1.5 1.5 1.5 1.5 
1 -0.875 0.8165 1.286953768 1.348399725 1.373333333 
2 6.732 2.9969 1.402540804 1.367376372 1.365262015 
3 -469.7 ( -8.65)1/2 1.345458374 1.364957015 1.365230014 
4 1.03 x 108 1.375170253 1.365264748 1.365230013 
5 1.360094193 1.365225594 
6 1.367846968 1.365230576 
7 1.363887004 1.365229942 
8 1.365916734 1.365230022 
9 1.364878217 1.365230012 

10 1.365410062 1.365230014 
15 1.365223680 1.365230013 
20 1.365230236 
25 1.365230006 
30 1.365230013 

the root-finding problem. Their purpose is to illustrate the true question that needs to be 
answered: 

How can we find a fixed-point problem that produces a sequence that reliably and 
rapidly converges to a solution to a given root-finding problem? 

The following theorem and its corollary give us some clues concerning the paths we 
should pursue and, perhaps more importantly, some we should reject. 

(Fixed-Point Theorem) 

Let g E C[a, b] be such that g(x) E [a, b], for all x in [a, b]. Suppose, in addition, that g' 
exists on (a, b) and that a constant 0 < k < 1 exists with 

Ig'(x)1 ~ k, for all x E (a, b). 

Then, for any number Po in [a, b], the sequence defined by 

converges to the unique fixed point P in [a, b]. • 

Proof Theorem 2.2 implies that a unique fixed point exists in [a, b]. Since g maps [a, b] 
into itself, the sequence {Pn}~ is defined for all n 2: 0, and Pn E [a, b] for all n. Using 
the fact that I g' (x ) I ~ k and the Mean Value Theorem, we have, for each n, 

IPn - pi = Ig(Pn-l) - g(p)1 = Ig'(~n)IIPn-1 - pi < klPn-1 - PI. 

where ~n E (a, b). Applying this ineqUality inductively gives 

IPn - pi ::s klPn-1 - pi ~ k21Pn_2 - pi ~ ... ~ Plpo - pI. (2.4) 
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Since 0 < k < I, we have limn - HXl k
n = 0 and 

lim IPn - pi < lim knlpo - pi = O. 
n -;. 00 n ---+- 00 

Hence, {Pn}:-'o converges to p. • • • 

If g satisfies the hypotheses of Theorem 2.3, then bpunds for the error involved in using Pn 
to approximate P are given by 

IPn - pi ::: kn max{po - a, b - Po} 

and 

kn 

IPn - pi::: I-klpl - Pol, for all n > 1. • 
Prool Since P E [a, bJ, the first bound follows from Inequality (2.4): 

IPn - pi::: knlpo - pi < kn max{po - a, b - po}. 

For n > I, the procedure used in the proof of Theorem 2.3 implies that 

IPII+I - Pili = Ig(Pn) - g(Pn-I)1 ::: klPn - Pn-II < .. , < knlpl - pol· 

Thus, for m > n > 1, 

IPm - Pnl = IPm - Pm-I + Pm-I - ... + Pn+1 - Pnl 

::: IPm - Pm-II + IPm-I - Pm-21 + ... + IPn+1 - Pnl 

< km-llpl - Pol + km
-

21PI - Pol + ... + kn Ipl - pol 

= k"lpl - Pol (1 + k + k2 + ... + km- n- I). 

By Theorem 2.3, limm~oo Pm = p, so 

m-n-I ()() 
Ip - Pili = lim IPm - Pnl::: lim knlpl - Pol " ki < knlpl - pol" ki. 

m-..oo m-+-oo ~ ~ 
i=O i=O 

But L~ 0 ki is a geometric series with ratio k and 0 < k < 1. This sequence converges to 
1/(1 - k), which gives the second bound: 

kn 

Ip - Pnl < 1 _ k IpI - Pol· • • • 

Both inequalities in the corollary relate the rate at which {Pn}~ 0 converges to the 
bound k on the first derivative. The rate of convergence depends on the factor kn. The 
smaller the value of k, the faster the convergence, which may be very slow if k is close 
to 1. In the following example, the fixed-point methods in Example 3 are reconsidered in , 
light of the results presented in Theorem 2.3 and its corollary. 
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a. For gl (x) = x - x 3 - 4x2 + 10, we have gl (1) = 6 and gl (2) = -12, so gl does 
not map [I, 2] into itself. Moreover, g; (x) = 1 - 3x2 - 8x, so /g; (x) / > 1 for all 
x in [1,2]. Although Theorem 2.3 does not guarantee that the method must fail 
for this choice of g, there is no reason to expect convergence. 

b. With g2(X) = [(la/x) - 4x]I/2, we can see that g2 does not map [1, 2] into [1, 2], 
and the sequence {Pnl:;" 0 is not defined when Po = 1.5. Moreover, there is no 
interval containing P ~ 1.365 such that 

/g~(x)/ < 1, since Ig~(p)/ ~ 3.4. 

There is no reason to expect that this method will converge. 

c. For the function g3(X) = i (10 - x 3)1/2, 

3 
g~(x) = --x2(10 - x 3)-1/2 < 0 on [1, 2], 

4 

so g3 is strictly decreasing on [1, 2]. However, Ig~ (2) I ~ 2.12, so the condition 
Ig~(x)1 < k < 1 fails on [1,2]. A closer examination of the sequence {Pn}:;" 0 

starting with Po = 1.5 shows that it suffices to consider the interval [1. 1.5] instead 
of [1, 2]. On this interval it is still true that g~ (x) < a and g3 is strictly decreasing, 
but, additionally, 

for all x E [1, 1.5]. This shows that g3 maps the interval [1, 1.5] into itself. Since it 
is also true that /g~ (x) I < /g~ (l.5) I ~ 0.66 on this interval, Theorem 2.3 confinns 
the convergence of which we were already aware. 

d. For g4(X) = (10/(4 + X»1/2, we have 

-5 5 
Ig4'(x)1 = < < 0.15, for all x E [1,2] . 

..JIO(4 + x)3/2 - ..JIO(5)3/2 

The bound on the magnitude of g.j(x) is much smaller than the bound (found in 
(c» on the magnitude of g~(x), which explains the more rapid convergence using 

g4· 

e. The sequence defined by 

x 3 +4x2 -10 
gs(x) = x - 3x2 + 8x' 

converges much more rapidly than our other choices. In the next sections we will 
see where this choice came from and why it is so effective. _ 

E X ERe I S ESE T 2.2 

1. Use algebraic manipulation to show that each of the following functions has a fixed point at p 
precisely when !(p) = 0, where lex) :::f~4 + 2x2 

- X - 3. 

a. b. 
x + 3 _ X4 1/2 

2 
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1/2 

c. d. 

2. a. Perform four iterations. if possible. on each of the functions g defined in Exercise 1. Let 
Po = 1 and Pn+! = g(Pn). for n. = 0,1,2.3. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

b. Which function do you think gives the best approximation to the solution? 

The following four methods are proposed to compute 21 1/ 3 • Rank them in order. based on their 
apparent speed of convergence. assuming po = 1. 

20pn_1 + 21/ P;_I 
B. Pn = 21 b. 

P;_I - 21 
Pn = Pn-I - 3 2 

Pn-I 
P!_I - 21Pn_1 21 1/2 

c. Pn = Pn-I - 2 _ 21 d. Pn = 
Pn-I Pn-I 

The following four methods are proposed to compute 71/ 5 • Rank them in order, based on their 
apparent speed of convergence. assuming Po = 1. 

7 3 1/2 B. Pn = 1 + - tn-I 
Pn-I 

P;_I -7 
Pn = Pn-I - 2 

Pn-I 
b. 

P~_I -7 
c. Pn = Pn-I - 5 4 

Pn-I 

P~_I -7 
Pn = Pn-I - 12 d. 

• 

Use a fixed-point iteration method to determine a solution accurate to within 10-2 for X4 -

3x2 - 3 = 0 on [1. 2]. Use Po = 1. 

Use a fixed-point iteration method to determine a solution accurate to within 10-2 for x 3 - x -
1 = Oon [1. 2]. Use Po = 1. 

Use Theorem 2.2 to show that g(x) = n + 0.5 sin(x/2) has a unique fixed point on [0, 2n). 
Use fixed-point iteration to find an approximation to the fixed point that is accurate to within 
10-2• Use Corollary 2.4 to estimate the number of iterations required to achieve 10-2 accuracy, 
and compare this theoretical estimate to the number actually needed. 

Use Theorem 2.2 to show that g(x) = 2-x has a unique fixed point on [~, 1]. Use fixed-point 
iteration to find an approximation to the fixed point accurate to within 10-4

. Use Corollary 
2.4 to estimate the number of iterations required to achieve 10-4 accuracy, and compare this 
theoretical estimate to the number actually needed. 

Use a fixed-point iteration method to find an approximation to .J3 that is accurate to within 
10-4 • Compare your result and the number of iterations required with the answer obtained in 
Exercise 10 of Section 2.1. 

Use a fixed-point iteration method to find an approximation to .yzs that is accurate to within 
10-4 • Compare your result and the number of iterations required with the answer obtained in 
Exercise 11 of Section 2.1. 

For each of the following equations, determine an interval [a, b) on which fixed-point iteration 
will converge. Estimate the number of iterations necessary to obtain approximations accurate 
to within 10-5• and perfOim the calculations. 

2 - eX +x2 

B. x= 

c. 
e. 

b. 

d. 
f. 

5 
x=-+2 

x 2 

x = s-x 
x = 0.5 (sin x + cosx) 

For each of the following equations, determine a function g and an interval [a, b) on which 
fixed-point iteration will converge to a positive solution of the equation. 

B. 3X2_~=0 b. x-cosx=O 

Find the solutions to within 10-5 • 
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13. Find all the zeros of j(x) = x 2 + lOcosx by using the fixed-point iteration method for an 
appropriate iteration function g. Find the zeros accurate to within 10-4

. 

14. Use a fixed-point iteration method to determine a solution accurate to within 10-4 for x = 
tan x, for x in [4, 5]. 

15. Use a fixed-point iteration method to determine a solution accurate to within 10-2 for 
2sin7rx + x = 0 on [1, 2]. Use Po = 1. 

16. Let A be a given positive constant and g(x) = 2x - Ax2
• 

a. Show that if fixed-point iteration converges to a nonzero limit, then the limit is P = 1/ A, 
so the inverse of a number can be found using only multiplications and subtractions. 

b. Find an interval about 1/ A for which fixed-point iteration converges, provided po is in 
that interval. 

17. Find a function g defined on [0, 1] that satisfies none of the hypotheses of Theorem 2.2 but 
still has a unique fixed point on [0, 1]. 

18. a. Show that Theorem 2.2 is true if the inequality Ig'(x)1 < k is replaced by g/(x) < k, for 
all x E (a, b). [Hint: Only uniqueness is in questiolLj 

b. Show that Theorem 2.3 may not hold if inequality Ig'(x)1 :::: k is replaced by g'(x) :::: k. 
[Hint: Show that g(x) = t - x 2 , for x in (0, 1], provides a counterexample.] 

19. a. Use Theorem 2.3 to show that the sequence defined by 

I 1 
Xn = -Xn-l + ,forn > 1, 

2 Xn-l 

converges to -Ji whenever Xo > -Ji. 
b. Use the fact that 0 < (xo - -Ji)2 whenever Xo 1= -Ji to show that if 0 < Xo < -Ji, then 

Xl > -Ji. 
c. Use the results of parts (a) and (b) to show that the sequence in (a) converges to -Ji 

whenever Xo > O. 

20. a. Show that if A is any positive number, then the sequence defined by 

1 A 
Xn=2Xn-1+2 ,forn?:1, 

Xn-l 

converges to.JA whenever Xo > 0. 

b. What happens if Xo < O? 

21. Replace the assumption in Theorem 2.3 that "a positive number k < 1 exists with Ig'(x)1 < k" 
with "g satisfies a Lipschitz condition on the interval [a, b] with Lipschitz constant L < 1." 
(See Exercise 25, Section 1.1.) Show that the conclusions of this theorem are still valid. 

22. Suppose that g is continuously differentiable on some interval (c, d) that contains the fixed 
point p of g. Show that if I g/ (p) I < 1, then there exists a 8 > ° such that if I Po - pi:::: 8, then 
the fixed-point iteration converges. 

23. An object falling vertically through the air is subjected to viscous resistance as well as to the 
force of gravity. Assume that an object with mass m is dropped from a height So and that the 
height of the object after t seconds is 

mg m2g 
s(t) = So - k 1+ k 2 (l - e-kt /m

), 

where g = 32.17 ft/s2 and k represents the coefficient of air resistance in Ib-slft. Suppose 
So = 300 ft, m = 0.25 lb, and k = 0.1 lb-s/ft. Find, to within 0.01 s, the time it takes this 
quarter-pounder to hit the ground. 
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24. Let g E Cl[a, b] and P be in (a, b) with g(p) = P and ig'(p)i > 1. Show that there exists a 
8 > 0 such that if 0 < ipo - pi < 8, then iPo - pi < iPI - pi . Thus, no matter how close the 
initial approximation po is to p, the next iterate PI is farther away, so the fixed-point iteration 
does not converge if Po ':f p. 

2.3 Newton's Method 

Newton's (or the Newton-Raphson) method is one of the most powerful and well-known 
numerical methods for solving a root-finding problem. There are many ways of introducing 
Newton's method. If we only want an algorithm, we can consider the technique graphically, 
as is often done in calculus. Another possibility is to derive Newton's method as a technique 
to obtain faster convergence than offered by other types of functional iteration, as is done 
in Section 2.4. A third means of introducing Newton's method, which is discussed next, is 
based on Taylor polynomials. 

Suppose that f E C2 [a, b). Let x E [a, b) be an approximation to P such that fl(x) =j:. 
o and I P - xl is "small." Consider the first Taylor polynomial for f (x) expanded about x, 

(x x)2 
f(x) = f(X) + (x - x)f'(X) + ~ !"U;(x», 

where Hx) lies between x and x. Since f(p) = 0, this equation with x = p gives 

0= f(X) + (p - x)f'(X) + (p ~ x)2 !,,(~(p». 

Newton's method is derived by assuming that since Ip - x I is small, the teIIn involving 
(p - X)2 is much smaller, so 

o ~ f(X) + (p - X)f'(X)· 

Solving for p gives 

- f(X) 
p ~ x - f'(X)' 

This sets the stage for Newton's method, which starts with an initial approximation Po and 
generates the sequence {Pn}~o' by 

f(Pn-l) 
Pn = Pn-l - f'( ) , 

Pn-I 
for n 2: 1. (2.5) 

Figure 2.7 illustrates how the approximations are obtained using successive tangents. (Also 
see Exercise 11.) Starting with the initial approximation Po, the approximation PI is the 
x-intercept of the tangent line to the graph of f at (po, f(po». The approximation pz is 
the x-intercept of the tangent line to the graph of f at (PI, f(Pl» and so on. Algorithm 
2.3 follows this procedure. 
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To find a solution to f(x) = ° given an initial approximation Po: 

67 

oX 

INPUT initial approximation Po; tolerance TOL; maximum number of iterations No. 

OUTPUT approximate solution P or message of failure. 

Step 1 Seti = 1. 

Step 2 While i ~ No do Steps 3-6. 

Step3 Setp = Po - f(po)/!'(Po). (Compute Pi.) 

Step 4 If Ip - Pol < TOL then 
OUTPUT (p); (The procedure was successful.) 
STOP. 

Step 5 Set i = i + 1. 

Step 6 Set Po = p. (Update Po.) 

Step 7 OUTPUT ('The method failed after No iterations, No =', No); 
(The procedure was unsuccessful.) 
STOP. • 

The stopping-technique inequalities given with the Bisection method are applicable to 
Newton's method. That is, select a tolerance £ > 0, and construct PI, ... PN until 

IpN - PN-d < e, 

IPN - PN-Il 
'-=--:-~:---'. < £, P N ¥- 0, 

IpNI 

(2.6) 

(2.7) 
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or 

(2.8) 

A form of Inequality (2.6) is used in Step 4 of Algorithm 2.3. Note that inequality (2.8) 
may not give much infollnation about the actual error IpN - pl. (See Exercise 14 in Section 
2.1.) 

Newton's method is a functional iteration technique of the form Pn = g(Pn-l), for 
which 

f(p,,-I) 
g(p,,-I) = P,,-I - f'( ) , for n ::: 1. 

P,,-I 
(2.9) 

In fact, this is the functional iteration technique that was used to give the rapid convergence 
we saw in part (e) of Example 3 in Section 2.2. 

It is clear from equation (2.9) that Newton's method cannot be continued if f' (Pn-I) = 
o for some n. In fact, we will see that the method is most effective when f' is bounded away 
from zero near p. 

Suppose we would like to approximate a fixed point of g(x) = cosx. The graph in Figure 
2.8 implies that a single fixed-point p lies in [0, JT /2]. 

y 

y=x 

1 r--....... 
y = cos x 

1 7T -2 
x 

Table 2.3 shows the results of fixed-point iteration with Po = JT /4. The best we could 
conclude from these results is that p ~ 0.74. 

To approach this problem differently, define I(x) = cosx - x and apply Newton's 
method. Since I' (x) = - sin x - I, the sequence is generated by 

cos P,,_I - P,,-I 
p" = P,,-l -. I ' - smp,,-l -

for n > 1. 

With Po = JT / 4, the approximations in Table 2.4 are generated. An excellent approximation 
is obtained with n = 3. We would expect this result to be accurate to the places listed 
because of the agreement of P3 and P4. • 
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Table 2.3 TableZA 

n Pn n pn 

0 0.7853981635 0 0.7853981635 
1 0.7071067810 1 0.7395361337 
2 0.7602445972 2 0.7390851781 
3 0.7246674808 3 0.7390851332 
4 0.7487198858 4 0.7390851332 
5 0.7325608446 
6 0.7434642113 
7 0.7361282565 

The Taylor series derivation of Newton's method at the beginning of the section points 
out the importance of an accurate initial approximation. The crucial assumption is that the 
term involving (p - X)2 is, by comparison with Ip - xl, so small that it can be deleted. 
This will clearly be false unless x is a good approximation to p. If Po is not sufficiently 
close to the actual root, there is little reason to suspect that Newton's method will converge 
to the root. However, in some instances, even poor initial approximations will produce 
convergence. (Exercises 12 and 16 illustrate some of these possibilities.) 

The following convergence theorem for Newton's method illustrates the theoretical 
importance of the choice of Po. 

Let I E C 2 [a, b]. If p E [a, b] is such that f(p) = ° and f'(p) =f. 0, then there exists a 
o > ° such that Newton's method generates a sequence {Pn}~1 converging to p for any 
initial approximation Po E [p - 0, p + 0]. • 

ProtJf The proof is based on analyzing Newton's method as the functional iteration 
scheme Pn = g(Pn-1), for n > 1, with 

f(x) 
g(x) = x - f'(x)' 

Let k be in (0, 1). We first find an interval [p - 0, p + 8] that g maps into itself and for 
which Ig'(x)1 ::s k, for all x E (p - 0, p + 8). 

Since I' is continuous and f'(p) =f. 0, part (a) of Exercise 27 in Section 1.1 implies 
that there exists a 01 > 0, such that f'(x) =f. ° for x E [p - 01, P + od 5; [a, b]. Thus, g 
is defined and continuous on [p - 81, P + 8d. Also, 

, x-I _ f'(x)f'(x) - I(x)f"(x) _ I(x)f"(x) 
g ( ) - [f'(x)]2 - [f'(x)]2 , 

for x E [p - 81, P + 8Il, and, since I E C 2 [a, b], we have g E C 1 [p - 01, P + od. 
By assumption, f (p) = 0, so 

'( ) = f(p)f"(p) = 0. 
g p [f'(p)]2 
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Since gl is continuous and 0 < k < 1, part (b) of Exercise 27 in Section 1.1 implies that 
there exists a 8, with 0 < 8 < 81, and 

IgI(X)1 < k, for all x E [p - 0, P + 0]. 

Itremainstoshowthatg maps [p-o, p+o] into [p-o, p+o].Ifx E [p-8, p+o], the 
Mean Value Theorem implies that for some number ~ between x and p, Ig(x) - g(p)1 = 
IgI(~)llx - pl. So 

Ig(x) - pi = Ig(x) - g(p)1 = IgI(~)llx - pi :5 klx - pi < Ix - pI· 

Since x E [p - 0, p + 0], it follows that Ix - pi < 0 and that Ig(x) - pi < o. Hence, g 
maps [p - 8, p + 0] into [p - 8, p + 0]. 

All the hypotheses of the Fixed-Point Theorem are now satisfied, so the sequence 
{Pn}:-I' defined by 

) 
f(Pn-d 

Pn = g(Pn-1 = Pn-I - fl( ) , 
Pn-I 

for n ~ 1, 

converges to P for any.po E [p - 0, P + 0]. • • • 

Theorem 2.5 states that, under reasonable assumptions, Newton's method converges 
provided a sufficiently accurate initial approximation is chosen. It also implies that the 
constant k that bounds the derivative of g, and, consequently, indicates the speed of con
vergence of the method, decreases to 0 as the procedure continues. This result is important 
for the theory of Newton's method, but it is seldom applied in practice since it does not tell 
us how to determine 8. In a practical application, an initial approximation is selected, and 
successive approximations are generated by Newton's method. These will generally either 
converge quickly to the root, or it will be clear that convergence is unlikely. 

Newton's method is an extremely powerful technique, but it has a major weakness: the 
need to know the value of the derivative of f at each approximation. Frequently, fl (x) is 
far more difficult and needs more arithmetic operations to calculate than f (x). 

To circumvent the problem of the derivative evaluation in Newton's method, we intro
duce a slight variation. By definition, 

f l( ) l' f(x) - f(Pn-d 
Pn-I = 1m . 

X-+-Pn_1 X - Pn-I 

Letting x = Pn-2, we have 

f
l( ) '" f(Pn-2) - f(Pn-l) _ f(Pn-l) - f(Pn-2) 

Pn-I "" - . 
Pn-2 - Pn-I Pn-I - Pn-Z 

Using this approximation for fl(Pn-d in Newton's formula gives 

f(Pn-I)(Pn-1 - Pn-Z) 
Pn=Pn-l- . 

f(Pn-l) - f(Pn-2) 
(2.10) 

This technique is called the Secant method and is presented in Algorithm 2.4. (See Figure 
2.9.) Starting with the two initial approximations Po and PI, the approximation PZ is the 
x-intercept of the line joining (Po, f(po» and (PI, f(pd)· The approximation P3 is the 
x-intercept of the line joining (PI, f(PI» and (P2, f(pz», and so on. 
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y 
y = j(x) 

Po 
PI X 

Secant 

To find a solution to f (x) = 0 given initial approximations Po and PI: 

INPUT initial approximations Po, PI; tolerance TOL; maximum number of iterations No, 

OUTPUT approximate solution P or message of failure. 

Step 1 Set i = 2; 
qo = f(po); 
ql = f(PI). 

Step 2 While i < No do Steps 3-6. 

Step 3 Set P = PI - ql (PI - Po)/(ql - qo). (Compute Pi') 

Step 4 If /p - PI/ < TOL then 
OUTPUT (p); (The procedure was successful.) 
STOP, 

Step 5 Seti = i + 1. 

Step6 Setpo=PI; (Update PO,qO,PI,ql.) 
qo = ql; 
PI = p; 
ql = f(p)· 

Step 7 OUTPUT ('The method failed after No iterations, No =', No); 
(The procedure was unsuccessful.) 
STOP. • 

The next example involves a problem considered in Example 1, where we used New
ton's method with Po = n/4, 
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Use the Secant method to find a solution to x = cosx. In Example I we compared func
tional iteration and Newton's method with the initial approximation Po = Jr /4. Here we 
need two initial approximations. Table 2.5 lists the calculations with Po = 0.5, PI = Jr /4, 
and the formula 

Pn = Pn-I - ( , 
cos Pn-I - Pn-I) - (cos Pn-2 - Pn-2) 

(Pn-I - Pn_2)(COS Pn-I - Pn-I) 
for n > 2, 

from Algorithm 2.4. • 

n p. 

0 0.5 
1 0.7853981635 
2 0.7363841388 
3 0.7390581392 
4 0.7390851493 
5 0.7390851332 

By comparing the results here with those in Example 1, we see that Ps is accurate 
to the tenth decimal place. The convergence of the Secant method is much faster than 
functional iteration but slightly slower than Newton's method, which obtained this degree 
of accuracy with P3. This is generally true. (See Exercise 12 of Section 2.4.) 

Newton's method or the Secant method is often used to refine an answer obtained by 
another technique, such as the Bisection method, 'since these methods require a good first 
approximation but generally give rapid convergence. 

Each successive pair of approximations in the Bisection method brackets a root P of 
the equation; that is, for each positive integer n, a root lies between an and bn . This implies 
that, for each n, the Bisection method iterations satisfy 

which provides an easily calculated error bound for the approximations. Root bracketing 
is not guaranteed for either Newton's method or the Secant method. Table 2.4 contains 
results from Newton's method applied to f(x) = cosx - x, where an approximate root 
was found to be 0.7390851332. Notice that this root is not bracketed by either Po, PI or PI, 
P2. The Secant method approximations for this problem are given in Table 2.5. The initial 
approximations Po and PI bracket the root, but the pair of approximations P3 and P4 fail 
to do so. 

The method of False Position (also called Regula Falsi) generates approximations in 
the same manner as the Secant method, but it includes a test to ensure that the root is brack
eted between successive iterations. Although it is not a method we generally recommend, 
it illustrates how bracketing can be incorporated. 

First choose initial approximations Po and PI with f(po)' f(PI) < O. The approxima
tion P2 is chosen in the same manner as in the Secant method, as the x-intercept of the line 
joining (po, f(po» and (PI, f(PI». To decide which secant line to use to compute P3, we 
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check f (pz) . f (PI). If this value is negative, then PI and pz bracket a root, and we choose 
P3 as the x-intercept of the line joining (PI, f(PI)) and (Pz, f(pz)). If not, we choose P3 
as the x-intercept ofthe line joining (Po, f(po)) and (pz, f(pz)), and then interchange the 
indices on Po and Pl. In a similar manner, once P3 is found, the sign of f(P3) . !(P2) 
detennines whether we use pz and P3 or P3 and PI to compute P4. In the latter case a rela
beling of P2 and PI is perfonned. The relabeling ensures that the root is bracketed between 
successive iterations. The process is described in Algorithm 2.5, and Figure 2.10 shows 
how the iterations can differ from those of the Secant method. In this illustration, the first 
three approximations are the same, but the fourth approximations differ. 

Secant method Method of False Position 

y 
y = f(x) y = f(x) 

Po PI X Po PI X 

Method of False Position 

To find a solution to f(x) = 0 given the continuous function f on the interval [Po, pd 
where f(po) and f(PI) have opposite signs: 

INPUT initial approximations Po, PI; tolerance TOL; maximum number of iterations No. 

OUTPUT approximate solution P or message of failure. 

Step 1 Set i = 2; 
qo = f(po); 
qI = f(pd. 

Step2 While i ::5 No do Steps 3-7. 

Step 3 Set P = PI - qI (PI - PO)/(qI - qo). (Compute Pi.) 

Step 4 If Ip - PI I < TOL then 
OUTPUT (p); (The procedure was successful.) 
STOP. 
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Step 5 Seti = i + 1; 
q = !(p). 

Step 6 If q . ql < 0 then set Po = PI; 

qo = ql· 

Step 7 Set PI = P; 

ql = q. 

Step 8 OUTPUT (,Method failed after No iterations, No =', No); 

(The procedure unsuccessful.) 
STOP. -

Table 2.6 shows the results of the method of False Position applied to f (x) = cos x - x 
with the same initial approximations we used for the Secant method in Example 2. Notice 
that the approximations agree through P3 and that the method of False Position requires an 
additional iteration to obtain the same accuracy as the Secant method. _ 

n Pn 

0 0.5 
1 0.7853981635 
2 0.7363841388 
3 0.7390581392 
4 0.7390848638 
5 0.7390851305 
6 0.7390851332 

The added insurance of the method of False Position commonly requires more calcula
tion than the Secant method, just as the simplification that the Secant method provides over 
Newton's method usually comes at the expense of additional iterations. Further examples 
of the positive and negative features of these methods can be seen by working Exercises 
13 and 14. 

E X ERe I S ESE T 2.3 

1. Let f(x) = x 2 - 6 and Po = 1. Use Newton's method to find P2. 

2. Let f(x) = _x3 - cosx and Po = -1. Use Newton's method to find P2. Could Po = 0 be 
used? 

3. Let f(x) = x 2 - 6. With Po = 3 and PI = 2, find P3. 

a. Use the Secant method. 

b. Use the method of False Position. 

c. Which of (a) or (b) is closer to -/6? 

4. Let f(x) = -x3 - cosx. With Po = -1 and PI = 0, find P3. 

a. Use the Secant method. b. Use the method of False Position. 

) , , 

-• 
• 

r 
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5. Use Newton's method to find solutions accurate to within 10-4 for the following problems. 

a. x 3 -2x2 -5=O, [1,4] b. x 3 +3x 2 -1=O, [-3,-2] 

c. x - cos x = 0, [0, n /2] d. x - 0.8 - 0.2 sin x = 0, [0, n /2] 

6. Use Newton's method to find solutions accurate to within 10-5 for the following problems. 

a. eX+2-x+2cosx-6=0 forl<x<2 

b. In(x - 1) + cos(x - 1) = 0 for 1.3 < x < 2 

c. 2x cos 2x - (x - 2)2 = 0 for 2 < x < 3 and 3 < x c::: 4 

d. (x - 2)2 - lnx = 0 for 1 < x < 2 and e c::: x < 4 

e. eX - 3x2 = 0 for 0 < x < 1 and 3 < x < 5 

f. sin x - e-x = 0 for 0 c::: x < 1 3 < x < 4 and 6 ~ x < 7 

7. Repeat Exercise 5 using (i) the Secant method and (ii) the method of False Position. 

S. Repeat Exercise 6 using (i) the Secant method and (ii) the method of False Position. 

9. Use Newton's method to approximate, to within 10-4 , the value of x that produces the point 
on the graph of y = x 2 that is closest to 0,0). [Hint: Minimize [d(X)]2, where d(x) represents 
the distance from (x, x 2

) to (I, 0).] 

10. Use Newton's method to approximate, to within 10-4 , the value of x that produces the point 
on the graph of y = 1/ x that is closest to (2, 1). 

11. The following describes Newton's method graphically: Suppose that f'ex) exists on [a, b] 
and that f'ex) t= 0 on [a, b]. Further, suppose there exists one P E [a, b] such that f(p) = 
0, and let Po E [a, b] be arbitrary. Let PI be the point at which the tangent line to f at 
(Po, f(po» crosses the x-axis. For each n ::: I, let pn be the x-intercept of the line tangent to 
fat (Pn-I, f(Pn-I». Derive the formula describing this method. 

12. Use Newton's method to solve the equation 

1 1 2 1 
O=-+-x -xsinx--cos2x 

2 4 2' 
• l[ 

WIth Po = 2' 

Iterate using Newton's method until an accuracy of 10-5 is obtained. Explain why the result 
seems unusual for Newton's method. Also, solve the equation with Po = 5n and Po = IOn. 

13. The fourth-degree polynomial 

f(x) = 230x4 + 18x 3 + 9x 2 
- 221x - 9 

has two real zeros, one in [-1,0] and the other in [0, 1]. Attempt to approximate these zeros 
to within 10-6 using the 

a. Method of False Position 

b. Secant method 

c. Newton's method 

Use the endpoints of each interval as the initial approximations in (a) and (b) and the midpoints 
as the initial approximation in (c). 

14. The function f(x) = tannx - 6 has a zero at (l/n) arctan 6 ~ 0.447431543. Let Po = 0 and 
PI = 0.48, and use ten iterations of each of the following methods to approximate this root. 
Which method is most successful and why? 

a. Bisection method 

b. Method of False Position 

c. Secant method 
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15. The iteration equation for the Secant method can be written in the simpler form 

• 

Explain why, in general, this iteration equation is likely to be less accurate than the one given 
in Algorithm 2.4. 

16. The equation x 2 - 10 cos x = 0 has two solutions, ±1.3793646. Use Newton's method to 
approximate the solutions to within 10-5 with the following values of PO. 

a. Po = -100 b. Po = -50 c. Po = -25 

d. Po = 25 e. Po = 50 f. Po = 100 

17. Use Maple to determine how many iterations of Newton's method with Po = 7r /4 are needed . 
to find a root of f(x) = cosx - x to within 10-100• 

18. Repeat Exercise 17 with Po = !, PI = f, and the Secant method. 

19. The function described by f (x) = In(x2 + 1) - eOA
>: cos 7r x has an infinite number of zeros. 

a. Determine, within 10-6, the only negative zero. 

b. Determine, within 10-6 , the four smallest positive zeros. 

c. Determine a reasonable initial approximation to find the nth smallest positive zero of f. 
[Hint: Sketch an approximate graph of f.] 

d. Use part (c) to determine, within 10-6, the 25th smallest positive zero of f. 
20. Find an approximation for A, accurate to within 10-4 , for the population equation 

).. 435,000).. 
1,564,000 = l,ooo'OOOe + A (e - I), 

discussed in the introduction to this chapter. Use this value to predict the population at the end 
of the second year, assuming that the immigration rate during this year remains at 435,000 
individuals per year. 

21. The sum of two numbers is 20. If each number is added to its square root, the product of the 
two sums is 155.55. Determine the two numbers to within 10-4

• 

22. The accumulated value of a savings account based on regular periodic payments can be deter
mined from the annuity due equation, 

P . 
A = --;-[(1 + I)n - 1]. 

I 

In this equation, A is the amount in the account, P is the amount regularly deposited, and i 
is the rate of interest per period for the n deposit periods. An engineer would like to have a 
savings account valued at $750,000 upon retirement in 20 years and can afford to put $1500 
per month toward this goal. What is the minimal interest rate at which this amount can be 
invested, assuming that the interest is compounded monthly? 

23. Problems involving the amount of money required to payoff a mortgage over a fixed period 
of time involve the formula 

P 
A = --;-[1 - (1 + i)-n], 

I 

known as an ordinary annuity equation. In this equation, A is the amount of the mortgage, 
P is the amount of each payment, and i is the interest rate per period for the n payment 
periods. Suppose that a 30-year home mortgage in the amount of $135,000 is needed and that 
the borrower can afford house payments of at most $1000 per month. What is the maximal 
interest rate the borrower can afford to pay? 
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24. A drug administered to a patient produces a concentration in the blood stream given by c(t) = 
Ate-t!3 milligrams per milliliter, t hours after A units have been injected. The maximum safe 
concentration is I mglml. 

a. What amount should be injected to reach this maximum safe concentration, and when 
does this maximum occur? 

b. An additional amount of this drug is to be administered to the patient after the concen
tration falls to 0.25 mglml. Determine, to the nearest minute, when this second injection 
should be given. 

c. Assume that the concentration from consecutive injections is additive and that 75% of 
the amount originally injected is administered in the second injection. When is it time for 
the third injection? 

25. Let f(x) = 33x+l - 7· 52x
• 

a. Use the Maple commands solve and fsolve to try to find all roots of f. 
b. Plot f(x) to find initial approximations to roots of f. 

c. Use Newton's method to find roots of f to within 10-16. 

d. Find the exact solutions of f(x) = 0 algebraically. 

26. Repeat Exercise 25 using f(x) = 2x2 - 3 ·7H1 . 

27. The logistic population growth model is described by an equation of the form 

PL 
P(t) = I _ ce-kt ' 

where PL, c, and k > 0 are constants, and P(t) is the population at time t. PL represents the 
limiting value of the population since lim,-+oo P(t) = PL. Use the census data for the yean; 
1950, 1960, and 1970 listed in the table on page 104 to determine the constants PL , c, and 
k for a logistic growth model. Use the logistic model to the popUlation of the United 
States in 1980 and in 2010, assuming t = 0 at 1950. Compare the 1980 prediction to the actual 
value. 

28. The Gompertz population growth model is described by 

where PL , c, and k > 0 are constants, and P(t) is the population a1 time t. Repeat Exercise 27 
using the Gompertz growth model in place of the logistic model. 

29. Player A will shut out (win by a score of 21-0) player B in a game of racquetball with proba
bility 

P = l+p 
2 

p 
I-p+p2 

21 

, 

where p denotes the probability A will win any specific rally (independent of the server). (See 
[Keller, J], p. 267.) Determine, to within 10-3, the minimal value of p that will ensure that A 
will shut out B in at least half the matches they play. 

30. In the design of all-terrain vehicles, it is necessary to consider the failure of the vehicle when 
attempting to negotiate two types of obstacles. One type of failure is called lumg-up failure 
and occurs when the vehicle attempts to cross an obstacle that causes the bottom of the vehicle 
to touch the ground. The other type of failure is called noJe-in failure and occurs when the 
vehicle descends into a ditch and its nose touches the ground. 

The accompanying figure, adapted from [BekJ, shows the components associated with 
the nose-in failure <?f a vehicle. In that reference it is shown that the maximum angle a that 
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can be negotiated by a vehicle when f3 is the maximum angle at which hang-up failure does 
not occur satisfies the equation 

Asinacosa + Bsin2 a - Ccosa - Esina = 0, 

where 

A = 1 sin f31, B = 1 cos f31, C = (h + O.5D) sin f31 - O.5D tanf31' 

and E = (h + O.5D) cos f31 - O.5D. 

a. It is stated that when 1 = 89 in., h = 49 in., D = 55 in., and f31 = 11.so, angle ex is 
approximately 33°. Verify this result. 

h. Find ex for the situation when l, h, and f31 are the same as in part (a) but D = 30 in. 

1 

{3. 

2.4 Error Analysis for Iterative Methods 

Definition 2.6 

In this section we investigate the order of convergence of functional iteration schemes and, 
as a means of obtaining rapid convergence, rediscover Newton's method. We also consider 
ways of accelerating the convergence of Newton's method in special circumstances. First, 
however, we need a procedure for measuring how rapidly a sequence converges. 

Suppose {Pn};;"=o is a sequence that converges to P, with Pn =f. P for all n. If positive 
constants A and a exist with 

Ii 
IPn+l - pi _ , 

m - 11., 

n ..... oo IPn - pia 

then {Pn} ~ 0 converges to p of order a, with asymptotic error constant A. • 
An iterative technique of the form Pn = g (Pn-l) is said to be of order a if the sequence 

{Pn}~ 0 converges to the solution p = g(p) of order a. 
In general, a sequence with a high order of convergence converges more rapidly than 

a sequence with a lower order. The asymptotic constant affects the speed of convergence 
but is not as important as the order. Two cases of order are given special attention. 
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(i) If ex = 1, the sequence is linearly convergent. 

eii) If ex = 2, the sequence is quadratically convergent. 

The next example compares a linearly convergent sequence to one that is quadratically 
convergent. It shows why we try to find methods that produce higher-order convergent 
sequences. 

Suppose that {Pn}~o is linearly convergent to 0 with 

1· IPn+ll - 0 5 1m - . 
n~oo IPnl 

and that {Pn}~o is quadratically convergent to 0 with the same asymptotic error constant, 

1· IPn+ll - 0 5 
1m - 2 - .. 

n~oo IPn I . 

For simplicity, suppose that 

IPn+ll ~ 0.5 and 
IPn I 

IPn+ll ~ 0.5. 
IPn 12 

For the linearly convergent scheme, this means that 

IPn - 01 = IPnl ~ 0.5IPn-ll ~ (0.5)2IPn_21 ~ ... ~ (0.5)nlpol . 
. 

whereas the quadratically convergent procedure has 

IPn - 01 = IPnl ~ 0.5IPn_I!2 ~ (0.5)[0.5IPn_21 2f = (0.5)3IPn_21 4 

~ (0.5)3[(0.5)IPn_312]4 = (0.5)7IPn_31 8 

2" 1 - 2" ~ ... ~ (0.5) - Ipol . 

Table 2.7 illustrates the relative speed of convergence of the sequences to 0 when Ipol = 

IPol = 1. 

n 

1 
2 
3 
4 
5 
6 
7 

Linear Convergence 
Sequence {p"}~ 

(0.5)" 

5.0000 X 10-1 

2.5000 X 10-1 

1.2500 X 10-1 

6.2500 X 10-2 

3.1250 X 10-2 

1.5625 X 10-2 

7.8125 X 10-3 

Quadratic Convergence 
Sequence {p"}~ 

(O.W"-I 

5.0000 X 10-1 

1.2500 X 10-1 

7.8125 X 10-3 

3.0518 x 10-5 

4.6566 X 10-10 

1.0842 X 10-19 

5.8775 X 10-39 

The quadratically convergent sequence is within 10-38 of 0 by the seventh tenIl. At 
least 126 tenlls are needed to ensure this accuracy for the linearly convergent sequence. 
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Quadratically convergent sequences generally converge much more quicldy than those 
that converge only linearly, but many techniques that generate convergent sequences do so 
only linearly. 

Z-7 Let g e C[a, b] be such that g(x) e [a, b], for all x e [a, b]. Suppose, in addition, that g' 
is continuous on (a, b) and a positive constant k < 1 exists with 

Ig'(x)1 ~k, for all x e (a, b). 

If g' (p) .p. 0, then for any number Po in [a, b), the sequence 

Pn = g(Pn-d, for n ::: I, 

converges only linearly to the unique fixed point p in [a, b]. • 
JIrfHI/ We know from the Fixed-Point Theorem 2.3 in Section 2.2 that the sequence con
verges to p. Since g' exists on [a, b], we can apply the Mean Value Theorem to g to show 
that for any n, 

Pn+l - P = g(Pn) - g(p) = g'(~n)(Pn - p), 

where ~II is between P" and p. Since {p,,}:~ converges to P, we also have {~"}:-o con
verging to p. Since g' is continuous on [a, b), we have 

Thus, 

lim P,,+l - P = lim g'(~,,) = g'(p) and 
,,-+00 p" - p 11-+00 

I· Ip"+1 - pi _ I '( )1 1m -gpo 
" .... 00 IPn - pi 

Hence, if g' (p) .p. 0, fixed-point iteration exhibits linear convergence with asymptotic error 
constant Ig'(p)l. • • • 

Theorem 2.7 implies that higher-order convergence for fixed-point methods can oc
cur only when g' (p) = O. The next result describes additional conditions that ensure the 
quadratic convergence we seek. 

Let P be a solution of the equation x = g(x). Suppose that g'(p) = 0 and g" is continuous 
and strictly bounded by M on an open interval I containing p. Then there exists a 8 > 0 
such that, for Po e [p - 8, p + 8], the sequence defined by PII = g(P,,-I), when n ::: 1, 
converges at least quadratically to p. Moreover, for sufficiently large values of n, 

M 2 
Ip,,+l - pi < 2 Ip" - pi . • 

JIrfHI/ Choose k in (0, 1) and 8 > 0 such that on the interval [p - 8, p + 8], contained 
in I, we have Ig'(x)1 ~ k and g" continuous. Since Ig'(x)1 ~ k < 1, the argument 
used in the proof of Theorem 2.5 in Section 2.3 shows that the tenos of the sequence 
{p,,}:.o are contained in [p - 8, p + 8]. Expanding g(x) in a linear Taylor polynomial for 
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x E [p~8,p+8]gives 

g"(~) 
g(x) = g(p) + g'(p)(x - p) + 2 (x - p)2, 

where ~ lies between x and p. The hypotheses g(p) = p and g'(p) = 0 imply that 

gil (~) 
g(x) = p + 2 (x - p)2. 

In particular, when x = Pn, 

with ~n between Pn and p. Thus, 

gil (~n) 2 
Pn+l - P = 2 (Pn - p) . 

81 

Since Ig' (x) I ::: k < 1 on [p - 8, p + 8] and g maps [p - 8, p + 8] into itself, it follows 
from the Fixed-Point Theorem that {Pn}~o converges to p. But ~n is between p and Pn for 
each n, so {~n}~o also converges to p, and 

lim IPn+l - pi = 19"(p)l. 
n ..... oo IPn - pl2 2 

This result implies that the sequence {Pn}~ is quadratically convergent if g"(p) ::j:. 0 and 
of higher-order convergence if glf (p) = O. 

Since gil is continuous and strictly bounded by M on the interval [p - 8, p + 8], this 
also implies that, for sufficiently large values of n, 

M 2 
IPn+l - pi < 2'IPn - pi . • • • 

Theorems 2.7 and 2.8 tell us that our search for quadratically convergent fixed-point 
methods should point in the direction of functions whose derivatives are zero at the fixed 
point. 

The easiest way to construct a fixed-point problem associated with a root-finding prob
lem I (x) = 0 is to subtract a multiple of I (x) from x. So let us consider 

Pn = g(Pn-l), for n ~ 1, 

for g in the fOlm 

g(x) = x - </J(x)f(x), 

where </J is a differentiable function that will be chosen later. 
For the iterative procedure derived from g to be quadratically convergent. we need to 

have g'(p) = 0 when f(p) = O. Since 

g'(x) = 1 - </J'(x)f(x) - f'(x)</J(x), 
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we have • 

g'(p) = 1- ¢'(p)f(p) - j'(p)¢(p) = 1 - ¢'(p) ·0- j'(p)¢(p) = I - !'(p)¢(p), 

andg'(p) = o if and only if¢(p) = l/f'(p). 
If we let ¢ (x) = 1/ f' (x), then we will ensure that <p (p) = 1/ f' (p) and produce the 

quadratically convergent procedure 

f (Pn-l) 
Pn = g(Pn-l) = Pn-l - f'( ) . 

Pn-l 

This, of course, is simply Newton's method. 
In the preceding discussion, the restriction was made that f' (p) =F 0, where p is the 

solution to f (x) = O. From the definition of Newton's method, it is clear that difficulties 
might occur if f'(Pn) goes to zero simultaneously with f(Pn). In particular, Newton's 
method and the Secant method will generally give problems if f' (p) = 0 when f (p) = O. 
To examine these difficulties in more detail, we make the following definition. 

A solution p of I(x) = 0 is a zero of multiplicity m of f if for x =F p, we can write 
f(x) = (x - p)mq(x), where limx->p q(x) =F O. • 

In essence, q (x) represents that portion of I (x) that does not contribute to the zero of 
I. The following result gives a means to easily identify simple zeros of a function, those 
that have multiplicity one. 

I E C1[a, b] has a simple zero at p in (a, b) if and only if I(p) = 0, but f'(p) =F O. • 

Proof If f has a simple zero at p, then f(p) = ° and f(x) = (x - p)q(x), where 
limx->pq(x) =F 0. Since f E C1[a, b], 

j'(p) = lim f'ex) = lim [q(x) + (x - p)q'(X)] = lim q(x) =F 0. 
x-+p x-+p x-+p 

Conversely, if f(p) = 0, but f'(p) =F 0, expand f in a zeroth Taylor polynomial about p. 
Then 

I(x) = I(p) + 1'(~(X))(x - p) = (x - p)f'(~(x», 

where ~(x) is between x and p. Since I E C1[a, b], 

lim f'(Hx)) = f' lim ~(x) = f'(p) =F O. 
x-+p x ...... p 

Letting q = f' 0 ~ gives f(x) = (x - p)q(x), where limx->p q(x) =F 0. Thus, f has a 
simple zero at p. • • • 

The following generalization of Theorem 2.10 is considered in Exercise 10. 

The function IE Cm[a, b] has a zero of multiplicity mat p in (a, b) if and only if 

° = I(p) = f'(p) = !"(p) = ... = l(m-l)(p), but I(m)(p) =F O. • 
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The result in Theorem 2.10 implies that an interval about P exists where Newton's 
method converges quadratically to P for any initial approximation Po = p, provided that p 
is a simple zero. The following example shows that quadratic convergence may not occur 
if the zero is not simple. 

Consider f(x) = eX - x-I. Since f(O) = eO - 0 - 1 = 0 and 1'(0) = eO - 1 = 0, but 
f" (0) = eO = 1, f has a zero of multiplicity two at p = O. In fact, f (x) can be expressed 
in the forIll 

eX - x-I 
f(x)=(x-O)2 2 ' 

x 

where, by L'H6pital's rule, 

eX-x-l eX-l eX 1 
lim ---;0-- = lim --::-- = lim - = - =f=. O. 
x~o x 2 x-+o 2x x~o 2 2 

The teIIllS generated by Newton's method applied to f with Po = 1 are shown in 
Table 2.8. The sequence is clearly converging to 0, but not quadratically. The graph of f is 
shown in Figure 2.11. • 

n P. n P. 

0 1.0 9 2.7750 X 10-3 

1 0.58198 10 1.3881 x 10-3 

2 0.31906 11 6.9411 x 10-4 

3 0.16800 12 3.4703 x 10-4 

4 0.08635 13 1.7416 x 10-4 

5 0.04380 14 8.8041 x 10-5 

6 0.02206 15 4.2610 x 10-5 

7 0.01107 16 1.9142 x 10-6 

8 0.005545 
• 

f(x) 

1 

e-2 
(1, e - 2) 

f(x) = eX - x-I 

-1 1 x 
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One method of handling the problem of multiple roots is to define 

I(x) 
/-L(x) = f'(x)' 

If p is a zero of f of multiplicity m and f (x) = (x - p)m q (x), then 

( ) 
(x - p)mq(x) 

/-L x = ----,-----:--=-:---"------
m(x - p)m-lq(x) + (x - p)mq'(x) 

= (x _ p) q(x) 
mq(x) + (x - p)q'(x) 

also has a zero at p. However, q(p) i= 0, so 

q(p) = ~ i= 0, 
mq(p) + (p - p)q'(p) m 

and p is a simple zero of /L. Newton's method can then be applied to I-L to give 

/L(x) f(x)lf'(x) 
g(x) = x - /-L'(x) = x - ([f'(x)]2 _ [f(x)][f"(x)]}/[f'(x)]2 

or 

f(x)f'(x) 
g(x) = x - [f'(x)]2 - I(x)f"(x)' (2.11) 

If g has the required continuity conditions, functional iteration applied to g will be 
quadratically convergent regardless of the multiplicity of the zero of f. Theoretically, the 
only drawback to this method is the additional calculation of 1" (x) and the more laborious 
procedure of calculating the iterates. In practice, however, multiple roots can cause seri-
0us roundoff problems since the denominator of (2.11) consists of the difference of two 
numbers that are both close to O. 

Table 2.9 lists the approximations to the double zero at x = 0 of I (x) = eX - x-I using 
Pn = g(Pn-d, for n :::: 1, where g is given by (2.11). The results were recorded using a 
calculator with ten digits of precision. The initial approximation of Po = 1 was chosen so 
that the entries can be compared with those in Table 2.8. What Table 2.9 does not show 
is that no improvement to the zero approximation -2.8085217 x 10-7 occurs in subse
quent computations using this calculator since both the numerator and the denominator 
approach O. • 

n Pn 

1 -2.3421061 X 10-1 

2 -8.4582788 X 10-3 

3 -1.1889524 X 10-5 

4 -6.8638230 X 10-6 

5 -2.8085217 X 10-7 

, 
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In Example 3 of Section 2.2 we solved f(x) = x 3 + 4x2 - 10 = 0 for the zero p = 
1.36523001. To compare convergence for a zero of multiplicity one by Newton's method 

and the modified Newton's method listed in Eq. (2.11), let 

(I
') P~-I + 4p;_1 - 10 

Pn = Pn-I - 2 ' from Newton's method 
3Pn_1 + 8pn-1 

and, from Pn = g(Pn-I), where g is given by Eq. (2.11), 

(p3 + 4p2 - 10) (3p2 + 8p ) 
(
.') n-I n-I n-I n-I 
11 Pn = Pn-I - 2 2 3 2 . 

(3Pn_1 + 8pn-l) - (Pn-l + 4Pn_1 - 1O)(6pn_1 + 8) 

With Po = 1.5, the first three iterates for (i) and (ii) are shown in Table 2.10. The 

results illustrate the rapid convergence of both methods in the case of a simple zero. _ 

PI 
P2 
P3 

(i) 

1.37333333 
1.36526201 
1.36523001 

(ii) 

1.35689898 
1.36519585 
1.36523001 

E X ERe I S ESE T 2.4 

1. Use Newton's method to find solutions accurate to within 10-5 to the following problems. 

a. x2 - 2xe-x + e-Z:< = 0, for 0 < x :5 1 

b. cos(x +../2) + x (x12 +../2) = 0, for -2:5 x :5 -1 

C. x 3 
- 3x2 (2- X

) + 3x(4-X
) - 8-x = 0, forO:5 x :5 1 

d. e6x + 3 (In 2)2eZ:< - (In 8)e4X - (In 2)3 = 0, for -1 :5 x < 0 

2. Repeat Exercise 1 using the modified Newton-Raphson method described in Eq. (2.11). Is 
there an improvement in speed or accuracy over Exercise I? 

3. Use Newton's method and the modified Newton-Raphson method described in Eq. (2.11) to 
find a solution accurate to within 10-5 to the problem 

e6x + 1.441eZ:< - 2.07ge4x - 0.3330 = 0, for - I < x < o. - -

This is the same problem as l(d) with the coefficients replaced by their four-digit approxima
tions. Compare the solutions to the results in l(d) and 2(d). 

4. Show that the following sequences converge linearly to P = O. How large must n be before 
Ipo - pi :5 5 x 1O-2? 

1 1 
a. Po = -, n > 1 b. Po = -, n > 1 

n n2 

5. a. Show that for any positive integer k, the sequence defined by Po = link converges 
linearly to p = o. 

b. For each pair of integers k and m, detennine a number N for which liNk < I o-m . 
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6. a. Show that the sequence Pn = 10-2" converges quadratically to O. 

b. Show that the sequence Pn = lO-nk does not converge to 0 quadratically, regardless of 
the size of the exponent k > 1. 

7. a. Construct a sequence that converges to 0 of order 3. 

b. Suppose ex > 1, Construct a sequence that converges to 0 zero of order ex . 

8. Suppose P is a zero of multiplicity m of f, where 1"1 is continuous on an open interval 
containing p. Show that the following fixed-point method has gl(p) = 0: 

mf(x) 
g(x) = x - j'(x)' 

9. Show that the Bisection Algorithm 2.1 gives a sequence with an error bound that converges 
linearly to O. 

10. Suppose that f has m continuous derivatives. Modify the proof of Theorem 2.10 to show that 
f has a zero of multiplicity m at P if and only if 

0= f(p) = f'(p) = .,. = f(m-l)(p), but f(m)(p) t- O. 

11. The iterative method to solve f(x) = 0, given by the fixed-point method g(x) = x, where 

( 
f(Pn-l) f"(Pn-l) 

Pn = g Pn-I) = Pn-l - fl( ) - 2fl( ) 
Pn-l Pn-l 

, for n = 1, 2, 3, .... 

has gl(p) = g"(p) = O. This will generally yield cubic (0: = 3) convergence. Expand the 
analysis of Example 1 to compare quadratic and cubic convergence. 

12. It can be shown (see, for example, [DaB, pp. 228-229]) that if (Pn)~ 0 are convergent Se
cant method approximations to p, the solution to f(x) = 0, then a constant C exists with 
IPn+1 - pi ~ c IPn - pi IPn-1 - pi for sufficiently large values of n. Assume (P.} converges 
to p of order ex, and show that ex = (1 + ~)/2. (Note: This implies that the order of conver
gence of the Secant method is approximately 1.62). 

2.5 Accelerating Convergence 

It is rare to have the lUXury of quadratic convergence. We now consider a technique called 
Aitken's ~2 method that can be used to accelerate the convergence of a sequence that is 
linearly convergent, regardless of its origin or application. 

Suppose {Pn}~o is a linearly convergent sequence with limit p. To motivate the con
struction of a sequence tPn}~o that converges more rapidly to P than does {Pnl:;" 0' let us 
first assume that the signs of Pn - p, Pn+l - p, and Pn+2 - P agree and that n is sufficiently 
large that 

Pn+l - P ~ 
~ 

Pn+2 - P 
• 

Pn - P Pn+l - P 

Then 

so 
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and 

Solving for P gives 

2 
Pn+2Pn - Pn+l 

P~ . 
Pn+2 - 2pn+l + Pn 
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Adding and subtracting the terllls p~ and 2pnPn+l in the numerator and grouping terms 
appropriately gives 

2 2 2 2 2 Pn - PnPn+2 - PnPn+l - PnPn+l - Pn - Pn+l 
P~ ~--~~----~~----~~~--~~~~ 

Pn+2 - 2pn+l + Pn 

_ (p~ - PnPn+2 + 2pnPn+l) - (p~ - 2pnPn+1 + P~+l) 
-

Pn+2 - 2pn+l + Pn 

(Pn+1 - Pn)2 
= Pn - . 

Pn+2 - 2pn+l + Pn 

Aitken's .6.2 method is based on the assumption that the sequence LPn}~ 0' defined by 

A (Pn+! - Pn)2 
Pn = Pn - , 

Pn+2 - 2pn+l + Pn 
(2.12) 

converges more rapidly to P than does the original sequence {Pn}~ o· 

The sequence {Pn}~ l' where Pn = cos(1/n), converges linearly to P = 1. The first few 
terms of the sequences {Pn}~ 1 and {Pn}:! are given in Table 2.11. It certainly appears 
that {fln}: I converges more rapidly to P = 1 than does {Pn}: I' • 

n 

1 
2 
3 
4 
5 

Pn 

0.54030 
0.87758 
0.94496 
0.96891 
0.98007 

6 0.98614 
7 0.98981 

A 

pn 

0.96178 
0.98213 
0.98979 
0.99342 
0.99541 

• 

The 6. notation associated with this technique has its origin in the following definition. 

Definition 2.12 For a given sequence {Pn}: 0' the forward difference .6.Pn is defined by 

!:J.Pn = Pn+l - Pn, for n > O. -
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Higher powers, f). k Pn, are defined recursively by 

~k Pn = ~(~k-l Pn), for k ~ 2. • 
The definition implies that 

6.2 Pn = 6.(Pn+1 - Pn) = 6.Pn+1 - 6.Pn = (Pn+2 - Pn+l) - (Pn+1 - Pn). 

So 

and the formula for Pn given in Eq. (2.12) can be written as 

A (6.Pn)2 
P = Pn - 6.2 ' for n ~ O. (2.13) 

Pn 

To this point in our discussion of Aitken's 6.2 method, we have stated that the sequence 
{Pn}~o' converges to P more rapidly than does the original sequence {Pnl:'o, but we have 
not said what is meant by the tenn "more rapid" convergence. Theorem 2.13 explains and 
justifies this terminology. The proof of this theorem is considered in Exercise 14. 

Suppose that {Pn}~ is a sequence that converges linearly to the limit P and that for all 
sufficiently large values ofn we have (Pn - P)(Pn+1 - p) > O. Then the sequence {Pn}: 0 

converges to P faster than {Pn}~ in the sense that 

A 

Ii Pn - P - 0 m - . 
n~oo Pn - P • 

• 

By applying a modification of Aitken's 6.2 method to a linearly convergent sequence 
obtained from fixed-point iteration, we can accelerate the convergence to quadratic. This 
procedure is known as Steffensen's method and differs slightly from applying Aitken's 
6.2 method directly to the linearly convergent fixed-point iteration sequence. Aitken's 6.2 

method constructs the terms in order: 

Po, PI = g(po), P2 = g(PI), Po = {6.2}(po), 

P3 = g(pz), PI = {f). 2}(pd • ... , 

where {6.2} indicates that Eq. (2.13) is used. Steffensen's method constructs the same first 
four terllls, Po, PI, P2, and Po. However, at this step it assumes that Po is a better approx
imation to P than is P2 and applies fixed-point iteration to Po instead of P2. Using this 
notation the sequeoce generated is 

(I) (I) 
PI = g(po ), .... 

Every third telm is generated by Eq. (2.13); the others use fixed-point iteration on the 
previous teno. The process is described in Algorithm 2.6. 
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Steffensen's 

To find a solution to P = g(p) given an initial approximation Po: 

INPUT initial approximation Po; tolerance TOL; maximum number of iterations No. 

OUTPUT approximate solution p or message of failure. 

Step 1 Seti = 1. 

Step 2 While i S No do Steps 3-6. 

Step 3 Set PI = g(po); (Compute p~j-I).) 

P2 = g(PI); (Compute pg-l).) 

p = Po - (PI - PO)2/(P2 - 2pI + Po). (Compute P6i)·) 

Step 4 If Ip - Pol < TOL then 
OUTPUT (p); (Procedure completed successfully.) 
STOP. 

Step 5 Seti = i + 1. 

Step 6 Set Po = p. (Update po.) 

Step 7 OUTPUT ('Method failed after No iterations, No =', No); 
(Procedure completed unsuccessfully.) 
STOP. 

89 

• 

Note that ~ 2 Pn may be 0, which would introduce a 0 in the denominator of the next 
iterate. If this occurs, we terminate the sequence and select pin-I) as the approximate 
answer. 

To solve x 3 + 4x2 - 10 = 0 using Steffensen's method, let x 3 + 4x 2 = 10, divide by x + 4, 
and solve for x. This procedure produces the fixed-point method 

10 
g(x) = 

x+4 

used in Example 3(d) of Section 2.2. 

1/2 

, 

Steffensen's procedure with Po = 1.5 gives the values in Table 2.12. The iterate P62
) = 

1.365230013 is accurate to the ninth decimal place. In this example, Steffensen's method 
gave about the same accuracy as Newton's method (see Example 4 in Section 2.4). • 

k 

o 
1 
2 

1.5 
1.365265224 
1.365230013 

(k) 
PI 

1.348399725 
1.365225534 

1.367376372 
1.365230583 
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From Example 2, it appears that Steffensen's method gives quadratic convergence 
without evaluating a derivative, and Theorem 2.14 verifies that this is the case. The proof 
of this theorem can be found in [He2, pp. 90-92] or elK, pp. 103-107]. 

Suppose that x = g(x) has the solution p with g'(p) "!- 1. If there exists a 0 > 0 such 
that g E C3 [p - 0, p + <i], then Steffensen's method gives quadratic convergence for any 
Po E [p - 8, p + 8]. • 

E X ERe I S ESE T 2.5 

1. The following sequences are linearly convergent. Generate the first five tenus of the sequence 
{Pn} using Aitken's tl2 method. 

a. Po = 0.5, Pn = (2 - ePn - 1 + p;_I)/3, n > 1 

b. Po = 0.75, Pn = (e Pn - I /3)1/2, n > 1 

c. Po = 0.5, Pn = 3-Pn - l , n > 1 

d. Po = 0.5, Pn = cos Pn-I, n::: 1 

2. Consider the function [(x) = e6x + 3(ln2)2e2x - (ln8)e4x - (Jn2)3. Use Newton's method 
with Po = 0 to approximate a zero of [. Generate tenus until IPn+1 - Pn I < 0.0002. Construct 
the sequence {fin}. Is the convergence improved? 

3. Let g(x) = cos(x - 1) and PbO) = 2. Use Steffensen's method to find P61). 

4. Let g (x) = 1 + (sin x)2 and P60) = 1. Use Steffensen's method to find PbI) and P62
). 

5. Steffensen's method is applied to a function g(x) using PbO) = I and piO) = 3 to obtain 
P61

) = 0.75. What is p;O)? 

6. Steffensen's method is applied to a function g(x) using P6°) = 1 and p;O) = .fi to obtain 
pg) = 2.7802. What is p~O)? 

7. Use Steffensen's method to find, to an accuracy of 10-4 , the root of x 3 - x-I = 0 that lies 
in [I, 2], and compare this to the results of Exercise 6 of Section 2.2. 

8. Use Steffensen's method to find, to an accuracy of 10-4, the root of x - 2-X = 0 that lies in 
[0, 1], and compare this to the results of Exercise 8 of Section 2.2. 

9. Use Steffensen's method with po = 2 to compute an approximation to -J3 accurate to within 
10-4• Compare this result with those obtained in Exercise 9 of Section 2.2 and Exercise 10 of 
Section 2.1. 

10. Use Steffensen's method to approximate the solutions of the following equations to within 
10-5. 

a. x = (2 - eX + x 2)/3, where g is the function in Exercise Il(a) of Section 2.2. 

b. x = O.5(sinx + cos x), where g is the function in Exercise 11(f) of Section 2.2. 

c. 3x2 - eX = 0, where g is the function in Exercise I2(a) of Section 2.2. 

d. x - cosx =0, where g is the function in Exercise 12(b) of Section 2.2. 

11. The following sequences converge to o. Use Aitken's d 2 method to generate {Pn} untillpn I < 
5 x 10-2 : 

a. 
I 

pn = -, 
n 

n:::l b. 
1 

n > 1 
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12. A sequence {Pn} is said to be superlinearJy convergent to P if 

lim IpHI - pi = o. 
n-+oo IPn - pi 
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a. Show that if Pn ---+ P of order a for a > 1, then {Pn} is superlinearly convergent to p. 

b. Show that pn - n~ is superlinearly convergent to 0 but does not converge to 0 of order a 
for any a> 1. 

13. Suppose that {Pn} is superlinearly convergent to p. Show that 

I· IPn+1 - Pnl 1 
1m = . 

n-+oo IPn - pi 

14. Prove Theorem 2.13. [Hint: Let On = (Pn+! - P)/(Pn - p) - A, and show that Iimn-+ oc On = O. 
Then express (Pn+l - P)/(Pn - p) in terms of On, 0n+I' and A.] 

15. Let Pn (x) be the nth Taylor polynomial for f (x) = eX expanded about Xo = O. 

a. For fixed x, show that Pn = Pn(x) satisfies the hypotheses of Theorem 2.13. 

b. Let x = 1, and use Aitken's tJ.2 method to generate the sequence Po . ... , pg. 
c. Does Aitken's method accelerate convergence in this situation? 

2.6 Zeros of Polynomials and MUlier's Method 

Theorem 2.75 

A polynomial of degree n has the fOlm 

where the aj's, called the coefficients of P, are constants and an ::/= O. The zero function, 
P(x) = 0 for all values of x, is considered a polynomial but is assigned no degree. 

(Fundamental Theorem of Algebra) 
If P (x) is a polynomial of degree n > 1 with real or complex coefficients, then P (x) = 0 
has at least one (possibly complex) root. • 

Although Theorem 2.15 is basic to any study of elementary functions, the usual proof 
requires techniques from the study of complex-function theory. The reader is referred to 
[SaS, p. 155], for the culmination of a systematic development of the topics needed to 
prove Theorem 2.15. 

An important consequence of Theorem 2.15 is the following corollary. 

Corollary 2.76 If P (x) is a polynomial of degree n > 1 with real or complex coefficients, then there exist 
unique constants Xl, X2, ... , Xko possibly complex, and unique positive integers m 1, m2, 

... , mko such that L~ 1 mj = n and 

• 
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Corollary 2.16 states that the collection of zeros of a polynomial is unique and that, if 
each zero Xj is counted as many times as its multiplicity mj, a polynomial of degree n has 
exactly n zeros. 

The following corollary of the Fundamental Theorem of Algebra is used often in this 
section and in later chapters. 

Corollary 2.17 Let P(x) and Q(x) be polynomials of degree at most n. If XI. xz, ... ,Xb with k > n, are 
distinct numbers with P (x;) = Q (Xi) for i = 1, 2, ... ,k, then P (x) = Q (x) for all values 
of x. • 

Theorem 2.18 

EXAMPLE 1 

To use Newton's method to locate approximate zeros of a polynomial P(x), we need 
to evaluate P(x) and P'(x) at specified values. Since P(x) and P'(x) are both polynomi
als, computational efficiency requires that the evaluation of these functions be done in the 
nested manner discussed in Section 1.2. Homer's method incorporates this nesting tech
nique, and, as a consequence, requires only n multiplications and n additions to evaluate 
an arbitrary nth-degree polynomial. 

(Homer's Method) 

Let 

bk=ak+bk+lxO, fork=n-l,n-2, ... ,1,O, 

then bo = P(xo). Moreover, if 

Q(x) = bnxn- I + bn_Ix n- Z + ... + b2x + bl • 

then 

P(x) = (x - xo)Q(x) + bo. 

Prool By the definition of Q(x), 

(x - xo)Q(x) + bo = (x - xo)(bnxn- 1 + ... + b2X + bl) + bo 

= (bnxn + bn_1xn- 1 + ... + b2x2 + blx) 

- (bnxoxn-I + ... + b2Xox + blxo) + bo 

• 

= bnxn + (bn- 1 - bnxo)xn-I + ... + (b l - b2XO)X + (bo - blxo). 

By the hypothesis, bn = an and bk - bk+lxo = ak, so 

(x - xo)Q(x) + bo = P(x) and bo = P(xo). • • • 

Use Homer's method to evaluate P(x) = 2X4 - 3x2 + 3x - 4 at Xo = -2. 
When we use hand calculation in Homer's method, we first construct a table, which 

suggests the synthetic division name often applied to the technique. For this problem, the 
table appears as follows: 
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Coefficient Coefficient Coefficient Coefficient Constant 
of x4 of x 3 of x2 ofx tenn 

Xo =-2 a4 = 2 a3 =0 a2 =-3 al = 3 an =-4 
b4Xo =-4 b3XO = 8 b2Xo = -10 blxo = 14 

b4 = 2 b3 =-4 b2 = 5 bl =-7 bo = 10 

So, 

P(x) = (x + 2)(2x3 - 4x2 + 5x - 7) + 10. • 
An additional advantage of using the Homer (or synthetic-division) procedure is that, 

• SInce 

P(x) = (x - xo)Q(x) + bo, 

where 

differentiating with respect to x gives 

P'(x) = Q(x) + (x - xo)Q'(x) and P'(xo) = Q(xo). (2.14) 

When the Newton-Raphson method is being used to find an approximate zero of a polyno
mial, P (x) and P' (x) can be evaluated in the same manner. 

Find an approximation to one of the zeros of 

P (x) = 2X4 - 3x2 + 3x - 4, 

using Newton's method and synthetic division to evaluate P(xn ) and P' (xn ) for each iterate 

xn • 

With Xo = -2 as an initial approximation, we obtained P( -2) in Example 1 by 

Xo =-2 2 
-4 

2 

o 
8 

-4 

Using Theorem 2.18 and Eq. (2.14), 

-3 
-10 

5 

3 
14 

-7 

-4 

10 = P(-2). 

Q(x) = 2x3 - 4x2 + 5x -7 and P'(-2) = Q(-2), 

so P' (-2) can be found by evaluating Q( - 2) in a similar manner: 

Xo =-2 2 -4 
-4 

2 -8 

5 
16 

21 

-7 
-42 

-49 = Q(-2) = P'(-2) 
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and 

P(xo) 10 
Xl=XO- =-2- ~-1.796. 

P'(xo) -49 

Repeating the procedure to find X2, 

-1.796 2 0 -3 3 -4 
-3.592 6.451 -6.197 5.742 

2 -3.592 3.451 . -3.197 1.742 
-3.592 12.902 -29.368 

2 -7.184 16.353 -32.565 = Q(xd 

So P(-1.796) = 1.742, P'(-1.796) = -32.565, and 

1.742 
X2 = -1.796 - -32.565 ~ -1.7425. 

= P(Xl) 

= P'(xt>. 

In a similar manner, X3 = -1.73897, and an actual zero to five decimal places is -1.73896 . 

• 
Note that the polynomial Q(x) depends on the approximation being used and changes 

from iterate to iterate. 
Algorithm 2.7 computes P(xo) and P'(xo) using Horner's method. 

Horner's 

To evaluate the polynomial 

P(x) = anxn + an_lxn- 1 + ... + alX + ao = (x - xo) Q(x) + bo 

and its derivative at Xo: 

I N PUT degree n; coefficients an, ai, . .. ,an; Xo. 

OUTPUT y = P(xo); z = P'(xo). 

Step 1 Set y = an; (Compute bnfor P.) 
z = an. (Compute bn-dor Q.) 

Step 2 For j = n - 1, n - 2, . .. ,1 . 
set y = xoy + aj; (Compute bj for P.) 

z = xoz + y. (Compute bj- 1 for Q.) 

Step 3 Set y = XoY + ao. (Compute bofor P.) 

Step 4 OUTPUT (y, z); 
STOP. 

If the Nth iterate, XN, in Newton's method is an approximate zero for P, then 

• 
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so x - XN is an approximate factor of P(x). Letting XI = XN be the approximate zero of 
P and QI (x) == Q(x) be the approximate factor gives 

We can find a second approximate zero of P by applying Newton's method to Ql (x). If 
P(x) is an nth-degree polynomial with n real zeros, this procedure applied repeatedly will 
eventually result in (n - 2) approximate zeros of P and an approximate quadratic factor 
Qn-Z(x). At this stage, Qn-Z (x) = 0 can be solved by the quadratic formula to find the last 
two approximate zeros of P. Although this method can be used to find all the approximate 
zeros, it depends on repeated use of approximations and can lead to inaccurate results. 

The procedure just described is called deflation. The accuracy difficulty with deflation 
is due to the fact that, when we obtain the approximate zeros of P(x), Newton's method is 
used on the reduced polynomial Qk(X), that is, the polynomial having the property that 

An approximate zero Xk+1 of Qk will generally not approximate a root of P(x) = 0 as 
well as it does a root of the reduced equation Qk(X) = 0, and inaccuracy increases as 
k increases. One way to eliminate this difficulty is to use the reduced equations to find 
approximations xz, X3, ... , Xk to the zeros of P, and then improve these approximations 
by applying Newton's method to the original polynomial P(x). 

A problem with applying Newton's method to polynomials concerns the possibility of 
the polynomial having complex roots when all the coefficients are real numbers. If the ini
tial approximation using Newton's method is a real number, all subsequent approximations 
will also be real numbers. One way to overcome this difficulty is to begin with a complex 
initial approximation and do all the computations using complex arithmetic. An alternative 
approach has its basis in the following theorem. 

If z = a + bi is a complex zero of multiplicity m of the polynomial P (x) with real 
coefficients, then z = a - bi is also a zero of multiplicity m of the polynomial P (x), and 
(x z - 2ax + a2 + b2 )m is a factor of P(x). • 

A synthetic division involving quadratic polynomials can be devised to approximately 
factor the polynomial so that one tetm will be a quadratic polynomial whose complex roots 
are approximations to the roots of the original polynomial. This technique was described 
in some detail in our second edition [BFR]. Instead of proceeding along these lines, we 
will now consider a method first presented by D. E. Muller [Mu]. This technique can be 
used for any root-finding problem, but it is particularly useful for approximating the roots 
of polynomials. 

MUller's method is an extension of the Secant method. The Secant method begins 
with two initial approximations Xo and XI and determines the next approximation X2 as the 
intersection of the x-axis with the line through (xo, f(xo») and (Xl, f(Xt». (See Figure 
2.12(a).) Muller's method uses three initial approximations, xo, xl, and X2, and determines 
the next approximation X3 by considering the intersection of the x-axis with the parabola 
through (xo, f(xo», (Xl, f(Xt», and (xz, f(X2». (See Figure 2.12(b).) 
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y 

x 

(a) (b) 

The derivation of Muller's method begins by considering the quadratic polynomial 

P(x) = a(x - xz)2 + b(x - X2) + c 

that passes through (xo, !(xo», (Xl, !(Xl». and (X2, !(X2». The constants a, b, and c can 
be determined from the conditions 

and 

to be 

and 

f(xo) = a(xo - X2)2 + b(xo - X2) + c, 

f(Xl) = a(xl - X2)2 + b(XI - X2) + c, 

f (X2) = a . 02 + b . 0 + c = c 

(2.15) 

(2.16) 

(2.17) 

c = !(X2), (2.18) 

(xo - xZ)2[f(Xl) - !(X2)] - (Xl - X2)2[f(xO) - !(X2)] 
b = , (2.19) 

(xo - X2)(XI - X2)(XO - xd 

(Xo - X2)(XI - X2)(XO - Xl) 
• 

To determine X3, a zero of P, we apply the quadratic fOImula to P (x) = O. However, 
because of roundoff error problems caused by the subtraction of nearly equal numbers, we 
apply the formula in the manner prescribed in Example 5 of Section 1.2: 

-2c 
X3 - X2 = . 

b ± .Jb2 - 4ac 
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This fonnula gives two possibilities for X3, depending on the sign preceding the radical 
term. In Muller's method, the sign is chosen to agree with the sign of b. Chosen in this 
manner, the denominator will be the largest in magnitude and will result in X3 being se
lected as the closest zero of P to X2. Thus, 

2c 
X3 = X2 - , 

b + sgn(b).Jb2 - 4ac 

where a, b, and c are given in Eq. (2.15). 
Once X3 is determined, the procedure is reinitialized using Xl, X2, and X3 in place of 

xo, Xl, and X2 to determine the next approximation, X4. The method continues until a sat
isfactory conclusion is obtained. At each step, the method involves the radical.Jb2 - 4ac, 
so the method gives approximate complex roots when b2 - 4ac < O. Algorithm 2.8 imple
ments this procedure. 

Miiller's 

To find a solution to f(x) = 0 given three approximations, xo, Xl, and X2: 

INPUT xo. XI, X2; tolerance TOL; maximum number of iterations No. 

OUTPUT approximate solution p or message of failure. 

Step 1 Set hi = XI - Xo; 
h2 = X2 - XI; 
81 = (f(XI) - f(xo»! hI; 
82 = (f(X2) - f(xI»! h2; 
d = (82 - 81)!(h2 + hI); 

i = 3. 

Step 2 While i < No do Steps 3-7. 

Step3 b = 82 +h2d; 
D = (b2 - 4 f(X2)d)I/2. (Note: May require complex arithmetic.) 

Step 4 If Ib - DI < Ib + DI then set E = b + D 

Step 5 Set h = -2f(X2)! E; 
p = X2 + h. 

Step 6 If Ihl < TOL then 

else set E = b - D. 

OUTPUT (p); (The procedure was successfu1.) 
STOP. 

Step 7 Set Xo = XI; (Prepare for next iteration.) 
Xl = X2; 
X2 = p; 
hl=XI-XO; 
h2 = X2 - XI; 
81 = (f(XI) - f(xo»!h l ; 
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02 = (f(X2) - I(xd)/ h2; 

d = (02 - od/(h2 + hI); 
i=i+l. 

Step 8 OUTPUT (,Method failed after No iterations, No =', No); 
(The procedure was unsuccessful.) 
STOP. • 

Consider the polynomial f(x) = 16x4 
- 40x 3 + Sx2 +20x +6. Using Algorithm 2.8 with 

TOL = 10-5 and different values of xo, XI, and X2 produces the results in Table 2.13. 

a. 

• 
I 

3 
4 
5 
6 
7 
8 

b. 

. 
I 

3 
4 
5 
6 
7 

c. 

Xo = 0.5, Xl = -0.5, X2 == ° 
Xj !(Xj) 

-0.555556 + 0.598352i 
-0.435450 + 0.1021Oli 
-0.390631 + 0.141852i 
-0.357699 + 0. 169926i 
-0.356051 + 0. 162856i 
-0.356062 + 0.162758i 

Xo = 0.5, Xl = 1.0, X2 = 1.5 
x, 

I !(Xi) 

1.28785 -1.37624 
1.23746 0.126941 

-29.4007 - 3.89872i 
1.33223 - 1.19309i 
0.375057 - 0.670164i 

-0.146746 - 0.OO744629i 
-0.183868 x 10-2 + 0.539780 x 1O-3i 

0.286102 x 10-5 + 0.953674 x 1O-6 i 

1.24160 0.219440 x 10-2 

1.24168 0.257492 x 10-4 

1.24168 0.257492 x 10-4 

Xo = 2.5, Xl = 2.0, X2 = 2.25 
i Xi !(Xi) 

3 
4 
5 
6 

1.96059 
1.97056 
1.97044 
1.97044 

-0.611255 
0.748825 x 10-2 

-0.295639 X 10-4 
-0.259639 X 10-4 

• 

We used Maple to generate part (c) in Table 2.13. To do this, we defined I(x) and the 
initial approximations by 

>f:=x->16*x-4-40*x-3+5*x-2+20*x+6; 
>pO:=O.5; pl:=-O.5; p2:=O.O; 
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We evaluated the polynomial at the initial values 

>fO:=f(pO)j f1:=f(p1)j f2:=f(p2)j 

and computed c = 6, b = 10, a = 9, and P3 = -0.5555555558 + 0.59835l6452i using 
the Muller's method formulas: 

>c:=f2; 
>b:=«pO-p2)-2*(f1-f2)-(p1-p2)-}2*(fO-f2»/«pO-p2)*(p1-p2)*(pO-p1»; 
>a:=«p1-p2)*(fO-f2)-(pO-p2)*(f1-f2»/«pO-p2)*(p1-p2)*(pO-p1»; 
>p3:=p2-(2*c)/(b+(b/abs(b»*sqrt(b-2-4*a*c»j 

The value P3 was generated using complex arithmetic, as is the calculation 

>f3:=f(p3); 

which gives h = -29.40070112 - 3.898724738i. 
The actual values for the roots of the equation are 1.241677, 1.970446, and -0.356062 

±O.l62758i, which demonstrates the accuracy of the approximations from Muller's 
meiliod. _ 

Example 3 illustrates that Muller's method can approximate ilie roots of polynomi
als with a variety of starting values. In fact, Muller's method generally converges to the 
root of a polynomial for any initial approximation choice, although problems can be con
structed for which convergence will not occur. For example, suppose that for some i we 
have !(Xi) = !(xi+d = !(Xi+2) t= O. The quadratic equation then reduces to a nonzero 
constant function and never intersects the x-axis. This is not usually the case, however, and 
general-purpose software packages using Muller's method request only one initial approx
imation per root and will even supply this approximation as an option. 

E X ERe I S ESE T 2.6 

1. Find the approximations to within 10-4 to all the real zeros of the following polynomials using 
Newton's method. 

a. f(x)=x 3 -2x2 -5 

b. f(x) = x 3 + 3x2 - I 

c. f(x) = x 3 - X - I 

d. f(x)=x 4 +2x2 -x-3 

e. fex) = x 3 + 4.00lx2 + 4.002x + 1.101 

f. f(x) = x 5 - X4 + 2x 3 - 3x2 + X - 4 

2. Find approximations to within 10-5 to all the zeros of each of the following polynomials by 
first finding the real zeros using Newton's method and then reducing to polynomials of lower 
degree to determine any complex zeros. 
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a. I(x) = X4 + 5x3 - 9x2 - 85x - 136 

b. I(x) = x4 - 2x3 - 12x2 + 16x - 40 

c·/(x)=X4 +x3 +3x2+2x+2 

d. I(x) = x S + 11X4 - 21x3 - lOx2 - 21x - 5 

e. I(x) = 16x4 + 88x3 + 159x2 + 76x - 240 

f. I (x) = X4 - 4x2 - 3x + 5 

g.' I(x) = X4 - 2x3 - 4x2 + 4x + 4 

h. I(x) = X3 - 7x2 + 14x - 6 

3. Repeat Exercise 1 using Miiller's method. 

4. Repeat Exercise 2 using Miiller's method. 

S. Use Newton's method to find, within 10-3, the zeros and critical points of the following func
tions. Use this information to sketch the graph of I. 
a. I(x) = x 3 - 9x2 + 12 b. I(x) = X4 - 2x3 - 5x2 + 12x - 5 

6. I(x) = lOx 3 - 8.3x2 + 2.295x - 0.21141 = 0 has a root at x = 0.29. Use Newton's method 
with an initial approximation Xo = 0.28 to attempt to find this root. Explain what happens. 

7. Use Maple to find the exact roots of the polynomial I(x) = x 3 + 4x - 4. 

8. Use Maple to find the exact roots of the polynomial I(x) = x 3 - 2x - 5. 

9. Use each of the fol.lowing methods to find a solution in [0.1, 1] accurate to within 10-4 for 

a. Bisection method 

c. Secant method 

e. Miiller's method 

6OOx4 - 550x3 + 200x2 - 20x - 1 = O. 

b. Newton's method 

d. method of False Position 

10. 1\vo ladders crisscross an alley of width W. Each ladder reaches from the base of one wall to 
some point on the opposite wall. The ladders cross at a height H above the pavement. Find W 
given that the lengths of the ladders are XI = 20 ft and X2 = 30 ft, and that H = 8 ft. 

I ... w ~I 

11. A can in the shape of a right circular cylinder is to be constructed to contain 1000 em3 • The 
circular top and bottom of the can must have a radius of 0.25 cm more than the radius of the 
can so that the excess can be used to form a seal with the side. The sheet of material being 
formed into the side of the can must also be 0.25 cm longer than the circumference of the can 
so that a seal can be formed. Find, to within 10-4, the minimal amount of material needed to 
construct the can. 
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r + 0.25 

h 

12. In 1224, Leonardo of Pisa, better known as Fibonacci, answered a mathematical challenge of 
John of Palermo in the presence of Emperor Frederick II: find a root of the equation x 3 + 2X2 + 
lOx = 20. He first showed that the equation had no rational roots and no Euclidean irrational 

root-that is, no root in any of the forms a ± ~, .;a ± ../b, J a ± ~, or J.;a ± ../b, where 
a and b are rational numbers. He then approximated the only real root, probably using an 
algebraic technique of Omar Khayyam involving the intersection of a circle and a parabola. 
His answer was given in the base-60 number system as 

1 1 
1 +22 - +7 -

60 60 

2 1 
+42 -

60 

How accurate was his approximation? 

2.7 Survey of Methods and Software 

3 1 4 1 
+33 - +4 -

60 60 

5 1 
+40 -

60 

6 

In this chapter we have considered the problem of solving the equation I(x) = 0, where 
I is a given continuous function. All the methods begin with an initial approximation and 
generate a sequence th.at converges to a root of the equation, if the method is successful. 
If [a, b] is an interval on which I(a) and I(b) are of opposite sign, then the Bisection 
method and the method of False Position will converge. However, the convergence of these 
methods may be slow. Faster convergence is generally obtained using the Secant method 
or Newton's method. Good initial approximations are required for these methods, two for 
the Secant method and one for Newton's method, so the Bisection or the False Position 
method can be used as starter methods for the Secant or Newton's method. 

Muller's method will give rapid convergence without a particularly good initial ap
proximation. It is not quite as efficient as Newton's method; its order of convergence near 
a root is approximately C1. = 1.84, compared to the quadratic, C1. = 2, order of New
ton's method. However, it is better than the Secant method, whose order is approximately 
C1. = 1.62, and it has the added advantage of being able to approximate complex roots. 

Deflation is generally used with Muller's method once an approximate root of a poly
nomial has been determined. After an approximation to the root of the deflated equation 
has been determined, use either Muller's method or NeWton's method in the original poly-

. , 
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nomial with this root as the initial approximation. This procedure will ensure that the root 
being approximated is a solution to the true equation, not to the deflated equation. We 
recommended Milller's method for finding all the zeros of polynomials, real or complex. 
Milller's method can also be used for an arbitrary continuous function. 

Other high-order methods are available for determining the roots of polynomials. If 
this topic is of particular interest, we recommend that consideration be given to Laguerre's 
method, which gives cubic convergence and also approximates complex roots (see [Ho, 
pp. 176-179] for a complete discussion), the Jenkins-Traub method (see [JT]), and Brent's 
method (see [BreD. 

Another method of interest, Cauchy's method, is similar to Milller's method but avoids 
the failure problem of Milller's method when I(xi) = I(xi+l) = l(xi+2), for some i. For 
an interesting discussion of this method, as well as more detail on Milller's method, we 
recommend [YG, Sections 4.10,4.11, and 5.4]. 

Given a specified function I and a tolerance, an efficient program should produce an 
approximation to one or more solutions of f (x) = 0, each having an absolute or relative 
error within the tolerance, and the results should be generated in a reasonable amount 
of time. If the program cannot accomplish this task, it should at least give meaningful 
explanations of why success was not obtained and an indication of how to remedy the 
cause of failure. 

The IMSL FORTRAN subroutine ZANLY uses Milller's method with deflation to 
approximate a number of roots of I(x) = O. The routine ZBREN, due to R. P. Brent, 
uses a combination of linear interpolation, an inverse quadratic interpolation similar to 
Miiller's method, and the Bisection method. It requires specifying an interval [a, b] that 
contains a root. The IMSL C routine LzerosJcn and FORTRAN routine ZREAL are based 
on a variation of Milller's method and approximate zeros of a real function I when only 
poor initial approximations are available. Routines for finding zeros of polynomials are 
the C routine f...zeros_poly and FORTRAN routine ZPORC, which uses the Jenkins-Traub 
method for finding zeros of a real polynomial; ZPLRC, which uses Laguerre's method to 
find zeros of a real polynomial; and the C routine c...zeros_poly and FORTRAN routine 
ZPOCC, which use the Jenkins-Traub method to find zeros of a complex polynomial. 

The NAG C subroutine c05adc and the NAG FORTRAN subroutines C05ADF and 
C05AZF use a combination of the Bisection method, linear interpolation, and extrapolation 
to approximate a real zero of I(x) = 0 in the interval [a, b]. The subroutine C05AGF is 
similar to C05ADF but requires a single starting value instead of an interval and returns 
an interval containing a root on its own. The NAG FORTRAN subroutines C05AJF and 
C05AXF use a continuation method with a Secant iteration to approximate the real zero 
of a function. Also, NAG supplies subroutines C02AGF and C02AFF to approximate all 
zeros of a real polynomial or complex polynomial, respectively. Both subroutines use a 
modified Laguerre method to find the roots of a polynomial. 

The netlib FORTRAN subroutine fzero.f uses a combination of the Bisection and Se
cant method developed by T. J. Dekker to approximate a real zero of I(x) = 0 in the 
interval [a, b]. It requires specifying an interval [a, b] that contains a root and returns an 
interval with a width that is within a specified tolerance. The FORTRAN subroutine sdzro.f 
uses a combination of the bisection method, interpolation, and extrapolation to find a real 
zero of I(x) = 0 in a given interval [a, b]. The routines rpzero and cpzero can be used 
to approximate all zeros of a real polynomial or complex polynomial, respectively. Both 
methods use Newton's method for systems, which will be considered in Chapter 10. All 
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routines are given in single and doubl~ precision. These methods are available on the In
ternet from netlib at http;llwww.netlib.orgislatec/src. 

Within MATLAB, the function ROOTS is used to compute all the roots, both real 
and complex, of a polynomial. For an arbitrary function, FZERO computes a root near a 
specified initial approximation to within a specified tolerance. 

Maple has the procedure f sol ve to find roots of equations. For example, 

>fsolve(x-2 - x - 1, x); 

returns the numbers -.6180339887 and 1.618033989. You can also specify a particular 
variable and interval to search. For example, 

>fsolve(x-2 - x - i,x,i .. 2); 

returns only the number 1.618033989. The command fsolve uses a variety of specialized 
techniques that depend on the particular form of the equation or system of equations. 

Notice that in spite of the diversity of methods, the professionally written packages 
are based primarily on the methods and principles discussed in this chapter. You should be 
able to use these packages by reading the manuals accompanying the packages to better 
understand the parameters and the specifications of the results that are obtained. 

There are three books that we consider to be classics on the solution of nonlinear 
equations, those by Traub [Tr], by Ostrowski [Os], and by Householder [Ho]. In addition, 
the book by Brent [Bre] served as the basis for many of the currently used root-finding 
methods. 
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A census of the population of the United States is taken every 10 years. 

The foDowing table fists the population, in thonsands of people, from 

1940 to 199(t 

Year 1940 1950 1960 I 1970 1980 1990 

Population 132,165 151,326 179,323 203,302 226,542 249,633 
(in thousands) 

P(t) 

2 X 108 

• 
• 

• 
• 

• 
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In reviewing these data, we might ask whether they could be used to 

provide a reasonable estimate of the population, say, in 1965 or even in 

• the year 2010. Predictions of this type can be obtained by using a func

tion that fits the given data. This process is called interpolation and is the 

subject of this chapter. This population problem is considered through

out the chapter and in Exercises 24 of Section 3.1, 14 of Section 3.2, and 

24 of Section 3.4. 

One of the most useful and well-known classes of functions mapping the set of real 
numbers into itself is the class of algebraic polynomials, the set of functions of the form 

Pn(x) = anxn + an_lXn- 1 + .,. + alx + ao, 

where n is a nonnegative integer and ao, ... ,an are real constants. One reason for their 
importance is that they uniformly approximate continuous functions. Given any function, 
defined and continuous on a closed and bounded interval, there exists a polynomial that 
is as "close" to the given function as desired. This result is expressed precisely in the 
following theorem. (See Figure 3.1.) 
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(Weierstrass Approximation Theorem) 

y = f(x) + E 

" "..,;" Y = P(x) 
".." Y = f(x) 

,," ........ 
,/ y = f(x) - E 

b x 

Suppose that I is defined and continuous on [a, bJ. For each E > 0, there exists a polyno
mial P(x), with the property that 

I/(x) - P(x)1 < E, for all x in [a, b]. • 
The proof of this theorem can be found in most elementary texts on real analysis (see, 

for example, [Bart, pp. 165-172]). 
Another important reason for considering the class of polynomials in the approxima

tion of functions is that the derivative and indefinite integral of a polynomial are easy to 
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determine and are also polynomials. For these reasons, polynomials are often used for 
approximating continuous functions. 

The Taylor polynomials were introduced in the first section of the book, where they 
were described as one of the fundamental building blocks of numerical analysis. Given 
this prominence, you might assume that polynomial interpolation would make heavy use 
of these functions. However, this is not the case. The Taylor polynomials agree as closely 
as possible with a given function at a specific point, but they concentrate their accuracy 
near that point. A good interpolation polynomial needs to provide a relatively accurate 
approximation over an entire interval, and Taylor polynomials do not generally do this. For 
example, suppose we calculate the first six Taylor polynomials about Xo = 0 for f (x) = eX. 

Since the derivatives of f(x) are all eX, which evaluated at Xo = 0 gives 1, the Taylor 
polynomials are 

Po(x) = 1, P j (x)=I+x, 

The graphs of the polynomials are shown in Figure 3.2. (Notice that even for the 
higher-degree polynomials, the error becomes progressively worse as we move away from 
zero.) 

-1 

y 

20 

15 

10 

5 ~. 

: Y = Ps(x) 
• • 

.' y = Pix) 

... ___ .- y = Pj(x) 
.- --.. - ----------=-..r-'"'" ~~~-.:::.-~------.--- y = Po(x) 

1 2 3 x 

Although better approximations are obtained for f(x) = eX if bigher-degree Taylor 
polynomials are used, this is not true for all functions. Consider, as an extreme example, 

-, 
• 

r 
-,. 
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using Taylor polynomials of various degrees for f(x) = l/x expanded about Xo = I to 
approximate f(3) = ~. Since 

f(x) = x-I, f'ex) = _x-2, f"(x) = (-1)22. x-3, 

and, in general, 

the Taylor polynomials are 

To approximate f(3) = ~ by Pn (3) for increasing values of n, we obtain the values in 
Table 3.1 rather a dramatic failure! 

n 0 1 2 3 4 5 6 7 

Pn(3) I -1 3 -5 I I -21 43 -85 

Since the Taylor polynomials have the property that all the information used in the 
approximation is concentrated at the single point Xo, the type of difficulty that occurs here 
is quite common and limits Taylor polynomial approximation to the situation in which ap
proximations are needed only at points close to Xo. For ordinary computational purposes it 
is more efficient to use methods that include infOlmation at various points, which we con
sider in the remainder of this chapter. The primary use of Taylor polynomials in numerical 
analysis is not for approximation purposes but for the derivation of numerical techniques 
and error estimation. 

3.1 Interpolation and the Lagrange Polynomial 

Since the Taylor polynomials are not appropriate for interpolation, alternative methods are 
needed. In this section we find approximating polynomials that are detemuned simply by 
specifying certain points on the plane through which they must pass. 

The problem of detemuning a polynomial of degree one that passes through the dis
tinct points (xo, Yo) and (Xl, y}) is the same as approximating a function f for which 
f(xo) = Yo and f(xd = YI by means of a first-degree polynomial interpolating, or agree
ing with, the values of f at the given points. We first define the functions 

and then define 

X -XI 
Lo(x) = --

Xo - XI 
and 

X -Xo 
LI(x) = , 

Xl - Xo 
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Since 

we have 

P(Xo) = 1 . !(xo) + 0 . !(x!) = !(xo) = Yo 

and 

P(XI) = o· !(xo) + 1· !(XI) = !(x!) = YI. 

So P is the unique linear function passing through (xo, Yo) and (XI, YI). (See Figure 3.3.) 

Y 

Y == f<x) 

Yo == f(Xo) Y = P(x) 

x 

To generalize the concept of linear interpolation, consider the construction of a poly
nomial of degree at most n that passes through the n + 1 points 

(xo, !(xo», (XI, !(xd), ... ,(xn , !(xn )). 

(See Figure 3.4.) 

y 

y = f(x) 

y = P(x) 

x 
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In this case we need to construct, for each k = 0, 1, ... ,n, a function Ln,k(X) with 
the property that Ln,k (Xi) = ° when i =1= k and Ln,k (Xk) = 1. To satisfy Ln,k (Xi) = 0 for 
each i =1= k requires that the numerator of Ln,k (x) contains the telln 

(x - xo)(x - XI) ... (x - Xk_I)(X - Xk+l) ... (x - xn). 

To satisfy Ln,k(Xk) = 1, the denominator of Ln,k(X) must be equal to this term evaluated 
at x = Xk. Thus, 

(x - xo) ... (x - Xk-l)(X - xk+d ... (x - xn) 
Lnk~)= . 

, (Xk - xo) ... (Xk - Xk-l)(Xk - XH1) ... (Xk - xn) 

A sketch of the graph of a typical Ln,k is shown in Figure 3.5. 

1 

x 

The interpolating polynomial is easily described once the fOlln of Ln,k is known. This 
polynomial, called the nth Lagrange interpolating polynomial, is defined in the follow
ing theorem. 

If Xo, XI, ... ,Xn are n + 1 distinct numbers and f is a function whose values are given at 
these numbers, then a unique polynomial P (x) of degree at most n exists with 

f(xd = P(xd, for each k = 0, 1, ... ,n. 

This polynomial is given by 

n 

P(x) = f(xo)Ln,o(x) + ... + f(xn)Ln,n(x) = L f(Xk)Ln,k(X), (3.1) 
k=O 

where, for each k = 0, 1, ... , n, 

(3.2) 

• 

We will write Ln,k(X) simply as Lk(X) when there is no confusion as to its degree. 
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Using the numbers (or nodes) Xo = 2, XI = 2.5, and X2 = 4 to find the second interpolating 
polynomial for I(x) = l/x requires that we determine the coefficient polynomials Lo(x), 
LI (x), and L2(X). In nested form they are 

(x - 2.5)(x - 4) 
Lo(x) = (2 _ 2.5)(2 _ 4) = (x - 6.5)x + 10, 

L (x) _ (x - 2)(x - 4) (-4x + 24)x - 32 
1-(2.5-2)(2.5-4) 3 ' 

and 

(x - 2) (x - 2.5) (x - 4.5)x + 5 
L2(X) = (4 _ 2)(4 - 2.5) = 3 . 

Since I(xo) = 1(2) = 0.5, I(x)) = 1(2.5) = 0.4, and l(x2) = 1(4) = 0.25, we 
have 

2 

P(x) = L l(xk)Lk(X) 
k=O 

(-4x + 24)x - 32 (x - 4.5)x + 5 
= 0.5«x - 6.5)x + 10) + 0.4 3 + 0.25 3 

= (0.05x - 0.425)x + 1.15. 

An approximation to 1(3) = ~ (see Figure 3.6) is 

1(3) ~ P(3) = 0.325. 

y 

4 

3 

2 f 

1 
p 

1 2 3 4 5 x 

Compare this to Table 3.1, where no Taylor polynomial, expanded about Xo = 1, could 
be used to reasonably approximate 1(3) = t. • 



Theorem 3.3 

3.1 Interpolation and the Lagrange Polynomial 111 

We can use a CAS to construct an interpolating polynomial. For example, in Maple 
we use 

>interp(X,Y,x); 

where X is the list [xo, ... , xn], Y is the list [f(xo), ... , f(xn)], and x is the variable to be 
used. In this example we can generate the interpolating polynomial p = 0.05x2 - 0.425x + 
1.15 with the command 

>p:=interp([2,2.5,4], [0.5,0.4,0.25] ,x); 

To evaluate p(3) as an approximation to f(3) = j, enter 

>subs(x=3,p); 

which gives 0.325. 
The next step is to calculate a remainder term or bound for the error involved in ap

proximating a function by an interpolating polynomial. This is done in the following theo
rem. 

Suppose xo, Xl, ... , Xn are distinct numbers in the interval [a, b J and f E C n+I [a, b J. 
Then, for each X in [a, b J, a number ~ (x) in (a, b) exists with 

f(n+I)(~(X» 
f(x) = P(x) + (x - xo)(x - XI) ., . (X - xn ), (3.3) 

(n + I)! 

where P(x) is the interpolating polynomial given in Eq. (3.1). • 

Ploof Note first that if X = Xko for any k = 0,1, ... , n, then f(Xk) P(Xk), and 
choosing ~(Xk) arbitrarily in (a, b) yields Eq. (3.3). If x i= Xb for all k = 0, 1, ... ,n, 
define the function g for t in [a, b] by 

get) = f(t) - pet) _ [f(x) _ P(x)] (t - xo)(t - Xl) ... (t - Xn) 
(X - Xo)(X - Xl) ... (X - Xn) 

n (t - Xi) 
= f(t) - pet) - [f(x) - P(x)] n . 

i=O (X - Xi) 

Since f E Cn+l[a, b], and P E eOO[a, b], it follows that g E cn+1[a, b]. For t = Xb 

we have 

nn (Xk - Xi) 
g(xd = f(Xk) - P(Xk) - [f(x) - P(x)] = 0 - [f(x) - P(x)] ·0 = O. 

i=O (x - Xi) 

Moreover, 

O
n (x - X·) 

g(x) = f(x) - P(x) - [f(x) - P(x)] I = f(x) - P(x) - [f(x) - P(x)] = O. 
i=O (x - Xi) 

Thus, g E en+! [a, b], and g is zero at the n + 2 distinct numbers x, Xo, Xl, . " ,Xn . By the 
Generalized Rolle's Theorem, there exists a number ~ in (a, b) for which g(n+l)(.;) = O. 
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So 

fI (t-Xi) 

i=O (x - Xi) 
• 

I=~ 

(3.4) 

Since P(x) is a polynomial of degree at most n, the (n + l)st derivative, p(n+l) (x), is 
identically zero. Also, 07=o[(t - Xi )/(x - Xi)] is a polynomial of degree (n + I), so 

nn (t - x·) 1 
___ 1_ = nn t n+1 + (lower-degree tenns in t), 

i=O (x - Xi) i=O(x - Xi) 

and 

dn+l n (/ _ Xi) (n + I)! 
dtn+ 1 n (x - x·) = nn_ (x - x·)' 

1=0 1 1-0 1 

Equation (3.4) now becomes 

o = l(n+I)(~) _ 0 _ [f(x) _ P(x)] n(n + 1)! , 
ni=O(x - Xi) 

and, upon solving for f (x), we have 

l(n+I)(~) n 

f(x) = P(x) + (n + 1)! n (x - Xi). • • • 

The error fOIIllula in Theorem 3.3 is an important theoretical result because Lagrange 
polynomials are used extensively for deriving numerical differentiation and integration 
methods. Error bounds for these techniques are obtained from the Lagrange error fOimula. 

Note that the error fonn for the Lagrange polynomial is quite similar to that for the 
Taylor polynomial. The nth Taylor polynomial about Xo concentrates all the known infor
mation at Xo and has an error term of the form 

f(n+I)(~(x» 
-'...-_-.:.:.....:......c.c.. (x - X ) n + I 

(n + I)! o· 

The Lagrange polynomial of degree n uses infOIIllation at the distinct numbers Xo, XI, 

... ,Xn and, in place of (x - xo)n, its error fOimula uses a product of the n + 1 terms 
(x - xo), (x - XI), ... , (x - xn): 

I(n+l)(~(x» 
en + 1)! (x - xo)(x - xd ... (x - xn)· 

The specific use of this error fonnula is restricted to those functions whose derivatives have 
known bounds. 

Suppose a table is to be prepared for the function I(x) = eX, for x in [0, 1]. Assume the 
number of decimal places to be given per entry is d :: 8 and that the difference between 
adjacent x-values, the step size, is h. What should h be for linear interpolation (that is, the 
Lagrange polynomial of degree 1) to give an absolute error of at most 10-6? 
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Let XO, Xl, ... be the numbers at which 1 is evaluated, X be in [0,1], and suppose j 
satisfies Xj :::: X :::: Xj+!' Eq. (3.3) implies that the error in linear interpolation is 

If(x) - P(x)1 = 

Since the step size is h, it follows thatxj = jh, Xj+l = (j + l)h and 

I 1(2) (~) I 
I/(x) - P(x)1 :::: 2! I(x - jh)(x - (j + l)h)l· 

Hence, 

1 
I/(x) - P(x)1 < - max e~ max I(x - jh)(x - (j + l)h)1 

2 ~e[O.ll Xj<X<X}+l 

:::: ~e max I(x - jh)(x - (j + l)h)l. 
2 Xj<X<Xj+l 

By considering g(x) = (x - jh)(x - (j + l)h), for jh :::: x < (j + l)h, and using 
the Extreme Value Theorem (see Exercise 28), we find that 

max I(x - jh)(x - (j + l)h)1 = max Ig(x)1 = g 
Xj:5X:5Xj+l Xj<X<Xj+l 

Consequently, the error in linear interpolation is bounded by 

eh2 

I/(x) - P(x)l:::: 8 ' 

and it is sufficient for h to be chosen so that 

1 
j + - h 

2 

eh
2 

< 10-6 which implies that h < 1.72 X 10-3 • 8 - , 

Since n = (1 - 0)/ h must be an integer, one logical choice for the step size is h = 0.001. 

• 
The next example illustrates interpolation for a situation when the error portion of 

Eq. (3.3) cannot be used. 

Table 3.2 lists values of a function at various points. The approximations to 1 (l.5) obtained 
by various Lagrange polynomials will be compared. 

x f(x) 

1.0 0.7651977 
1.3 0.6200860 
1.6 0.4554022 
1.9 0.2818186 
2.2 0.1103623 



114 C HAP T E R 3 • Interpolation and Polynomial Approximation 

Since 1.5 is between 1.3 and 1.6, the most appropriate linear polynomial uses Xo = 1.3 
and Xl = 1.6. The value of the interpolating polynomial at 1.5 is 

P)(1.5) = (1.5 - 1.6) (0.6200860) + (1.5 - 1.3) (0.4554022) = 0.5102968. 
(1.3 - 1.6) (1.6 - 1.3) 

Two polynomials of degree 2 can reasonably be used, one by letting Xo = 1.3, XI = 1.6, 
and X2 = 1.9, which gives 

P2(1.5) = (1.5 - 1.6)(1.5 - 1.9) (0.6200860) + (1.5 - 1.3)(1.5 - 1.9) (0.4554022) 
(1.3 - 1.6)(1.3 - 1.9) (1.6 - 1.3)(1.6 - 1.9) 

+ (1.5 - 1.3)(1.5 - 1.6) (0.2818186) 
(1.9 - 1.3)(1.9 - 1.6) 

= 0.5112857, 

and the other by letting Xo = 1.0, XI = 1.3, and X2 = 1.6, which gives 

~ 

P2(1.5) = 0.5124715. 

In the third-degree case, there are also two reasonable choices for the polynomial. One 
is with Xo = 1.3, XI = 1.6, X2 = 1.9, and X3 = 2.2, which gives 

P3(1.5) = 0.5118302. 

The other is obtained by letting Xo = 1.0, Xl = 1.3, X2 = 1.6, and X3 = 1.9, which gives 

~ 

P3(1.5) = 0.5118127. 

The fourth-degree Lagrange polynomial uses all the entries in the table. Withxo = 1.0, 
Xl = 1.3, X2 = 1.6, X3 = 1.9, and X4 = 2.2, the approximation is 

P4 (1.5) = 0.5118200. 

Since P3(1.5), P3(1.5), and P4 (1.5) all agree to within 2 x 10-5 units, we expect 
this degree of accuracy for these approximations. We also expect P4(1.5) to be the most 
accurate approximation, since it uses more of the given data. 

The function we are approximating is the Bessel function of the first kind of order 
zero, whose value at 1.5 is known to be 0.5118277. Therefore, the true accuracies of the 
approximations are as follows: 

IPl(1.5) - 1(1.5)1 ;:::; 1.53 x 10-3
, 

IP2(1.5) - 1(1.5)1;:::; 5.42 x 10-4
, 

IP2 (1.5) - 1(1.5)1;:::; 6.44 x 10-4
, 

IP3(1.5) - 1(1.5)1;:::; 2.5 x 10-6
, 

IP3(1.5) - 1(1.5)1;:::; 1.50 x 10-5, 

IP4 (1.5) - 1(1.5)1;:::; 7.7 x 10-6• 

, 
• 

-• 
r 
, 
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Although P3 (1.5) is the most accurate approximation, if we had no know ledge of the 
actual value of 1(1.5), we would accept P4 (1.5) as the best approximation since it includes 
the most data about the function. The Lagrange error telIn derived in Theorem 3.3 cannot 
be applied here since no knowledge of the fourth derivative of I is available. Unfortunately, 
this is generally the case. • 

A practical difficulty with Lagrange interpolation is that since the error term is difficult 
to apply, the degree of the polynomial needed for the desired accuracy is generally not 
known until computations are determined. The usual practice is to compute the results 
given from various polynomials until appropriate agreement is obtained, as was done in 
the previous example. However, the work done in calculating the approximation by the 
second polynomial does not lessen the work needed to calculate the third approximation; 
nor is the fourth approximation easier to obtain once the third approximation is known, 
and so on. We will now derive these approximating polynomials in a manner that uses the 
previous calculations to greater advantage. 

Let I be a function defined at Xo, XI , Xz, . . . ,Xn , and suppose that m I , mz, . .. , m k are k 
distinct integers, with 0 < mi < n for each i. The Lagrange polynomial that agrees with 
I(x) at the k points xml' x m2 ' .. · ,xmk is denoted Pml ,m2, ... ,mk(x), • 

If Xo = 1, XI = 2, Xz = 3, X3 = 4, X4 = 6, and I (x) = eX, then PI ,2,4 (x) is the polynomial 
that agrees with I(x) at XI = 2, X2 = 3, and X4 = 6; that is, 

(x - 3)(x - 6) z (x - 2)(x - 6) 3 (X - 2)(x - 3) 6 

P1,2,4(X) = (2 _ 3)(2 _ 6) e + (3 _ 2)(3 _ 6) e + (6 _ 2)(6 _ 3) e . • 
The next result describes a method for recursively generating Lagrange polynomial 

approximations. 

Let I be defined at Xo, XI, ... , Xb and let X j and Xi be two distinct numbers in this set. 
Then 

P(X) = (x -Xj)PO,I, ... ,j-I.j+I, .. ,k(X) - (x -Xi)PO,I, .. ,i-l,i+I,. .. ,k(X) 

(Xi - Xj) 

describes the kth Lagrange polynomial that interpolates I at the k+ 1 points Xo, XI, .... Xk . 

• 
A 

Proof Foreaseofnotation,let Q = PO,I, .. ,i-l,i+I, ... ,k and Q = PO,], ... ,j-IJ+l.,k. Since 
A 

Q (X) and Q (x) are polynomials of degree k - 1 or less, P (x) is of degree at most k. If 
A o < r < k and r =F i, j, then Q(xr) = Q(xr) = I(xr), so 

A 

P(x
r
) = (Xr - Xj)Q(xr ) - (x, - Xi)Q(xr ) 

Xi - Xj 

A 

Moreover, since Q(Xi) = I(x;), we have 



116 

'Jable 33 

EXAMPLE 5 

C HAP T E R 3 • Interpolation and Polynomial Approximation 

Similarly, since Q(Xj) = I(xj), we have P(Xj) = I(xj). But, by definition, 
PO, I, ... ,k(X) is the unique polynomial of degree at most k tbat agrees with I at Xo, XI, .. , ,Xk. 
Thus, P = po. I .... • k' • • • 

Theorem 3.5 implies that the interpolating polynomials can be generated recursively. 
For example, they can be generated in the manner shown in Table 3.3, where each row is 
completed before the succeeding rows are begun. 

Po = Qoo • 

PI = QI.O 

P2 = Q20 • 

P 3 = Q3.0 

P4 = Q4.0 

PO.I = QI,I 

Pl,2 = Q2,1 

P2.3 = Q3.1 

P3.4 = Q4.1 

Po -Q 0.1,2 - 2.2 

P -Q 1,2,3 - 3,2 Po - Q 0,1,2,3 - 3,3 

P, -Q 2,3,4 - 4,2 P -Q 1,2,3,4 - 4,3 PO.1,2,3,4 = Q4.4 

This procedure is called Neville's method .. The P notation used in Table 3.3 is cum
bersome because of the number of subscripts used to represent the entries. Note, however, 
that as an array is being constructed, 'only two subscripts are needed. Proceeding down the 
table corresponds to using consecutive points Xi with larger i, and proceeding to the right 
corresponds to increasing the degree of the interpolating polynomial. Since the points ap
pear consecutively in each entry, we need to describe only a starting point and the number 
of additional points used in constructing the approximation. 

To avoid the mUltiple subscripts, let Qi,j(X), for 0 < j < i, denote the interpolating 
polynomial of degree j on the (j + 1) numbers Xi _ j, Xi _ j+ J, .•• ,Xi -I, Xi; that is, 

Q. . =~. .. . I . I' I,} I-}.l-}+ , ... ,1- ,1' 

Using this notation for Neville's method provides the Q notation array in Table 3.3. 

Values of various interpolating polynomials at X = 1.5 were obtained in Example 3 using 
the data shown in the first two columns of Table 3.4. In this example, we approximate 
1(1.5) using the result in Theorem 3.5. If xo = 1.0, XI =: 1.3, X2 = 1.6, X3 =: 1.9, and 
X4 =: 2.2, then Qo,o =' 1(1.0), QI,O = 1(1.3), Q2,O = 1(1.6), Q3,O = 1(1.9), and 
Q4,O = 1(2.2). These are the five polynomials of degree zero (constants) that approximate 
1(1.5). 

Calculating the first-degree approximation QJ,J (1.5) gives 

QJ,J (1.5) =: (x - xo) QI,O - (x - XI) Qo,o 

Similarly, 

XI - Xo 

(1.5 - 1.0)Ql,O - (1.5 - 1.3)Qo,o -- 1.3 - 1.0 

= 0.5(0.6200860) - 0.2(0.7651977) = 0.5233449. 
0.3 

5 - (1.5 - 1.3)(0.4554022) - (1.5 - 1.6)(0.600860) _ 0 5102968 
Q2,1(1. ) - 1.6-1.3 - . , 

Q3,1 (1.5) = 0.5132634, and Q4,1 (1.5) = 0.5104270. 
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The best linear approximation is expected to be Q2.1 since 1.5 is between Xl = 1.3 
and X2 = 1.6. 

In a similar manner, approximations using higher-degree polynomials are given by 

(1.5 - 1.0)(0.5102968) - (1.5 - 1.6)(0.5233449) 
Q2.2(l.5) = = 0.5124715, 

1.6 - 1.0 

Q3,z(1.5) = 0.5112857, and Q4z(1.5) = 0.5137361. 

The higher-degree approximations are generated in a similar manner and are shown in 
Table 3.4. • 

1.0 0.7651977 
1.3 0.6200860 0.5233449 
1.6 0.4554022 0.5102968 0.5124715 
1.9 0.2818186 0.5132634 0.5112857 0.5118127 
2.2 0.1103623 0.5104270 0.5137361 0.5118302 0.5118200 

If the latest approximation, Q4,4, is not sufficiently accurate, another node, Xs, can be 
selected, and another row added to the table: 

Xs Qs,o QS.I Qs.z QS,3 QS,4 Qs,s· 

Then Q4,4, QS.4, and Qs,s can be compared to determine further accuracy. 
In our example, the function is the Bessel function of the first kind of order zero, whose 

value at 2.5 is -0.0483838, and a new row of approximations to f(1.5) is 

2.5 - 0.0483838 0.4807699 0.5301984 0.5119070 0.5118430 0,5118277. 

The final new entry, 0.5118277, is correct to seven decimal places. 

Table 3.5 lists the values of f (x) = In x accurate to the places given. 

• 
I 

o 
1 
2 

xI 

2.0 
2.2 
2.3 

Inxi 

0.6931 
0.7885 
0.8329 

We will use Neville's method to approximate f(2.1) = In2.1. Completing the table 
gives the entries in Table 3.6. 

• 
QiO Qil Qi2 I Xi X - Xi 

0 2.0 0.1 0.6931 
1 2.2 -0.1 0.7885 0.7410 
2 2.3 -0.2 0.8329 0.7441 0.7420 
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Thus, P2(2.1) = QZ2 = 0.7420. Since f(2.1) = In2.1 = 0.7419 to four decimal 
places, the absolute error is 

If(2.1) - P2(2.1)1 = 10,7419 - 0.74201 

= 10-4 . 

However, f'(x) = ljx, fl/(x) = -ljx2, and fl/I(X) - 2jx3, so the Lagrange error 
formula (3.3) gives an error bound 

If (2. 1) - P2 (2.1) I = 
1'" (~) 

3! (x - xo)(x - x,)(x - X2) 

1 - -5 
3~3 (0.1)(-0.1)(-0.2) < 8.3 x 10 . 

Notice that the actual error, 10-4 , exceeds the error bound, 8.3 x 10-5 . This apparent 
contradiction is a consequence of finite-digit computations. We used four-digit approxima
tions, and the Lagrange error formula (3.3) assumes infinite-digit arithmetic. This caused 
our actual errors to exceed the theoretical error estimate. _ 

Algorithm 3.1 constructs the entries in Neville's method by rows. 

Neville's Iterated Interpolation 

To evaluate the interpolating polynomial P on the n + 1 distinct numbers Xo, ... ,Xn at the 
number x for the function f: 

INPUT numbers x, Xo, x" ... , Xn ; values f(xo), f(xd, ... , f(x n ) as the first column 
Qo.o, Q,.o, ... , Qn.O of Q. 

OUTPUT the table Q with P(x) = Qn.n. 

Step 1 For i = l, 2, ... , n 
for}=1,2 .... ,i 

(x - Xi-j)Qi.j-l - (x - Xi)Qi-l.j-l 
set Qi.j = . 

Step 2 OUTPUT (Q); 
STOP. 

Xi - Xi-j 

• 

-
The algorithm can be modified to allow for the addition of new interpolating nodes. 

For example. the inequality 

can be used as a stopping criterion, where E is a prescribed error tolerance. If the inequal
ity is true, Qi.i is a reasonable approximation to f(x). If the inequality is false, a new 
interpolation point, Xi+b is added. 
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E X ERe I 5 ESE T 3.1 

1. For the given functions f(x), let Xo = 0, XI = 0.6, and Xz = 0.9. Construct interpolation 
polynomials of degree at most one and at most two to approximate f(0.45). and find the 
actual error. 

a. f(x) = cosx b. f(x)=v'I+x 

c. f(x) = In(x + 1) d. f(x) = tan x 

2. Use Theorem 3.3 to find an error bound for the approximations in Exercise I. 

3. Use appropriate Lagrange interpolating polynomials of degrees one, two, and three to approx
imate each of the following: 

a. f(8.4) if f(8.1) = 16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515, f(8.7) 
18.82091 

b. f (-D if f(-0.75) = -0.07181250, f(-0.5) = -0.02475000, f(-0.25) 
0.33493750, f(O) = 1.10100000 

c. f(0.25) if f(O.1) = 0.62049958, f(0.2) = -0.28398668, f(0.3) 0.00660095, 
f(O.4) = 0.24842440 

d. f(0.9) if 1(0.6) = -0.17694460, 1(0.7) = 0.01375227, 1(0.8) 
f(1.0) = 0.65809197 

4. Use Neville's method to obtain the approximations for Exercise 3. 

0.22363362, 

5. Use Neville's method to approximate v'3 with the function f (x) = 3' and the values Xo = -2, 
XI = -l,xz =0,X3 = l,andx4 =2. 

6. Use Neville's method to approximate v'3 with the function f(x) = Fx and the values Xo = 0, 
XI = 1, Xz = 2, X3 = 4, and X4 = 5. Compare the accuracy with that of Exercise 5. 

7. The data for Exercise 3 were generated using the following functions. Use the error formula 
to find a bound for the error, and compare the bound to the actual error for the cases n = I and 
n = 2. 

a. f(x) = X Inx 

b. f(x) = x 3 + 4.001xZ + 4.002x + 1.101 

c. f(x) = xcosx - 2xZ + 3x - 1 

d. f(x) = sin (eX - 2) 

8. Let I(x) = v'x - x 2 and Pz(x) be the interpolation polynomial on Xo = 0, Xl and Xz = I. 
Find the largest value of Xl in (0,1) for which f(0.5) - Pz(O.5) = -0.25. 

9. Let P3 (x) be the interpolating polynomial for the data (0, 0), (0.5, y), (1,3), and (2,2). Find 
y if the coefficient of x3 in P3 (x) is 6. 

10. Use the Lagrange interpolating polynomial of degree three or less and four-digit chopping 
arithmetic to approximate cosO.750 using the following values. Find an error bound for the 
approximation. 

cos 0.698 = 0.7661 cos 0.733 = 0.7432 cos 0.768 = 0.7193 cos 0.803 = 0.6946 

The actual value of cos 0.750 is 0.7317 (to four decimal places). Explain the discrepancy 
between the actual error and the error bound. 

11. Use the following values and four-digit rounding arithmetic to construct a third Lagrange poly
nomial approximation to 1(1.09). The function being approximated is lex) = 10glO(tanx). 
Use this knowledge to find a bound for the error in the approximation. 

f(1.00) = 0.1924 f(1.05) = 0.2414 f(1.10) = 0.2933 l(1.15) = 0.3492 
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12. Repeat Exercise 11 using Maple and ten-digit rounding arithmetic. 

13. Neville's method is used to approximate f(O.5), giving the following table. 

Xo =0 
XI = 004 
X2 = 0.7 

POI = 3.5 
P12 

D 27 
rOl2 = 7" 

Determine P2 = f(0.7). 

14. Neville's method is used to approximate f(OA), giving the following table. 

Xo =0 
XI = 0.25 
X2 = 0.5 
X3 = 0.75 

Determine P2 = f(0.5). 

Po = 1 
PI = 2 
P2 

P3 = 8 

POI = 2.6 
PI2 
P23 = 204 

POl2 
PI23 = 2.96 P0123 = 3.016 

15. Construct the Lagrange interpolating polynomials for the following functions, and find a bound 
for the absolute error on the interval [xo, xn]. 

a. f(x) = e2x cos3x, Xo = 0, Xl = 0.3, X2 = 0.6, n = 2 

b. f(x) = sin(lnx), Xo = 2.0, XI = 204, X2 = 2.6, n = 2 

c. f(x) = lnx, Xo = I, XI = 1.1, X2 = 1.3, X3 = lA, n ::;:: 3 

d. f(x) = cos X + sinx, Xo = 0, XI ::;:: 0.25, X2 = 0.5, X3 = 1.0, n = 3 

16. Let f(x) = eX, for 0::: X < 2. 

a. Approximate f(0.25) using linear interpolation with Xo = 0 and XI = 0.5. 

b. Approximate f(0.75) using linear inte.tpolation with Xo == 0.5 and XI = 1. 

c. Approximate f(0.25) and f(0.75) by using the second interpolating polynomial with 
Xo = 0, XI = 1. and X2 = 2. 

d. Which approximations are better and why? 

17. Suppose you need to construct eight-decimal-place tables for the common, or base-10, loga
rithm function from x == 1 to X = 10 in such a way that linear interpolation is accurate to 
within 10-6 • Determine a bound for the step size for this table. What choice of step size would 
you make to ensure that x = 10 is included in the table? 

18. Suppose Xj = j, for j = 0, 1,2,3 and it is known that 

PO,I(X) = X + 1, PI,2(X) = 3x - I, and P I,2,3(1.5) = 4. 

Find PO. I .2.3(1.5). 

19. Suppose X j = j, for j = 0, 1, 2, 3 and it is known that 

PO. I (x) = 2x + 1, PO.2(x) = X + 1, and P1.2.3(2.5) = 3. 

Find PO•I•2,3(2.5). 

20. Neville's Algorithm is used to approximate f(O) using f( -2), f( -1), f(I), and f(2). Sup
pose f(-I) was overstated by 2 and f(l) was understated by 3. Determine the error in the 
original calculation of the value of the interpolating polynomial to approximate f (0). 

21. Construct a sequence of interpolating values Yn to /(1 + v'IO), where f(x) = (I + X2)-1 for 
-5 < X < 5, as follows: For each n = 1,2, ... ,10, let h = lOin and Yn = Pn(l + v'IO), 
where Pn(x) is the interpolating polynomial for f(x) at the nodes xanl, xinl, ... ,x~n) and 
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xj") = -5 + jh, for each j = 0, 1,2, ... ,n. Does the sequence {Yn} appear to converge to 

1(1 + -vItO)? 

Inverse Interpolation Suppose I E Cl[a, b], I'(X) i- 0 on [a, b] and I has one zero 
p in [a, b]. Let xo, ... ,xn, be n + I distinct numbers in [a, b] with I(Xk) = Yk> for each 
k = 0, I, ... ,n. To approximate p construct the interpolating polynomial of degree n on the 
nodes Yo, ... ,Yn for I-I. Since Yk = I(Xk) and 0 = I(p), it follows that I-I (Yk) = Xk 
and p = I-I (0). Using iterated interpolation to approximate I-I (0) is called iterated inverse 
interpolation. 

22. Use iterated inverse interpolation to find an approximation to the solution of x - e-X = 0, 
using the data 

x 0.3 Q4 Q5 Q6 

e-X 0.740818 0.670320 0.606531 0.548812 

23. Construct an algorithm that can be used for inverse interpolation. 

24. a. The introduction to this chapter included a table listing the population of the United 
S~tes from 1940 to 1990. Use Lagrange interpolation to approximate the population in 
the years 1930, 1965, and 2010.· 

b. The population in 1930 was approximately 123,203,000. How accurate do you think your 
1965 and 2010 figures are? 

25. It is suspected that the high amounts of tannin in mature oak leaves inhibit the growth of 
the winter moth (Operophtera bromata L., Geometridae) larvae that extensively damage these 
trees in certain years. The following table lists the average weight of two samples of larvae at 
times in the first 28 days after birth. The first sample was reared on young oak leaves, whereas 
the second sample was reared on mature leaves from the same tree. 

a. Use Lagrange interpolation to approximate the average weight curve for each sample. 

b. Find an approximate maximum average weight for each sample by determining the max
imum of the interpolating polynomial. 

Day 0 6 10 13 17 20 28 

Sample I average weight (mg) 6.67 17.33 42.67 37.33 30.10 29.31 28.74 
Sample 2 average weight (mg) 6.67 16.11 18.89 15.00 10.56 9.44 8.89 

26. In Exercise 24 of Section 1.1 a Maclaurin series was integrated to approximate erf(1), where 
erf(x) is the normal distribution error function defined by 

a. Use the Maclaurin series to construct a table for erf(x) that is accurate to within 10-4 for 
erf(x;), where x; = 0.2i, for i = 0, I, ... ,5. 

b. Use both linear interpolation and quadratic interpolation to obtain an approximation to 
erf( ~). Which approach seems most feasible? 

27. Prove Theorem 1.14 by following the procedure in the proof of Theorem 3.3. [Hint: Let 

(t - xo)n+1 
get) = I(t) - pet) - [/(x) - P(x)] . ( +1 ' 

X - XO)n 

where P is the nth Taylor polynomial, and use Theorem 1.12.] 
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28. Show that max 
Xj<x.:sXj_H 

Ig(x)1 = h2/4, where g(x) = (x - jh)(x - (j + l)h). 

29. The Bernstein polynomial of degree n for I E e[O, 1] is given by 

where G) denotes n!/ k! (n - k)!. These polynomials can be used in a constructive proof of 
the Weierstrass Approximation Theorem 3.1 (see [Bart]) since lim Bn(x) = I(x), for each 

n->oo 
x E [0, I]. 

a. Find B, (x) for the functions 
• I(x) = x 

.. 
I(x) = I I. II. 

b. Show that for each k .::: n, 

n-l k n -- • 
k-l n k 

c. Use part (b) and the fact, from (ii) in part (a), that 

n 

I=L 
k=O 

to show that, for I (x) = x 2
, 

Bn(x) = 
n-l 

n 

for each n, 

I 
x 2 + -x. 

n 

d. Use part (c) to estimate the value of n necessary for IBn (x) - x 2 < 10-6 to hold for all 
x in [0, 1]. 

3.2 Divided Differences 

Iterated interpolation was used in the previous section to generate successively higher
degree polynomial approximations at a specific point. Divided-difference methods intro
duced in this section are used to successively generate the polynomials themselves. Our 
treatment of divided-difference methods will be brief since the results in this section will 
not be used extensively in subsequent material. Most older texts on numerical analysis have 
extensive treatments of divided-difference methods. If a more comprehensive treatment is 
needed, the b?ok by Hildebrand [Hild] is a particularly good reference. 

Suppose that Pn(x) is the nth Lagrange polynomial that agrees with the function 
f at the distinct numbers Xo, x I, ... , Xn . The divided differences of f with respect to 
XO, Xl, . .. ,Xn are used to express Pn (X) in the fmm 

Pn(x) = ao + al (x - Xo) + a2(X - Xo)(X - XI) + ., . 

+ an(x - Xo)(X - XI)'" (x - Xn-I), 

for appropriate constants ao, a I, . .. ,an' 

(3.5) 
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To detelluine the first of these constants, ao, note that if Pn (x) is written in the fOIm 
of Eq. (3.5), then evaluating Pn (x) at Xo leaves only the constant tenll ao; that is, 

ao = Pn (xo) = f(xo). 

Similarly, when P (x) is evaluated at XI, the only nonzero teIlllS in the evaluation of 
Pn (XI) are the constant and linear teIms, 

so 

f(xd - f(xo) 
• (3.6) 

XI - Xo 

We now introduce the divided-difference notation, which is related to Aitken's ~ 2 notation 
used in Section 2.5. The zeroth divided difference of the function f with respect to Xi, 
denoted f[xd, is simply the value of f at Xi: 

(3.7) 

The remaining divided differences are defined inductively; the first divided difference of 
f with respect to Xi and Xi+! is denoted f[Xi' Xi+!l and is defined as 

(3.8) 

The second divided difference, f[Xi' Xi+l, Xi+2], is defined as 

f[ ] 
f[Xi+I,Xi+2]-f[Xi,Xi+d 

Xi, Xi+l, Xx +2 = . 
Xi+2 - Xi 

Similarly, after the (k - l)st divided differences, 

have been deteIm..ined, the kth divided difference relative to Xi, Xi+l, Xi+2, ... ,Xi+k is 
given by 

f[ 
f[Xi+I' Xi+2, ... ,Xi+k] - f[Xi, Xi+l, ... ,Xi+k-d 

Xi, Xi + I, ... ,Xi +k-I, Xi +k] = . 
X'-I-k - X· , . , 

(3.9) 

With this notation, Eq. (3.6) can be reexpressed as al = f[xo, xd, and the interpolating 
polynomial in Eq. (3.5) is 

Pn(x) = f[xo] + f[xo, xd(x - xo) + a2(x - xo)(x - XI) 

+ ... + an (x - xo)(x - xd ... (x - Xn-I)· 

As might be expected from the evaluation of ao and aI, the required constants are 
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for each k = 0,1, .. , ,n. So Pn(x) can be rewritten as (see [Hild, pp. 43-47]) 

n 

Pn(x) = f[xol + L f[xo, XI, '" ,Xk](X - xo)'" (x - Xk-l)' (3.10) 
k=1 

The value of f[xo, Xl, ... ,xd is independent of the order of the numbers xo, Xl, ... ,Xb 

as is shown in Exercise 17. This equation is known as Newton's interpolatory divided
difference formula. The generation of the divided differences is outlined in Table 3.7. Two 
fourth and one fifth difference could also be determined from these data. 

First 
divided differences 

Second 
divided differences 

Third 
divided differences 

Newton's interpolatory divided-difference formula can be implemented using Algo
rithm 3.2. The form of the output can be modified to produce all the divided differences, 
as done in Example 1. 

Newton's Interpolatory Divided-Difference 

To obtain the divided-difference coefficients of the interpolatory polynomial P on the (n + 
1) distinct numbers xo, Xl, ... ,Xn for the function f: 

INPUT numbers xo, XI, •.. ,Xn; values !(xo), !(x}), ... ,!(xn ) as Fo,o, F},o, ... , Fn,o. 

OUTPUT the numbers Fo.o, FI,l, ... , Fn .n where 

n i-I 

P(x) = L Fi,i n (x - Xj). 

i=O j=O 



EXAMPLE 1 

Table 3.8 

Theorem 3.6 

3.2 Divided Differences 

Step 1 For i = I, 2, . . . , n 
For j = 1, 2, ... , i 

Fi.j - l - Fi-l,j-l 
set Fi•j = . 

Xi - Xi-j 

Step 2 OUTPUT (Fo.o, FI,1, ... , Fn,n); (Fi.i is I[xo, xl, ... , Xi ].) 
STOP. 
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-
In Example 3 of Section 3.1, various interpolating polynomials were used to approximate 
1(1.5), using the data in the first three columns of Table 3.8. The remaining entries of 
Table 3.8 contain divided differences computed using Algorithm 3.2. 

The coefficients of the Newton forward divided-difference form of the interpolatory 
polynomial are along the diagonal in the table. The polynomial is 

P4(X) = 0.7651977 - 0.4837057(x - 1.0) - 0.1087339(x - 1.0)(x - 1.3) 

+ 0.0658784(x - 1.0)(x - l.3)(x - 1.6) 

+ 0.OOI8251(x - 1.0)(x - 1.3)(x - 1.6)(x - 1.9). 

Notice that the value P4 (1.5) = 0.5118200 agrees with the result in Section 3.1, 
Example 3, as it must because the polynomials are the same. -

• 
I 

0 

I 

2 

3 

4 

x-l ![Xj] ![Xj-l, x;] ![Xj-2, Xj-l, x;] ![Xi-3, ... ,x;] 

1.0 0.7651977 
-0.4837057 

1.3 0.6200860 -0.1087339 
-0.5489460 0.0658784 

1.6 0.4554022 -0.0494433 
-0.5786120 0.0680685 

1.9 0.2818186 0.0118183 
-0.5715210 

2.2 0.1103623 

The Mean Value Theorem applied to Eq. (3.8) when i = 0, 

f[xo, xtl = I(XI) - I(xo), 
Xl - Xo 

f[Xi-4, ... ,x;] 

0.0018251 

implies that when f' exists, I[xo, xd = I' (~) for some number ~ between Xo and Xl. The 
following theorem generalizes this result. 

Suppose that I E Cn[a, b] and xo, Xl, ... , xn are distinct numbers in [a, b]. Then a num
ber ~ exists in (a, b) with 

-
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Prool Let 

g(X) = f(x) - Pn(X). 

Since f (Xi) = Pn (Xi), for each i = 0, 1, ... , n, the function g has n + 1 distinct zeros 
in [a, bJ. The Generalized Rolle's Theorem implies that a number ~ in (a, b) exists with 
g(n)(~) = 0, so 

Since Pn (x) is a polynomial of degree n whose leading coefficient is f[xo, xl, ... , Xn], 

for all values of x. As a consequence, 

f(n) (~) 
f[XO,Xl, ... ,Xn] = . 

n! • • • 

Newton's interpolatory divided-difference formula can be expressed in a simplified 
fo·nn'"u when xo, Xl, ... , Xn are arranged consecutively with equal spacing. In this case, we 
introduce the notation h = Xi+l - Xi, for each i = 0, 1, ... , n - 1 and let X = Xo + sh. 
Then the difference x - Xi can be written as x - Xi = (s - i)h. So Eq. (3.10) becomes 

Pn(X) = Pn(XO +sh) = f[xo] +shf[xo,xtJ +s(s -l)h2f[xo,Xl,X2] 

+ ... + s(s - l)(s - n + l)hn f[xo, Xl, ..• ,Xn] 

n 

= L s(s - 1) ... (s - k + l)hk f[xo, Xl, ... ,xd· 
k=O . 

Using binomial-coefficient notation, 

s S(S - 1) ... (S - k + 1) 

k k! 
, 

we can express Pn (X) compactly as 

n 

Pn(x) = Pn(Xo +sh) = f[xol + L ~ k!hkf[xo,Xi"" ,xd· 
k=l 

(3.11 ) 

This formula is called the Newton forward divided-difference formula. Another 
forIn, called the Newton forward-difference formula, is constructed by making use of 
the forward difference notation !l. introduced in Aitken's !l.2 method. With this notation, 

f(Xl) - f(xo) 1 
f[xo, xd = = -!l.f(xo) 

Xl - Xo h 

1 
f[xo, xl, X2] = 2h 

!l.f(x]) - !l.f(xo) 

h 
1 2 

= 2h2!l. f(xo), 
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and, in general. 

1 k 
f[xo. XI • ... ,Xk] = k!hk f)" f(xo). 

Then. Eq. (3.11) has the following fmmula. 

Newton Forward-Difference Fonnula 

n 

Pn(x)=f[xo]+L ~ f)"kf(xo) 
k=1 

(3.12) 

If the interpolating nodes are reordered as Xn, Xn-I, ... ,Xo, a formula similar to 
Eq. (3.10) results: 

Pn(X) = f[xn] + f[xn, xn-d(x - xn) + f[xn, Xn-I, Xn-2](X - xn)(x - Xn-I) 

+ ... + f[xn, ... ,xo](x - xn)(x - Xn-I)' .. (x - XI). 

If the nodes are equally spaced with X = Xn + sh and X = Xi + (s + n - i)h. then 

Pn(X) = Pn(xn + sh) 

= f[xn] + shf[xn, xn-tl + s(s + 1)h2 f[xn, Xn-I. Xn-2] + ... 

+ s(s + 1) " . (s + n - l)hn f[xn' " . ,xo]· 

This fmm is called the Newton backward divided·difference formula. It is used 
to derive a more commonly applied formula known as the Newton backward·difference 
formula. To discuss this formula. we need the following definition. 

Definition 3.7 Given the sequence {Pn}~ o. define the backward difference V Pn (read nabla Pn) by 

V Pn = Pn - Pn-I, for n ::: 1. 

Higher powers are defined recursively by 

Vk Pn = V(Vk
-

1 Pn), for k ::: 2. • 
Definition 3.7 implies that 

1 2 
f[xn• Xn-I, Xn-2] = 2hZ V f(xn), 

and. in general. 

1 k 
f[xn, Xn-I.··· ,Xn-k] = k!hk V f(xn). 

Consequently. 

s(s + 1) s(s + 1) ... (s + n - 1) 
Pn(x) = f[xn]+sVf(xn) + V 2f(x")+,,.+ Vnf(xn). 

2 n! 
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• 

If we extend the binomial coefficient notation to include all real values of s by letting 

-s -s(-s-l)···(-s-k+l) ks(s+l)···(s+k-l) 
- -(-1) ------~-----

k - k! - k!' 

then 

-s -s 
1 Vf(xn H(-1)2 2 

-s 
V2 f(xnH" +(-It 

which gives the following result. 

Newton Backward-Difference Formula 

The divided-difference Table 3.9 corresponds to the data in Example 1. 

1.0 0.7651977 

1.3 0.6200860 

1.6 0.4554022 

1.9 0.2818186 

2.2 0.1103623 
--------

First 
divided 

differences 

-0.4837057 

-0.5489460 

-0.5786120 

-0.5715210 
----------

Second 
divided 

differences 

-0.1087339 

-0.0494433 

0.0118183 
----------

Third 
divided 

differences 

0.0658784 

0.0680685 ----------

n 

(3.13) 

Fourth 
divided 

differences 

0.0018251 
---------

Only one interpolating polynomial of degree at most 4 uses these five data points, but 
we will organize the data points to obtain the best interpolation approximations of degrees 
1, 2, and 3. This will give us a sense of accuracy of the fourth-degree approximation for 
the given value of x. 

If an approximation to f (1.1) is required, the reasonable choice for the nodes would be 
Xo = 1.0, XI = 1.3, X2 = 1.6, X3 = 1.9. and X4 = 2.2 since this choice makes the earliest 
possible use of the data points closest to x = 1.1, and also makes use of the fourth divided 
difference. This implies that h = 0.3 and s = j. so the Newton forward divided-difference 
formula is used with the divided differences that nave a solid underscore in Table 3.9: 

1 
P4(1.1) = P4(1.0 + 3(0.3» 

1 1 
= 0.7651997 + 3(0.3)(-0.4837057) + 3 _ 2 (0.3)2(-0.1087339) 

3 
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1 2 5 
(0.3)3(0.0658784) +- -- --

3 3 3 

1 2 5 8 
(0.3)4(0.0018251 ) +- -- -- --

3 3 3 3 

= 0.7196480. 

To approximate a value when x is close to the end of the tabulated values, say, x = 2.0, 
we would again like to make the earliest use of the data points closest to x. This requires 
using the Newton backward divided-difference formula with s = - ~ and the divided 
differences in Table 3.9 that have a dashed underscore: 

2 
P4 (2.0) = P4 2.2 - 3(0.3) 

= 0.1103623 - ~ (0.3)( -0.5715210) - ~ 1 

3 

2 1 - - -
3 3 

~ (0.3)\0.0680685) - ~ ~ 
= 0.2238754. 

(0.3)2(0.0118183) 

4 
-
3 

7 (0.3)4(0.0018251) 
3 

• 
The Newton fOlmulas are not appropriate for approximating f (x) when x lies near the 

center of the table since employing either the backward or forward method in such a way 
that the highest-order difference is involved will not allow Xo to be close to x. A number of 
divided-difference formulas are available for this case, each of which has situations when 
it can be used to maximum advantage. These methods are known as centered-difference 
formulas. There are a number of such methods, but we will present only one, Stirling's 
method, and again refer the interested reader to [Hild] for a more complete presentation. 

For the centered-difference formulas, we choose Xo near the point being approxi
mated and label the nodes directly below Xo as Xl, X2, . .. and those directly above as 
Ll, L2, .... With this convention, Stirling's fonnula is given by 

sh 2 2 
Pn(X) = P2m+I(X) = J[Xo] + 2 (f[X-l,XO] + f[xo,x!l)+s h f[x-l,xo,xd (3.14) 

s(s2 - 1)h3 

+ 2 f[X-2, Ll, Xo, xd + f[Ll' Xo, Xl, X2]) 

+ ... + s2(s2 - l)(s2 - 4) ... (S2 - (m - 1)2)h2m f[Lm, ... , xml 

S(S2 - 1) ... (S2 - m2)h2m+1 

+ 2 (f[Lm-I,'" ,Xm]+f[Lm, ... ,xm+d), 

if n = 2m + 1 is odd. If n = 2m is even, we use the same formula but delete the last line. 
The entries used for this formula are underlined in Table 3.10 on page 130. 

Consider the table of data that was given in the previous examples. To use Stirling's formula 
to approximate f(1.5) with Xo = 1.6, we use the underlined entries in the difference Table 
3.11. 
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lable 3.10 

lable 3.11 
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x 

X_2 

X-I 

Xo 

XI 

X2 

X 

1.0 

1.3 

1.6 

1.9 

2.2 

First Second Third Fourth 
divided divided divided divided 

j(x) differences differences differences differences 

f[L2l 
f[x-2, Ld 

f[x-d j[L2, LI, xol 
f[X-I, Xol j[X-2, X-I, xo, xil 

f[xol j[X-b Xo, xtJ f[X-2, X-I, Xo, XI, x2l 
j[xo, xd f[LI, Xo, XI. x2l 

f[xd f[xo, XI, X2] 
j[XI, X2] 

f[x2l 

First Second Third 
divided divided divided 

j(x) differences differences differences 

0.7651977 
-0.4837057 

0.6200860 -0.1087339 
-0.5489460 0.0658784 

0.4554022 -0.0494433 
-0.5786120 0.0680685 

0.2818186 0.0118183 
-0.5715210 

0.1103623 

The formula, with h = 0.3, Xo = 1.6, and s = - ~, becomes 

I 
f(1.5)~P4 1.6+ -"3 (0.3) 

I 
= 0.4554022 + --

3 

0.3 
2 « -0.5489460) + (-0.5786120» 

2 

+ - ~ (0.3)2( -0.0494433) 

1 
+-

2 

1 
--

3 

1 2 
+ --

3 

= 0.5118200. 

1 
--

3 

1 --
3 

2 

-1 

2 

-1 

(0.3)3(0.0658784 + 0.0680685) 

(0.3)\0.0018251) 

Fourth 
divided 

differences 

0.0018251 

• 
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E X ERe I S ESE T 3.2 

1. Use Newton's interpolatory divided-difference formula or Algorithm 3.2 to construct inter
polating polynomials of degree one, two, and three for the following data. Approximate the 
specified value using each of the polynomials. 

a. f(8.4) if f(8.1) = 16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515, f(8.7) = 
18.82091 

b. f(0.9) if f(0.6) = -0.17694460, f(0.7) = 0.01375227, f(0.8) = 0.22363362, 
f(1.0) = 0.65809197 

2. Use Newton's forward-difference fonnula to construct interpolating polynomials of degree 
one, two, and three for the following data. Approximate the specified value using each of the 
polynomials. 

a. f (-j) if f(-0.75) = -0.07181250, f(-O.5) = -0.02475000, f(-0.25) = 
0.33493750, f(O) = 1.10100000 

b. f(0.25) if f(O.I) = -0.62049958, f(0.2) = -0.28398668, f(0.3) = 0.00660095, 
f(O.4) = 0.24842440 

3. Use Newton's backward-difference formula to construct interpolating polynomials of degree 
one, two, and three for the following data. Approximate the specified value using each of the 
polynomials. 

a. f (-j) if f(-0.75) = -0.07181250, f(-O.5) = -0.02475000, f(-0.25) = 
0.33493750, f(O) = 1.10100000 

b. f(0.25) if f(O.I) = -0.62049958, f(0.2) = -0.28398668, f(0.3) = 0.00660095, 
f(0.4) = 0.24842440 

4. a. Use Algorithm 3.2 to construct the interpolating polynomial of degree four for the un
equally spaced points given in the following table: 

x f(x) 

0.0 -6.00000 
0.1 -5.89483 
0.3 -5.65014 
0.6 -5.17788 
1.0 -4.28172 

b. Add f(1.1) = -3.99583 to the table, and construct the interpolating polynomial of 
degree five. 

S. a. Approximate f(0.05) using the following data and the Newton forward divided
difference formula: 

x 0.0 0.2 0.4 0.6 0.8 

f(x) 1.00000 1.22140 1.49182 1.82212 2.22554 

b. Use the Newton backward divided-difference formula to approximate f<0.65). 

c. Use Stirling's formula to approximate f(0.43). 

6. Show that the polynomial interpolating the following data has degree 3. 

x -2 -1 0 1 2 3 

f(x) 1 4 11 16 13 -4 
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7. a. Show that the Newton forward divided-difference polynomials 

P(x) = 3 - 2(x + 1) + O(x + 1)(x) + (x + l)(x)(x - 1) 

and 

Q(x) = -1 + 4(x + 2) - 3(x + 2)(x + 1) + (x + 2)(x + 1)(x) 

both interpolate the data 

x -2 -1 0 1 2 

I(x) -1 3 1 -1 3 

b. Why does part (a) not violate the uniqueness property of interpolating polynomials? 

8. A fourth-degree polynomial P(x) satisfies ~4p(0) = 24, ~3p(0) = 6, and ~2p(0) = 0, 
where ~P(x) = P(x + 1) - P(x) . .compute A 2p(10). 

9. The following data are given for a polynomial P (x) of unknown degree. 

x 0 1 2 

P(x) 2 -1 4 

Determine the coefficient of x 2 in P(x) if all third-order forward differences are 1. 

10. The following data are given for a polynomial P (x) of unknown degree. 

x 0 1 2 3 

P(x) 4 9 15 18 

Determine the coefficient of x 3 in P(x) if all fourth-order forward differences are 1. 

11. The Newton forward divided-difference formula is used to approximate 1(0.3) given the fol
lowing data. 

x 0.0 0.2 0.4 0.6 

I(x) 15.0 21.0 30.0 51.0 

Suppose it is discovered that 1(0.4) was understated by 10 and 1(0.6) was overstated by 5. 
By what amount should the approximation to 1(0.3) be changed? 

12. For a function I, the Newton's interpolatory divided-difference formula gives the interpolating 
polynomial 

16 
P3(x) = 1 + 4x + 4x(x - 0.25) + 3x(x - 0.Z5)(x - 0.5), 

on the nodes Xo = 0, XI = 0.25, X2 = 0.5 and X3 = 0.75. Find 1(0.75). 

13. For a function I, the forward divided differences are given by 

Xo = 0.0 I [xo] 
I[xo, xd 

XI = 0.4 f[xd f[xo, XI, X2] = 570 

f[XI, X2] = 10 
X2 = 0.7 l[x2] = 6 

Determine the missing entries in the table. 
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14. a. The introduction to this chapter included a table listing the population of the United States 
from 1940 to 1990. Use appropriate divided differences to approximate the population in 
the years 1930, 1965, and 2010. 

b. The population in 1930 was approximately 123,203,000. How accurate do you think your 
1965 and 2010 figures are? 

15. Given 

Pn (x) = J[xol + J[xo, xd(x - xo) + a2(x - xo)(x - Xl) 

+ a3(X - Xo)(X - Xl)(X - X2) + '" 
+ an (X - Xo)(X - xd'" (x - Xn-l), 

use Pn (X2) to show that a2 = J[Xo, XI, X2]. 

16. Show that 

f(n+l) (;(x» 
f[XO,XI, .. ·,xn,xl= , 

(n + I)! 

for some Hx). [Hint: From Eq. (3.3), 

f(n+I)(;(X» 
f(x) = Pn(x) + (x - Xo) '" (x - Xn). 

(n + I)! 

Considering the interpolation polynomial of degree n + 1 on Xo, XI, ... , Xn, x, we have 

f(x) = Pn+1 (x) = Pn(x) + f[xo, XI, ... ,Xn, X](X - Xo) ... (x - Xn).] 

17. Let io, iI, ... , in be a rearrangement of the integers 0, 1, ... , n. Show that f[Xio, xlJ ' ... , Xin ] 

= J[xo, Xl> ... , xn]. [Hint: Consider the leading coefficient of the nth Lagrange polynomial 
on the data {xo, Xl,··· ,Xn} = {XiO' Xil"" ,xiJ.l 

3.3 Hennite Interpolation 

Osculating polynomials generalize both the Taylor polynomials and the Lagrange poly
nomials. Suppose that we are given n + 1 distinct numbers xo, xl, ... , Xn in [a, b] ·and 
nonnegative integers mo, ml, ... , mn , and m = max{mo, m I, ... , mn }. The osculating 
polynomial approximating a function f E Cm[a, b] at Xi, for each i = 0, ... , n, is the 
polynomial of least degree with the property that it agrees with the function f and all its 
derivatives of order less than or equal to mi at Xi. The degree of this osculating polynomial 
is at most 

n 

M= Lmi+n 
i=O 

because the number of conditions to be satisfied is I:7 0 mi + (n + 1), and a polynomial 
of degree M has M + 1 coefficients that can be used to satisfy these conditions. 
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DefinItIon 3.8 

Theorem 3.9 

C HAP T E R 3 • Interpolation and Poly{lomial Approximation 

Let xo, XI, ... ,Xn be n + 1 distinct numbers in [a, b) and mi be a nonnegative integer asso-
, 

dated with Xi, for i = 0, 1, ... ,n. Suppose that I E Cm[a, b), where m = maxO<i<n mi. 
The osculating polynomial approximating f is the polynomial P (x) of least degree such 
that ' 

for each i = 0, 1, ... ,n' and k = 0, 1, ... , m,. • - , 

Note that when n = 0, the osculating po1ynomial:approximating I is the moth Taylor 
polynomial for I at Xo. When mi = ° for each 'i, the osculating polynomial is the nth 
Lagrange polynomial interpolating I on Xo, XI, ... ,Xn • 

The case when mi = 1, for each i = 0, 1, .... ,n, gives the Hermite polynomials. For 
a given function I, these polynomials agree with I at Xo, XI, . " ,Xn • In addition, since 
their first derivatives agree with those of f, theY' have the same "shape" as the function at 

. , 

(Xi, I (Xi)) in the sense that the tangentlines'to the polynomial and to the function agree. 
We will restrict our study of osculating polynomials to this situation and consider first a 
theorem that describes precisely the feinn of the Hermite polynomials. 

If lEe I [a, b) and xo, ... ,Xn E [a, b) are distinct, the unique polynomial ofleast degree 
agreeing with I and f' at Xo, ... ,Xn is the Hermite polynomial of degree at most 2n + 1 
given by 

n n 

H2n+1 (x) = L l(xj)Hn.j (x) + L 1'(xj)Hn •j (x), 
j=O j=O 

where 

and 

In this context, L n•j (x) denotes the jth Lagrange coefficient polynomial of degree n de
fined in Eq. (3.2). 

Moreover, if IE C 2n+2[a, b], then 

I(x) = H (x) + (x - xo)2 ... (x - xnj2 f(2n+2)(t) 
2n+1 (2n + 2)! 'i , 

for some ~ with a < ~ < h. 

Proof First recall that 

0, ifi -::j=j, 
Ln.,' (Xi) = 

1, ifi=j. 

• 
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Hence, when i =1= j, 

~ 

Hn .} (Xi) = 0 and Hn .} (Xi) = 0, 

whereas 

Hn i(X;) = [1- 2(Xi - xi)L' ,(Xi»)' 1 = 1 , n ,l 

and 

~ 2 
Hn •i (Xi) = (Xi - Xi) . 1 = O. 

As a consequence, 

n n 

H2n+ I (x;) = L f (x j) . 0 + / (Xi) . 1 +, L /' (x j) . 0 = / (Xi), 
j=O j=O 
Hi 

so H2n+ I agrees with / at XO, x I, ... , X n . 

To show the agreement of H~n+I with f' at the nodes, first note that Ln,j(x) is a factor 
of H~,/x), so H~,/Xi) = 0 when i i= j. In addition, when i = j and Ln,i(Xi) = 1, we 
have 

H~,i(Xi) = -2L~,i(X;) . L~,i(X;) + [1 - 2(Xi - xi)L~,;(Xi)]2Ln,i(Xi)L~.;(Xi) 

= -2L~,;(Xi) + 2L~.i(X;) = O. 

Hence, H~,j (Xj) = 0 for all i and j. 
Finally, 

~, 2 , 
Hn,j(X;) = Ln,j(xj) + (Xi - Xj)2Ln,j(Xi)Ln,j(x;) 

= Ln,j(Xi)[Ln,j(Xi) + 2(Xi - Xj)L~,j(Xi)], 

, ~ 

so H~,j (X;) = 0 if i =1= j and H~,i (Xi) = l. Combining these facts, we have 

n n 

H~n+ I (Xi) = L / (x j) . 0 + L /' (x j) . 0 + /' (Xi) . 1 = /' (Xi)· 
j=O j=O 

ji'i 

Therefore, H2n+1 agrees with / and H~n+1 with /' at Xo, XI, ... , Xn. 
The uniqueness of this polynomial and the error fOIlllula are considered in Exercise 8. 

• • • 

Use the Hennite polynomial that agrees with the data listed in Table 3.12 to find an ap
proximation of /(1.5), 
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'CIble 3.12 
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k 

o 
1 
2 

1.3 
1.6 
1.9 

0.6200860 
0.4554022 
0.2818186 

• 

-0.5220232 
-0.5698959 
-0.5811571 

We first compute the Lagrange polynomials and their derivatives. This gives 

(x - xj}(x - X2) 50 2 175 152 
L 2 o(x) = = x - x+ , 

, (xo-xj}(XO-X2) 9 9 9 

, 100 175 
L 2,o(x) = 9 x - 9 ; 

(x-XO)(X-X2) -100 2 320 247 
L2 I (x) = = x + x - , 

, (XI-XO)(XI-X2) 9 9 9 

, -200 320 
L 2,I (x) = 9 x + 9 ; 

and 

(x - xo)(x - XI) 50 2 145 104 
L22 = = X - X + , 

. (X2-XO)(X2-XI) 9 9 9 

, 100 145 
L2 2 (x) = X - -. , 9 9 

A 

The polynomials H2,) (x) and H2,) (x) are then 

H 2,o(x) = [1 - 2(x - 1.3)(-5)] 
50 2 175 152 2 
-9x - 9 X+ 9 

50 175 152 2 
= (lOx - 12) 9 x

2 
- 9 x + 9 ' 

H2,I (x) = 1 . 
-100 2 320 247 2 
--x+ x- , 

9 9 9 

H2,2(X) = 10(2 - x) 
50 2 145 104 2 
-x - x+-
9 9 9 

, 

50 2 175 152 2 
-x - X + , 
9 9 9 

A 

H2,o(x) = (x - 1.3) 

A 

H2 I (x) = (x - 1.6) , 

-100 2 320 247 2 
x + x-

9 9 9 
, 

and 

A 

H 2,2(X) = (x - 1.9) 
50 2 145 104 2 

9 x -9 x +9 . 

Finally, 

Hs(x) = 0.6200860H2,o(x) + 0.4554022H2,1 (x) + 0.2818186H2,2(x) 
A A A 

- 0.5220232H2,O(X) - 0.5698959H2,I(X) - 0.5811571 H2,2 (x) 
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and 

4 
H5 (1.5) = 0.6200860 27 

64 
+ 0.4554022 

81 

4 
- 0.5220232 

405 

= 0.5118277. 

- 0.5698959 

a result that is accurate to the places listed. 

5 
+ 0.2818186 81 

-32 

405 
- 0.5811571 

137 

-2 
405 

• 
Although Theorem 3.9 provides a complete description of the HeImite polynomials, it 

is clear from Example 1 that the need to determine and evaluate the Lagrange polynomials 
and their derivatives makes the procedure tedious even for small values of n. An alternative 
method for generating HeImite approximations has as its basis the Newton interpolatory 
divided-difference fOIInula (3.10) for the Lagrange polynomial at Xo. XI • ...• Xn• 

n 

Pn(x) = f[xoJ + L ![XO,XI •... • Xk](X - xo)··· (x - Xk-I). 
k=1 

and the connection between the nth divided difference and the nth derivative of !. as 
outlined in Theorem 3.6 in Section 3.2. 

Suppose that the distinct numbers Xo. XI •...• Xn are given together with the values of 
! and!' at these numbers. Define a new sequence ZOo ZI, ... , ZZn+1 by 

ZZi = ZZi+1 = Xi. for each i = 0.1 •.... n. 

and construct the divided difference table in the form of Table 3.7 that uses Zo, Zl, ... , 

ZZn+l· 

Since ZZi = ZZi+1 = Xi for each i, we cannot define f[ZZi. ZZi+JJ by the divided 
difference forIIlula. If we assume, based on Theorem 3.6, that the reasonable substitution 
in this situation is f[ZZi. Z2i+JJ = !'(ZZi) = !'(Xi), we can use the entries 

in place of the undefined first divided differences 

The remaining divided differences are produced as usual, and the appropriate divided dif
ferences are employed in Newton's interpolatory divided-difference formula. Table 3.13 
shows the entries that are used for the first three divided-difference columns when de
termining the Hermite polynomial Hs(x) for Xo, XI, and Xz. The remaining entries are 
generated in the same manner as in Table 3.7. The Henuite polynomial is given by 

Zn+1 

H2n+I(X) = ![zoJ + L ![ZO,··· • zd(x - zo)(x - ZI)'" (x - Zk-l). 
k=1 

A proof of this fact can be found in [Po, p. 56]. 
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lable 3.13 

EXAMPLE 2 

lable 3.14 

C HAP T E R 3 • Interpolation and polynomIal ApproxImation 

z fez) 

Zo = Xo f[zo] = f(xo) 

First divided 
differences 

f[zo, zd = f'(xo) 

Second divided 
differences 

ZI = Xo flzd = f(xo) f[ 1 
f[ZI, Z2] - f[zo, zd 

ZO,ZI,Z2 = 

f[ ] 
- f[z21 - f[zd 

Zl, Z2 -

Z2 - Zo 

Z2 - ZI 

Z3 = Xl 

Z4 = X2 

Zs = X2 f[zs] = f(X2) 

The entries in Table 3.14 use the data given in Example 1. The underlined entries are the 
given data; the remainder are generated by the standard divided-difference formula (3.9): 

H50.5) = 0.6200860 + (1.5 - 1.3)(-0.5220232) + (1.5 - 1.3)2 ( -0.0897427) 
• 

+ (1.5 - 1.3)2(1.5 - 1.6)(0.0663657) + (1.5 - 1.3)2(1.5 - 1.6)2(0.0026663) 

+ (1.5 - 1.3)2(1.5 - 1.6)2(1.5 - 1.9)(-0.0027738) 

= 0.5118277. • 

1.3 0.6200860 
-0.5220232 

1.3 0.6200860 -0.0897427 
-0.5489460 0.0663657 

1.6 0.4554022 -0.0698330 0.0026663 

-0.5698959 0.0679655 -0.0027738 

1.6 0.4554022 -0.0290537 0.0010020 
-0.5786120 0.0685667 

1.9 0.2818186 -0.0084837 
-0.5811571 

1.9 0.2818186 

The technique used in Algorithm 3.3 can be extended for use in determining other 
osculating polynomials. A concise discussion of the procedures can be found in [Po, 
pp. 53-57]. 

• 

, 

, 
•• 
[ 

• , 
• 
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Hermite Interpolation 

To obtain the coefficients of the Hennite interpolating polynomial H (x) on the (n + 1) 
distinct numbers xo, . " ,Xn for the function f: 

INPUT numbers xo, XI, ... ,Xn ; values f(xo), ... ,f(xn) and !'(xo), ... , f'(xnl. 

OUTPUT the numbers Qo.o, QI,1,'" , Q2n+1.2n+1 where 

H(x) = Qo,o + QI,1 (x - xo) + Q2.2(X - xO)2 + Q3,3(X - xO)2(x - Xl) 

+ Q4,4(X - xO)2(x - XI)2 + ... 
+ Q2n+I,2n+1 (x - XO)2(X - XI)2 ... (X - Xn_I)Z(X - x 1 ). 

Step 1 For i = 0, 1, ... ,n do Steps 2 and 3. 

Step 2 Set Z21 = Xi; 

Z21+] =Xi; 
Q2i,0 = f (Xi); 
Q2i+I,O = f(Xi); 
Q2i+I,1 = f'(Xi). 

Step 3 If i =1= 0 then set 

Q2i,0 - Q2i-I,0 Q 2i I = -'---'----=-----'-. , 
ZZi - Z2i-1 

Step 4 For i = 2, 3, ... , 2n + 1 

" . 2 3 . Q Qi,j-I - Qi-I,j-I 
lOr} = . , ... , I set i,j = . 

Zi - Zi-j 

Step 5 OUTPUT (Qo,o, Qu, '" , QZn+l,Zn+I); 

STOP 

E X ERe I S ESE T 3.3 

• 

1. Use Theorem 3.9 or Algorithm 3.3 to construct an approximating polynomial fonhe following 
data. 

a. x 

c. 

8.3 
8.6 

X 

-0.5 
-0.25 

o 

fex) 

17.56492 
18.50515 

I(x) 

1'(X) 

3.116256 
3.151762 

f'ex) 

-0.0247500 
0.3349375 
1.1010000 

0.7510000 
2.1890000 
4.0020000 

b. x f(x) 

0.8 0.22363362 
1.0 0.65809197 

d. X 

0.1 
0.2 
0.3 

f(x) 

-0.62049958 
-0.28398668 

0.00660095 

l' (x) 

2.1691753 
2.0466965 

1'(x) 

3.58502082 
3.14033271 
2.66668043 

0.4 0.24842440 2.16529366 

2. The data in Exercise 1 were generated using the following functions. Use the polynomials 
constructed in Exercise 1 for the given value of x to approximate f(x), and calculate the 
actual error. 
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a. I(x) = x lnx; approximate 1(8.4). 

b. I(x) = sin(eX 
- 2); approximate f(0.9). 

c. I(x) =x3 +4.00lx2 +4.002x + 1.101; approximate/(-j). 

d. I(x) = x cos x - 2x2 + 3x - 1; approximate 1(0.25). 

3. a. Use the following values and five-digit rounding arithmetic to construct the Hermite in
terpolating polynomial to approximate sin 0.34. 

• x smx 

0.30 0.29552 
0.32 0.31457 
0.35 0.34290 

Dx sinx = cosx 

0.95534 
0.94924 
0.93937 

b. Determine an error bound for the approximation in part (a), and compare it to the actual 
error. 

c. Add sin 0.33 = 0.32404 and cos 0.33 = 0.94604 to the data, and redo the calculations. 

4. Let I(x) = 3xe'" - e2x. 

a. Approximate 1(1.03) by the Hermite interpolating polynomial of degree at most three 
using Xo = 1 and XI = 1.05. Compare the actual error to the error bound. 

b. Repeat (a) with the Hermite interpolating polynomial of degree at most five, using Xo = I, 
XI = 1.05, and X2 = 1.07. 

5. Use the error formula and Maple to find a bound for the errors in the approximations of I(x) 
in parts (a) and (c) of Exercise 2. 

6. The following table lists data for the function described by I (x) = eO. lx2
• Approximate 

1(1.25) by using Hs(1.25) and H3 (1.25), where Hs uses the nodes Xo = I, XI = 2, and 
X2 = 3; and H3 uses the nodes Xo = 1 and XI = 1.5. Find error bounds for these approxima
tions. 

X 

Xo = Xo = 1 
XI = 1.5 
XI = 2 
X2 = 3 

1.105170918 
1.252322716 
1.491824698 
2.459603111 

f'(x) = 0.2xeO. lx2 

0.2210341836 
0.3756968148 
0.5967298792 
1.475761867 

7. A car traveling along a straight road is clocked at a number of points. The data from the 
observations are given in the following table, where the time is in seconds, the distance is in 
feet. and the speed is in feet per second. 

Time 0 3 5 8 13 

Distance 0 225 383 623 993 

Speed 75 77 80 74 72 

a. Use a Hermite polynomial to predict the position of the car and its speed when t = lOs. 

b. Use the derivative of the Hermite polynomial to determine whether the car ever exceeds 
a 55 miIh speed limit on the road. If so, what is the first time the car exceeds this speed? 

c. What is the predicted maximum speed for the car? 

8. a. Show that H2n+ I (x) is the unique polynomial of least degree agreeing with I and f' 
at Xo, ... ,xn • [Hint: Assume that P(x) is another such polynomial and consider D = 
H2n+1 - P and D' at Xo, XI, •.• ,xn.] 
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b. Derive the error term in Theorem 3.9. [Hint: Use the same method as in the Lagrange 
error derivation, Theorem 3.3, defining 

and using the fact that g'(t) has (2n + 2) distinct zeros in [a, b].] 

9. Let zo = XO, Zl = XO, Z2 = Xl, and Z3 = Xl. Form the following divided-difference table. 

Zo = Xo ![zo] = !(xo) 
I[zo, zd = !'(xo) 

Zl = Xo ![zd = !(xo) f[zo, Zl, Z2] 
f[ZI, Z2] f[zo, Zl, Z2, z3l 

Z2 = Xl ![Z2l = I(Xl) ![Zl, Z2, z3l 
I[Z2, z3l = I' (Xl) 

Z3 = Xl I[Z3] = I(x]) 

Show that the cubic Hermite polynomial H3(x) can also be written as f[zol + f[zo, zd(x -
xo) + f[zo, Zl, Z2](X - XO)2 + I[zo, Zl, Z2, Z3](X - XO)2(X - Xl)' 

3.4 Cubic Spline Interpolation * 

The previous sections concerned the approximation of arbitrary functions on closed inter
vals by the use of polynomials. However, the oscillatory nature of high-degree polynomials 
and the property that a fluctuation over a small portion of the interval can induce large fluc
tuations over the entire range restricts their use. We will see a good example of this in 
Figure 3.12 at the end of this section. 

An alternative approach is to divide the interval into a collection of subintervals and 
construct a (generally) different approximating polynomial on each subinterval. Approxi
mation by functions of this type is called piecewise-polynomial approximation. 

The simplest piecewise-polynomial approximation is piecewise-linear interpolation, 
which consists of joining a set of data points 

by a series of straight lines, as shown in Figure 3.7 on page 142. 
A disadvantage of linear function approximation is that there is likely no differen

tiability at the endpoints of the subintervals, which, in a geometrical context, means that 
the interpolating function is not "smooth." Often it is clear from physical conditions that 
smoothness is required, so the approximating function must be continuously differentiable. 

An alternative procedure is to use a piecewise polynomial of Hermite type. For exam
ple, if the values of I and of I' are known at each of the points Xo < Xl < ... < X n , a 
cubic Heunite polynomial can be used on each of the subintervals [xo, xd, [Xl, X2], ... , 
[Xn-l, Xn] to obtain a function that has a continuous derivative on the interval [xo, xn]. To 

"The proofs of the theorems in this section rely on results in Chapter 6. 
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detellnine the appropriate Hermite cubic polynomial on a given interval is simply a matter 
of computing H3 (x) for that interval. Since the Lagrange interpolating polynomials needed 
to determine H3 are of first degree, this can be accomplished without great difficulty. How
ever, to use Hermite piecewise polynomials for general interpolation, we need to know the 
derivative of the function being approximated, which is frequently unavailable. 

The remainder of this section considers approximation using piecewise polynomials 
that require no derivative information, except perhaps at the endpoints of the interval on 
which the function is being approximated. 

The simplest type of differentiable piecewise-polynomial function on an entire interval 
[xo, xn] is the function obtained by fitting one quadratic polynomial between each succes
sive pair of nodes. This is done by constructing one quadratic on [xo, xd agreeing with 
the function at Xo and Xl, another quadratic on [Xl, X2] agreeing with the function at Xl 

and X2, and so on. Since a general quadratic polynomial has three arbitrary constants-the 
constant term, the coefficient of x, and the coefficient of x2 and only two conditions are 
required to fit the data at the endpoints of each subinterval, flexibility exists that permits 
the quadratic to be chosen so that the interpolant has a continuous derivative on [xo, xnl. 
The difficulty arises when there is a need to specify conditions about the derivative of the 
interpolant at the endpoints Xo and X n . There is not a sufficient number of constants to 

. ensure that the conditions will be satisfied. (See Exercise 22.) 
The most common piecewise-polynomial approximation uses cubic polynomials be

tween each successive pair of nodes and is called cubic spline interpolation. A general 
cubic polynomial involves four constants, so there is sufficient flexibility in the cubic spline 
procedure to ensure that the interpolant is not only continuously differentiable on the inter
val, but also has a continuous second derivative. The construction of the cubic spline does 
not, however, assume that the derivatives of the interpolant agree with those of the function 
it is approximating, even at the nodes. (See Figure 3.8.) 
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Definition 3.10 Given a function ! d~fined on [a, b] and a set of nodes a = Xo < XI < ... < XII = b, a 
cubic spline interpolant S for ! is a function that satisfies the following conditions: 

a. S(x) is a cubic polynomial, denoted S) (x), on the subinterval [x), x )+d for each 
j = 0, 1, ... , n - 1; 

b. Sex)~ = f(x) for each j = 0,1, ... ,n; 

c. Sj+1 (Xj+l) = Sj(Xj+l) for each j = 0,1, ... ,n - 2; 

d. Sj+1 (Xj+l) = Sj(x}+d for each j = 0,1, ... ,n - 2; 

e. S;+I (Xj+l) = S;(Xj+l) for each j = 0,1, ... ,n - 2; 

f. One of the following sets of boundary conditions is satisfied: 

(i) SI/(xo) = SI/(xn) = ° (free or natural boundary); 
(ii) S' (xo) = f' (xo) and S' (xn) = f' (xn) (clamped boundary). 

Although cubic splines are defined with other boundary conditions, the conditions 
given in (f) are sufficient for our purposes. When the free boundary conditions occur, the 
spline is called a natural spline, and its graph approximates the shape that a long flexible 
rod would assume if forced to go through the data points {(xo, f (Xo)) , (Xl, f (X I» •... , 

(xn, f(xn»}. 
In general, clamped boundary conditions lead to more accurate approximations since 

they include more information about the function. However, for this type of boundary 
condition to hold, it is necessary to have either the values of the derivative at the endpoints 
or an accurate approximation to those values. 

To construct the cubic spline interpolant for a given function f, the conditions in the 
definition are applied to the cubic polynomials 
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Sj(X) = aj + bj(x - Xj) + Cj(x - Xj)2 + dj(x - Xj)3, 

for each j = 0, 1, . . . , n - 1. 
Since 

condition (c) can be applied to obtain 

aj+l = Sj+l(Xj+]) = Sj(Xj+l) = aj + bj (Xj+l - Xj) +Cj(Xj+1 - Xj)2 +dj (XJ+l - Xj)3, 

for each j = 0, 1, ... , n - 2. 
Since the terms Xj+l - Xj are used repeatedly in this development, it is convenient to 

introduce the simpler notation 

for each j = 0, 1, ... , n - 1. If we also define an = f(xn), then the equation 

aj+l = aj + bjh j + cjh] + djh] 

holds for each j = 0, 1, ... , n - 1. 
In a similar manner, define bn = S' (xn) and observe that 

Sj(X) = bj + 2cj(x - Xj) + 3dj (x - Xj)2 

implies Sj (x j) = b j, for each j = 0, 1, ... , n - 1. Applying condition (d) gives 

bj +1 = bj + 2cj h j + 3dj h], 

for each j = 0, 1, ... , n - 1. 

(3.15) 

(3.16) 

Another relationship between the coefficients of Sj is obtained by defining Cn -

S"(xn )/2 and applying condition (e). Then, for each j = 0,1, ... , n - 1, 

(3.17) 

Solving for d j in Eq. (3.17) and substituting this value into Eqs. (3.15) and (3.16) 
gives, for each j = 0, 1, ... , n - 1, the new equations 

h2 

aj+l = aj + bjh j + ; (2cj + cj+JJ (3.18) 

and 

(3.19) 

The final relationship involving the coefficients is obtained by solving the appropriate 
equation in the fOIm of equation (3.18), first for b j, 

(3.20) 
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and then, with a reduction of the index, for b j -I. This gives 

Substituting these values into the equation derived from Eq. (3.19), with the index reduced 
by one, gives the linear system of equations 

(3.21) 

for each j = 1, 2, ... , n - 1. This system involves only the {c j lj=o as unknowns since the 

values of {hj}rb and {aj}j=o are given, respectively, by the spacing of the nodes {Xj}j=o 
and the values of f at the nodes. 

Note that once the values of {cjlj=o are determined, it is a simple matter to find the 

remainder of the constants {bjri=~ from Eq. (3.20) and {djlr~ from Eq. (3.17), and to 

construct the cubic polynomials {Sj(x)lj~. 
The major question that arises in connection with this construction is whether the 

values of {c j }J=o can be found using the system of equations given in (3.21) and, if so, 
whether these values are unique. The following theorems indicate that this is the case when 
either of the boundary conditions given in part (f) of the definition are imposed. The proofs 
of these theorems require material from linear algebra, which is discussed in Chapter 6. 

If f is defined at a = Xo < XI < ... < Xn = b, then f has a unique natural spline 
interpolant S on the nodes Xo, XI, ... , Xn; that is, a spline interpolant that satisfies the 
boundary conditions S"(a) = 0 and S"(b) = o. • 

Prool The boundary conditions in this case imply that Cn = S" (xn) /2 = 0 and that 

0= S"(xo) = 2co + 6do(xo - xo), 

so Co = O. 
The two equations Co = 0 and Cn = 0 together with the equations in (3.21) produce a 

linear system described by the vector equation Ax = b, where A is the (n + 1) x (n + 1) 
matrix 

1 0 0: • • 
• 

• • • • • • • • • • • • • • • • • • • • • • • • • • • 0 
• • • • • • • 

ho 2(ho + hd 
• • 

hi 
• • • • • • • • • • • • • • 

O. hi 
• • • A= • • • • • • • • • • • • • • • • • • • • • • 
• 
• 

2(hl + h2) h2 • • • • • • • • • • • • • • • • • • • • • • • • , • • • • • • 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
hn-2 2(hn~2 + hn- I ) 

• 
hn - I 

• • • • • 
• 

• • • • O· . . . . . . . . . . . . . . . . . . . . . . . . .. 0 o 1 

and b and x are the vectors 
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o 
l...(a2 - aI) - l...(al - ao) 
h, ho 

b= 
• 

and x = • 
• 

o 

Co 
C, 

• 
• 
• 

Cn 

The matrix A is strictly diagonally dominant, so it satisfies the hypotheses of Theorem 6.19 
in Section 6.6. Therefore, the linear system has a unique solution for Co, C1, ... , Cn . 

• • • 

The solution to the cubic spline problem with the boundary conditions S" (xo) 

S"(xn) = 0 can be obtained by applying Algorithm 3.4. 

Natural Cubic Spline 

To construct the cubic spline interpolant S for the function f, defined at the numbers 
Xo < XI < ... < Xn , satisfying SI/(xo) = S"(xn) = 0: 

INPUT n; Xo, XI, ... , Xn; ao = f(xo), al = f(x]), ... , an = f(xn). 

OUTPUT aj, h j , Cj, d j for j = 0,1, ... , n - 1. 
(Note: Sex) = Sj(x) = aj + bj(x - Xj) + Cj(x - Xj)2 + dj(x - Xj)3 for Xj < x < X;+1') 

Step 1 For i = 0,1, ... , n - 1 set hi = Xi+I - Xi. 

Step 2 For i = 1,2, ... , n - 1 set 

3 3 
(Xi = -(aHI - aJ - (ai - a,_I). 

hi h i - I 

Step 3 Set 10 = 1; (Steps 3, 4, 5, and part of Step 6 solve a tridiagonal linear system 

using a method described in Algorithm 6.7.) 

/-Lo = 0; 
Zo = O. 

Step 4 For i = 1, 2, ... , n - 1 
set Ii = 2(XHI - Xi-I) - h i - I Jli-1; -

Jli = hd Ii; 

Zi = ((Xi - hi-Izi-d/ Ii. 

Step 5 Set In = 1; 
Zn = 0; 
Cn = O. 

Step 6 For j = n - 1, n - 2, . .. , 0 
set Cj = Zj - Jl jCj+I; 

b j = (aj+I - aj)/ h j - hj(Cj+I + 2cj)/3; 

d j = (Cj+I - cj)/(3h j ). 

, 
• 
• 
-• 

-
• 

[ 
-
) 
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Step 7 OUTPUT (aj, bj , Cj, dj for j = 0,1, ... , n - 1); 
STOP. 

147 

• 

A result similar to Theorem 3.11 holds in the case of clamped boundary conditions. 

If I is defined at a = Xo < Xl < ... < Xn = b and differentiable at a and b, then I 
has a unique clamped spline interpolant S on the nodes xo, xl, ... , Xn; that is, a spline 
interpolant that satisfies the boundary conditions S'(a) = I'(a) and S'(b) = I'(b). • 

Proof Since I'(a) = S'(a) = S'(xo) = bo, Eq. (3.20) with j = 0 implies 

Consequently. 

Similarly, 

, 1 ho I (a) = -Cal - ao) - -(2co + c]). 
ho 3 

3 , 
2hoco + hOCI = -Cal - ao) - 31 (a). 

ho 

so Eq. (3.20) with j = n - 1 implies that 

-

and , 

Equations (3.21) together with the equations 

and 

3 , 
2hoco + hoC] = -Cal - ao) - 31 (a) 

ho 

detennine the linear system Ax = b, where 
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A --

b= 

2ho ho 0: • • • • • • • • • • 
• • • • • • • 

ho 2(ho+hl) hi 
• • • • 

O. hi 2(h l + h2 ) h2 • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • • • • 

• • • • • • • 

hn- 2 • 
• • • • • • • • · . 

• O· . . . . . . . . . . . . . . . . . . . . . . . . . .. 0 

• 
• 
• 

h 3 (an - an-I) - h 3 (an-I - an-2) 
n-1 n-2 

3!,(b) - h
n

3
_1 (an - an-d 

• • • • • • • • • • • • • . • 

• • • • • • • • 
• • • 

• • • • • • • • • • • • • • 
• • • • • • • • . 

• • 

2(hn'-2 + hn - I) 

• • • • 0 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• • , 
• 0 • 

• • 

hn- I • 

2hn - 1 

The matrix A is strictly diagonally dominant, so it satisfies the conditions of Theorem 6.19. 
Therefore, the linear system has a unique solution for Co, CI, ... ,Cn . • • • 

The solution to the cubic spline problem with the boundary conditions S' (xo) = !' (xo) 
and S'(xn) = f'(xn) can be obtained by applying Algorithm 3.5. 

Camped Cubic Spline 

To construct the cubic spline interpolant S for the function f defined at the numbers Xo < 
XI < '" < Xn, satisfying S'(XO) = f'(xo) and S'(xn) = !'(xn): 

INPUT n; XO,X/, ... ,Xn; ao = f(xo), aJ = f(xd, ... ,an = f(xn ); FPO = !'(xo); 
FPN = f'(xn). 

OUTPUT aj. hj' Cj, dj for j = 0,1, ... ,n - 1. 
(Note: Sex) = Sj(x) = aj + bj(x - Xj) +Cj(x - Xj)2 +dj(x - xY for Xj < x <Xj+i.) 

Step 1 For i = 0,1, ... ,n - 1 set hi = Xi+1 - Xi. 

Step 2 Set ao = 3(al - ao)/ ho - 3FPO; 
an = 3FPN - 3(an - an-d/ hn- 1• 

Step 3 For i = 1,2, ... , n - 1 

3 3 
set ai = -h. (ai+1 - ai) - h. (ai - ai-I)· 

I I - I 

Step 4 Set 10 = 2ho; (Steps 4,5,6, and part of Step 7 solve a tridiagonal linear system 
using a method described in Algorithm 6.7.) 

JLo = 0.5; 
Zo = ao/lo. 
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Figure 3.9 

table 3.15 
x 0.9 1.3 1.9 

j(x) 1.3 1.5 1.85 

3.4 Cubic Spline Interpolation 

Step 5 For i = 1. 2 . ... , n - 1 
set Ii = 2(Xi+ l - xi-d - hi-1J-Li-l; 

J-Li = hi / Ii; 
Zi = (ai - hi-1Zi - 1)/ Ii. 

Step 6 Setln = hn- I (2 - J-Ln-d; 

Zn = (an - hn-1Zn- I)/ In; 
Cn = Zn· 

Step 7 For j = n - 1, n - 2 •... ,0 
set Cj = Zj - J-LjCj+l; 

bj = (aj+1 - aj)/ h j - hj(cj+l + 2cj) / 3; 
dj = (cHI - cj) / (3h j ). 

Step 8 OUTPUT (aj. bj , Cj, dj for j = 0, I, ... ,n - 1); 
STOP. 
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• 

Figure 3.9 shows a ruddy duck in flight. To approximate the top profile of the duck. we have 
chosen points along the curve through which we want the approximating curve to pass. 
Table 3.15 lists the coordinates of 21 data points relative to the superimposed coordinate 
system shown in Figure 3.10 on page 150. Notice that more points are used when the curve 
is changing rapidly than when it is changing more slowly. 

2.1 2.6 3.0 3.9 4.4 4.7 5.0 6.0 7.0 8.0 9.2 10.5 11.3 11.6 12.0 12.6 13.0 13.3 

2.1 2.6 2.7 2.4 2.15 2.05 2.1 2.25 2.3 2.25 1.95 1.4 0.9 0.7 0.6 0.5 0.4 0.25 

Using Algorithm 3.4 to generate the free cubic spline for this data produces the coef
ficients shown in Table 3.16. This spline curve is nearly identical to the profile, as shown 
in Figure 3.11. 
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• 
} Xj 

0 0.9 
1 1.3 
2 1.9 
3 2.1 
4 2.6 
5 3.0 
6 3.9 
7 4.4 
8 4.7 
9 5.0 

10 6.0 
1 1 7.0 
12 8.0 
13 9.2 
14 10.5 
15 11.3 
16 11.6 
17 12.0 
18 12.6 
19 13.0 
20 13.3 

f(x) 

4 r-~-.-,--.-~-.-,--.-~-.-,-,.-.-, 

3 r-+--r-+--r-+--r-+--r-+--r-+~r-+-~ 

2 I--+--

1 f--"-

a· ) b· ) 

1.3 5.40 
1.5 0.42 
1.85 1.09 
2.1 1.29 
2.6 0.59 
2.7 -0.02 
2.4 -0.50 
2.15 -0.48 
2.05 -0.07 
2.1 0.26 
2.25 0.08 
2.3 om 
2.25 -0.14 
1.95 -0.34 
1.4 -0.53 
0.9 -0.73 
0.7 -0.49 
0.6 -0.14 
0.5 -0.18 
0.4 -0.39 
0.25 

Cj d ) 

0.00 -0.25 
-0.30 0.95 

1.41 -2.96 
-0.37 -0.45 
-1.04 0.45 
-0.50 0.17 
-0.03 0.08 

0.08 1.31 
1.27 -1.58 

-0.16 0.04 
-0.03 0.00 
-0.04 -0.02 
-0.11 0.02 
-0.05 -0.01 
-0.10 -0.02 
-0.15 1.21 

0.94 -0.84 
-0.06 0.04 

0.00 -0.45 
-0.54 0.60 

x 
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Figure 3.12 

3.4 Cubic Spline Interpolation 

f(x) 

4r-,--,-,--.--.-,--,-,--,--,-,--,-,--, 

3r-+-~~~--r-+-~~~--r-+-~~-4 

2 f--r.--

11----~ 

1 2 3 4 5 '-9-10 11 12 13 
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x 

For comparison purposes, Figure 3.12 gives an illustration of the curve that is gen
erated using a Lagrange interpolating polynomial to fit the data given in Table 3.15. This 
produces a very strange illustration of the back of a duck, in flight or otherwise. The inter
polating polynomial in this case is of degree 20 and oscillates wildly. 

f(x) 

4 

3 

2 I--H-

1 

2 3 4 5 x 
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To use a clamped spline to approximate this curve we would need derivative approx
imations for the endpoints. Even if these approximations were available, we could expect 
little improvement because of the close agreement of the free cubic spline to the curve of 
the top profile. _ 

Constructing a cubic spline to approximate the lower profile of the ruddy duck would 
be more difficult since the curve for this portion cannot be expressed as a function of x, and 
at certain points the curve does not appear to be smooth. These problems can be resolved 
by using separate splines to represent various portions of the curve, but a more effective 
approach to curves of this type is considered in the next section. 

The clamped boundary conditions are generally preferred when approximating func
tions by cubic splines, so the derivative of the function must be estimated at the endpoints 
of the interval. When the nodes are equally spaced near both endpoints, approximations 
can be obtained by using Eq. (4.7) or any of the other appropriate formulas given in Sec
tions 4.1 and 4.2. When the nodes are unequally spaced, the problem is considerably more 
difficult. 

To conclude this section, we list an error-bound fonnula for the cubic spline with 
clamped boundary conditions. The proof of this result can be found in [Schul, pp. 57-58]. 

Let f E C4 [a, b] with maxa<x:::b I f(4) (x) I = M. If S is the unique clamped cubic spline 
interpolant to f with respect to the nodes a = Xo < Xl < ... < Xn = b, then 

5M 4 
max If(x) - S(x)1 < max (Xj+l - Xj) . 

a<x<b 384o<j<n-1 -
A fourth-order error-bound result also holds in the case of free boundary conditions, 

but it is more difficult to express. (See [BD, pp. 827-835].) 
The free boundary conditions will generally give less accurate results than the clamped 

conditions near the ends of the interval [xo, xn] unless the function f happens to nearly 
satisfy !"(xo) = f"(xn) = O. An alternative to the free boundary condition that does not 
require knowledge of the derivative of f is the not-a-knot condition, (see [Deb, pp. 55-56]). 
This condition requires that S/II (x) be continuous at Xl and at X n-!. 

E X ERe I S ESE T 3.4 

1. Detennine the free cubic spline S that interpolates the data f(O) = 0, f(1) = 1, and f(2) = 2. 

2. Detennine the clamped cubic spline s that interpolates the data f(O) = 0, f(l) = 1, f(2) = 2 
and satisfies s' (0) = s' (2) = 1. 

3. Construct the free cubic spline for the following data. 

a. x f(x) 

8.3 17.56492 
8.6 18.50515 

b. x f(x) 

0.8 0.22363362 
1.0 0.65809197 
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c. x f(x) d. x f(x) 

-0.5 -0.0247500 0.1 -0.62049958 
-0.25 0.3349375 0.2 -0.28398668 

o 1.1010000 0.3 0.00660095 
004 0.24842440 

4. The data in Exercise 3 were generated using the following functions. Use the cubic splines 
constructed in Exercise 3 for the given value of x to approximate f (x) and /' (x), and calculate 
the actual error. 

a. f(x) = x lnx; approximate f(8A) and f'(8.4). 

b. f(x) = sinCe' - 2); approximate f(0.9) and /,(0.9). 

c. f(x) = x 3 +4.oo1x2 + 4.oo2x + 1.101; approximate fC-;) and /'(-;). 

d. f(x) = x cosx - 2x2 + 3x - 1; approximate f(0,25) and /,(0,25). 

5. Construct the clamped cubic spline using the data of Exercise 3 and the fact that 

a. /,(8.3) = 1.116256 and /,(8.6) = 1.151762 
, 

b. /'(0.8) = 2.1691753 and /,(1.0) = 2.0466965 

c. /'( -0.5) = 0.7510000 and /,(0) = 4.0020000 

d. /'(0.1) = 3.58502082 and /,(004) = 2.16529366 

6. Repeat Exercise 4 using the cubic splines constructed in Exercise 5, 

7. A natural cubic spline S on [0, 2] is defined by 

Sex) = 50 (x) = 1 + 2x - x 3
, 

51 (x) = 2 + b(x - 1) + c(x - 1)2 + d(x - 1)3. 

Find b, c, and d. 

8. A clamped cubic spline s for a function f is defined on [1, 3] by 

So(x) = 3(x -1) +2(x - 1)2 - (x - V, 
sex) = 

SI (x) = a + b(x - 2) + c(x - 2)2 + d(x - 2)3. 

Given /' (1) = /' (3), find a, b, c, and d. 

9. A natural cubic spline S is defined by 

So(x) = 1 + B(x -1) - D(x - 1)3, 
Sex) = 

SI (x) = 1 + b(x - 2) - ! (x - 2)2 + d(x - 2)3, 

if 0 < x < I. 

if 1 < x < 2. - -

if I < x < 2. 

if 2 < x < 3, - -

if I < x < 2. 

if 2 < x < 3. - -

If S interpolates the data (I, 1), (2, 1), and (3,0), find B, D, b, and d. 

10. A clamped cubic spline s for a function f is defined by 

So(x) = 1 + Bx + 2X2 - 2x\ 
sex) = 

SI(X) = 1 +b(x -I) -4(x _1)2 +7(x -1)3, 

Find /,(0) and /,(2). 

ifO<x<l. 

if I < x < 2. - -

11. Construct a free cubic spline to approximate f (x) = cos 7T X by using the values given by 
f(x) at x = 0, 0.25, 0.5, 0.75, and 1.0. Integrate the spline over [0, 1], and compare the result 
to fol cos 7T X dx = O. Use the derivatives of the spline to approximate /' (0.5) and r (0.5). 
Compare these approximations to the actual values. 

12. Construct a free cubic spline to approximate f(x) = e-X by using the values given by f(x) 
at x = 0, 0.25, 0,75, and 1.0. Integrate the spline over [0, 1], and compare the result to 
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fol e-X dx = 1 - lie. Use the derivatives of the spline to approximate 1'(0.5) and 1"(0.5). 
Compare the approximations to the actual values. 

13. Repeat Exercise 11, constructing instead the clamped cubic spline with 1'(0) = /,(1) = O. 

14. Repeat Exercise 12, constructing instead the clamped cubic spline with I' (0) = -1, I' (1) = 
-e- I . 

15. Suppose that f(x) is a polynomial of degree 3. Show that !(x) is its own clamped cubic 
spline, but that it cannot be its own free cubic spline. 

16. Suppose the data {Xj, !(Xj»}? I lie on a straight line. What can be said about the free and 
clamped cubic splines for the function f? [Hint: Take a cue from the results of Exercises 1 
and 2.] 

17. Given the partition Xo = 0, XI = 0.05, and X2 = 0.1 of [0,0.1], find the piecewise linear 
interpolating function F for f(x) = e2x . Approximate foo.

1 
e2x dx with foo.

1 
F(x) dx, and 

compare the results to the actual value. 

18. Let f E e2[a, b], and let the nodes a = Xo < XI < ... < Xn = b be given. Derive an error 
estimate similar to that in Theorem 3.13 for the piecewise linear interpolating function F. Use 
this estimate to derive error bounds for Exercise 17. 

19. Extend Algorithms 3.4 and 3.5 to include as output the first and second derivatives of the spline 
at the nodes. 

20. Extend Algorithms 3.4 and 3.5 to include as output the integral of the spline over the interval 
[xo, xn]· 

21. Given the partition Xo = 0, XI = 0.05, X2 = 0.1 of [0, 0.1] and f(x) = eZx : 

a. Find the cubic spline s with clamped boundary conditions that interpolates f. 

b. Find an approximation for foOl e2x dx by evaluating foOl sex) dx. 

c. Use Theorem 3.13 to estimate maxO<x<O.1 If(x) - s(x)1 and 

10.1 1°·1 ° f(x) dx - ° sex) dx . 

d. Detennine the cubic spline S with free boundary conditions, and compare S(O.02), 
s(0.02), and eO 04 = 1.04081077. 

22. Let f be defined on [a, b], and let the nodes a = Xo < XI < X2 = b be given. A quadratic 
spline interpolating function S consists of the quadratic polynomial 

and the quadratic polynomial 

such that 

i. S(xo) = f(xo), S(XI) = f(XI), and S(X2) = f(xz), 

ii. SEC t
[XO,X2]. 

Show that conditions (i) and (ii) lead to five equations in the six unknowns ao, bo, CO, at, b l , 

and Ct. The problem is to decide what additional condition to impose to make the solution 
unique. Does the condition S E e2[xo, X2] lead to a meaningful solution? 

23. Detennine a quadratic spline s that interpolates the data f(O) = 0, f(1) = 1, f(2) = 2 and 
satisfies Sf (0) = 2. 
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24. a. The introduction to this chapter included a table listing the population of the United States 
from 1940 to 1990. Use free cubic spline interpolation to approximate the population in 
the years 1930, 1965, and 2010. 

b. The population in 1930 was approximately 123,203,000. How accurate do you think your 
1965 and 2010 figures are? 

25. A car traveling along a straight road is clocked at a number of points. The data from the 
observations are given in the following table, where the time is in seconds, the distance is in 
feet, and the speed is in feet per second. 

Time 0 3 5 8 13 

Distance 0 225 383 623 993 

Speed 75 77 80 74 72 

a. Use a clamped cubic spline to predict the position of the car and its speed when t = 10 s. 

b. Use the derivative of the spline to determine whether the car ever exceeds a 55-mi/h speed 
limit on the road; if so, what is the first time the car exceeds this speed? 

c. What is the predicted maximum speed for the car? 

26. The 1995 Kentucky Derby was won by a horse named Thunder Gulch in a time of 2:01 i (2 
min and ~ s) for the 1 ! -mi race. Times at the quarter-mile, half-mile, and mile poles were 22;, 

4 .3-
45 5' and 1.35 5 . 

a. Use these values together with the starting time to construct a free cubic spline for Thun
der Gulch's race. 

b. Use the spline to predict the time at the three-quarter-mile pole, and compare this to the 
actual time of 1: 10;. 

c. Use the spline to approximate Thunder Gulch's starting speed and speed at the finish line. 

27. It is suspected that the high amounts of tannin in mature oak leaves inhibit the growth of 
the winter moth (Operophtera bromata L., Geometridae) larvae that extensively damage these 
trees in certain years. The following table lists the average weight of two samples of larvae at 
times in the first 28 days after birth. The first sample was reared on young oak leaves. whereas 
the second sample was reared on mature leaves from the same tree_ 

a. Use a free cubic spline to approximate the average weight curve for each sample. 

b. Find an approximate maximum average weight for each sample by determining the max
imum of the spline. 

Day 0 6 10 13 17 20 28 

Sample 1 average weight (mg) 6_67 17_33 42_67 37.33 30_10 29.3 ] 28.74 

Sample 2 average weight (mg) 6.67 16.11 18.89 15.00 10.56 9.44 8.89 

28. The upper portion of this noble beast is to be approximated using clamped cubic spline inter
polants. The curve is drawn on a grid from which the table is constructed. Use Algorithm 3.5 
to construct the three clamped cubic splines. 
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Curve 1 Curve 2 Curve 3 

• 
!(Xi) l' (Xi) 

• 
!(Xi) l' (Xi) 

. 
!(Xi) rex, ) I Xi I Xi I Xi 

0 1 3.0 l.0 0 17 4.5 3.0 0 27.7 4.1 0.33 
1 2 3.7 1 20 7.0 1 28 4.3 
2 5 3.9 2 23 6.1 2 29 4.1 
3 6 4.2 3 24 5.6 3 30 3.0 -l.5 
4 7 5.7 4 25 5.8 
5 8 6.6 5 27 5.2 
6 10 7.1 6 27.7 4.1 -4.0 
7 13 6.7 
8 17 4.5 -0.67 

29. Repeat Exercise 28, constructing three natural splines using Algorithm 3.4. 

3.5 Parametric Curves 

None of the techniques developed in this chapter can be used to generate curves of the fOlIll 
shown in Figure 3.13 since this curve cannot be expressed as a function of one coordinate 
variable in tenns of the other. In this section we will see how to represent general curves 
by using a parameter to express both the x- and y-coordinate variables. This technique can 
be extended to represent general curves and surfaces in space. 



Figure 3.13 

EXAMPLE 1 

Table 3.17 
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Y 

1 

-1 x 

-1 

A straightforward parametric technique for detenuining a polynomial or piecewise 
polynomial to connect the points (xo, Yo), (XI, YI), ... , (xn, Yn) in the order given is to use 
a parameter t on an interval [to, tn ], with to < tl < ... < tn, and construct approximation 
functions with 

Xi=X(ti) and Yi=y(ti), foreachi=O,l, ... ,n. 

The following example demonstrates the technique in the case where both approxi
mating functions are Lagrange interpolating polynomials. 

Construct a pair of Lagrange polynomials to approximate the curve shown in Figure 3.13, 
using the data points shown on the curve. 

There is flexibility in choosing the parameter, and we will choose the points {t;} r 0 

equally spaced in [0,1], which gives the data in Table 3.17. 

• 
I o 

o 
-1 

o 

1 

0.25 
o 
1 

2 

0.5 
1 
0.5 

3 

0.75 
o 
o 

4 

1 
1 

-1 

This produces the interpolating polynomials 

X(t) = 352 
64t ---

3 
t + 60 

14 
t--

3 
t - 1 
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and 

yet) = 
64 
-t+48 
3 

116 
t--

3 
t + 11 t. 

Plotting this parametric system produces the graph shown in blue in Figure 3.14. Al
though it passes through the required points and has the same basic shape, it is quite a 
crude approximation to the original curve. A more accurate approximation would require 
additional nodes, with the accompanying increase in computation. _ 

y 

1 

-1 x 

-1 

Hermite and spline curves can be generated in a similar manner, but these also require 
extensive computational effort. 

Applications in computer graphics require the rapid generation of smooth curves that 
can be easily and quickly modified. For both aesthetic and computational reasons, changing 
one portion of these curves should have little or no effect on other portions of the curves. 
This eliminates the use of interpolating polynomials and splines since changing one portion 
of these curves affects the whole curve. 

The choice of curve for use in computer graphics is generally a fOlm of the piece
wise cubic Hermite polynomial. Each portion of a cubic Her Illite polynomial is completely 
determined by specifying its endpoints and the derivatives at these endpoints. As a conse
quence, one portion of the curve can be changed while leaving most of the curve the same. 
Only the adjacent portions need to be modified to ensure smoothness at the endpoints. The 
computations can be performed quickly, and the curve can be modified a section at a time. 

The problem with Hermite interpolation is the need to specify the derivatives at 
the endpoints of each section of the curve. Suppose the curve has n + 1 data points 
(x(to), y(to)), ... , (x(tn), y(tn)), and we wish to parameterize the cubic to allow complex 
features. Then we must specify X/(ti) and y/(ti), for each i = 0, 1, ... ,n. This is not as 



Figure 3.15 
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difficult as it would first appear, since each portion is generated independently. We must 
ensure only that the derivatives at the endpoints of each portion match those in the adjacent 
portion. Essentially, then, we can simplify the process to one of determining a pair of cubic 
Hermite polynomials in the parameter t. where to = 0 and tl = 1, given the endpoint data 
(x(O). yeO»~ and (x(1). y(I» and the derivatives dy/dx (at t = 0) and dy/dx (at t = 1). 

Notice, however, that we are specifying only six conditions, and the cubic polynomials 
in x(t) and yet) each have four parameters, for a total of eight. This provides flexibility 
in choosing the pair of cubic Hermite polynomials to satisfy the conditions, because the 
natural form for determining x(t) and y(t) requires that we specify x'(O), x'(1), y'(O), and 
y' (1). The explicit Hermite curve in x and y requires specifying only the quotients 

dy (t _ 0) _ y'(O) 
dx - - '-x '~(O::-:-) and 

d '(I) ~Y(t=l)=Y . 
dx x'(l) 

By mUltiplying x' (0) and y' (0) by a common scaling factor, the tangent line to the curve 
at (x(O). yeO)~ remains the same, but the shape of the curve varies. The larger the scaling 
factor, the closer the curve comes to approximating the tangent line near (x(O), y(O». A 
similar situation exists at the other endpoint (x(1), y(1». 

To further simplify the process in interactive computer graphics, the derivative at an 
endpoint is specified by using a second point, called a guidepoint, on the desired tangent 
line. The farther the guidepoint is from the node, the more closely the curve approximates 
the tangent line near the node. 

In Figure 3.15, the nodes occur at (xo. Yo) and (XI, YI), the guidepoint for (xo, Yo) is 
(xo + ao. Yo + .80), and the guidepoint for (XI. YI) is (XI - ai, YI - .81). The cubic Hermite 
polynomial x(t) on [0. 1] satisfies 

x(O) = Xo. xCI) = XI, x'(O) = ao, and x'(1) = al. 

y 

x 

The unique cubic polynomial satisfying these conditions is 
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In a similar manner, the unique cubic polynomial satisfying 

y(O) = Yo, y(l)=Y1, y'(O)=fio, and y'(l)=fi1 

• 

18 

y(t) = [2(yo - Y1) + (f3o + fid]t 3 + [3(Y1 - Yo) - (f31 + 2fio)]t2 + fiot + Yo. (3.23) 

Figure 3.16 
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The graphs in Figure 3.16 show some possibilities of the curves produced by Eqs. (3.22) 
and (3.23) when the nodes are (0, 0) and (1,0) and the slopes at these nodes are 1 and -1, 
respectively. The specification of the slope at the endpoints requires only that ao = f30 and 
al = -f31, since the ratios ao/ f30 and al / f31 give the slopes at the left and right endpoints, 
respectively. • 

The standard procedure for detennining curves in an interactive graphics mode is to 
first use a mouse or trackball to set the nodes and guidepoints to generate a first approxi
mation to the curve. These can be set manually, but most graphics systems permit you to 
use your input device to draw the curve on the screen freehand and will select appropriate 
nodes and guidepoints for your freehand curve. 

The nodes and guidepoints can then be manipulated into a position that produces an 
aesthetically pleasing curve. Since the computation is minimal, the curve can be deter
mined so quickly that the resulting change is seen immediately. Moreover, all the data 
needed to compute the curves are imbedded in the coordinates of the nodes and guide
points, so no analytical knowledge is required of the user of the system. 

PopUlar graphics programs use this type of system for their freehand graphic repre
sentations in a slightly modified fonn. The Reunite cubics are described as Bezier poly
nomials, which incorporate a scaling factor of 3 when computing the derivatives at the 
endpoints. This modifies the parametric equations to 

and 

X(t) = [2(xo - XI) + 3(ao + al)]t3 + [3(xl - xo) - 3(al + 2ao)]t2 + 3aot + Xo, 

(3.24) 

yet) = [2(yo - yd + 3(f3o + (31)]t 3 + [3(Yl - YO) - 3(f31 + 2f3o)t2 + 3{3ot + Yo, 

(3.25) 

for 0 < t ::5 I, but this change is transparent to the user of the system. 
Algorithm 3.6 constructs a set of Bezier curves based on the parametric equations in 

(3.24) and (3.25). 

Bezier Curve 

To construct the cubic Bezier curves Co, ... , Cn - 1 in parametric form, where C i is repre
sented by 

(Xi(t), Yi(t» = (a~i) + aiilt + aiil t 2 + aj!}t3 , bgl + bi!}t + b~)t2 + bjilt 3), 

for 0 ::5 t ::5 1, as detemlined by the left endpoint (Xi, yj), left guidepoint (xt, yt), right 
endpoint (Xi+!, Yi+!), and right guidepoint (Xi~1' Yi+l) for each i = 0, 1, ... , n - 1: 

INPUT n; (xo, Yo), .. · , (xn, Yn); (xt,yt),.·· , (x;;_1' Y;;-l); (xj, yj), ... , ex;, Y;)· 

OUTPUT 
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Step 1 For each i = 0, 1, ... ,n - 1 do Steps 2 and 3. 

Step 2 Set o(i) - X' o - I, 

Step 3 

Step 4 STOP. 

b(i) - v·' o -..," 

o;i) = 3(xt - Xi); 

biiJ = 3(yt - Yi); 

(i) 3 ( + - 2 +). a2 = Xi Xi +1 - Xi ' 

bii) = 3(Yi + Yi+1 - 2yt); 

(i) - 3 + 3 - . a3 - Xi+l - Xi + Xi - X i+!, 

b (i) - }' Y + 3y+ 3y-' 3 - i+1 - i i-HI' 

• 

Three-dimensional curves are generated in a similar manner by additionally specifying 
third components Zo and z! for the nodes and Zo + Yo and Zl - YI for the guidepoints. The 
more difficult problem involving the representation of three-dimensional curves concerns 
the loss of the third dimension when the curve is projected onto a two-dimensional com
puter screen. Various projection techniques are used, but this topic lies within the realm 
of computer graphics. For an introduction to this topic and ways that the technique can 
be modified for surface representations, see one of the many books on computer graphics 
methods, such as [Hill,F]. 

E X ERe I S ESE T 3.5 

1. Let (xo. Yo) = (0,0) and (XI. YI) = (5,2) be the endpoints of a curve. Use the given guide
points to construct parametric cubic Hermite approximations (x(t), y(t» to the curve. and 
graph the approximations. 

a. (1, 1) and (6, 1) h. (0.5,0.5) and (5.5, 1.5) 

c. (1, I) and (6, 3) d. (2, 2) and (7, 0) 

2. Repeat Exercise 1 using cubic Bezier polynomials. 

3. Construct and graph the cubic Bezier polynomials given the following points and guidepoints. 

a. Point (1,1) with guidepoint (1.5, 1.25) to point (6,2) with guidepoint (7, 3) 

h. Point (I, 1) with guidepoint (1.25, 1.5) to point (6,2) with guidepoint (5, 3) 

c. Point (0,0) with guidepoint (0.5,0.5) to point (4,6) with entering guidepoint (3.5,7) 
and exiting guidepoint (4.5, 5) to point (6, 1) with guidepoint (7, 2) 

d. Point (0,0) with guidepoint (0.5, 0.5) to point (2, 1) with entering guidepoint (3, 1) and 
exiting guidepoint (3, 1) to point (4, 0) with entering guidepoint (5, 1) and exiting guide
point (3, -1) to point (6, -1) with guidepoint (6.5, -0.25) 
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4. Use the data in the following table and Algorithm 3.6 to approximate the shape of the letter 'It. 
• 

f3j a~ f3; I x- Yj aj I I 

0 3 6 3.3 6.5 
I 2 2 2.8 3.0 2.5 2.5 
2 6 6 5.8 5.0 5.0 5.8 
3 5 2 5.5 2.2 4.5 2.5 
4 6.5 3 6.4 2.8 

5. Suppose a cubic Bezier polynomial is placed through (ua, va) and (U3, V3) with guidepoints 
(UI, VI) and (U2, V2), respectively. 
a. Derive the parametric equations for u(t) and v(t) assuming that 

u(O) = Ua, u(l) = U3, u'(O) = UI - Ua, u f (1) = U3 - U2 

and 

v(O) = Va, v(l) = V3, v'(O) = VI - Va, vf (1) = V3 - V2' 

b. Let!(;i) = uj,fori = 0,1,2,3andg(;i) = vj,fori = 0,1,2,3. Show that the 
Bernstein polynomial of degree 3 in t for! is u(t) and the Bernstein polynomial of 
degree three in t for g is v(t). (See Exercise 29 of Section 3.1.) 

3.6 Survey of Methods and Software 

In this chapter we have considered approximating a function using polynomials and piece
wise polynomials. The function can be specified by a given defining equation or by pro
viding points in the plane through which the graph of the functiori passes. A set of nodes 
xo, xl, ... , Xn is given in each case, and more infOlmation, such as the value of various 
derivatives, may also be required. We need to find an approximating function that satisfies 
the conditions specified by these data. 

The interpolating polynomial P (x) is the polynomial of least degree that satisfies, for 
a function!, 

P(Xj) = !(Xj), for each i = 0,1, ... , n. 

Although this interpolating polynomial is unique, it can take many different fOlIllS. The 
Lagrange fOlIO is most often used for interpolating tables when n is small and for deriving 
fOlmulas for approximating derivatives and integrals. Neville's method is used for eval
uating several interpolating polynomials at the same value of x. Newton's fOlIOS of the 
polynomial are more appropriate for computation and are also used extensively for deriv
ing formulas for solving differential equations. However, polynomial interpolation has the 
inherent weaknesses of oscillation, particularly if the number of nodes is large. In this case 
there are other methods that can be better applied. 

The Hermite polynomials interpolate a function and its derivative at the nodes. They 
can be very accurate but require more information about the function being approximated. 
When there are a large number of nodes, the Heunite polynomials also exhibit oscillation 
weaknesses. 
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The most commonly used form of interpolation is piecewise-polynomial interpolation. 
If function and derivative values are available, piecewise cubic Hermite interpolation is 
recommended. This is the preferred method for interpolating values of a function that is 
the solution to a differential equation. When only the function values are available, free 
cubic spline interpolation can be used. This spline forces the second derivative of the spline 
to be zero at the endpoints. Other cubic splines require additional data. For example, the 
clamped cubic spline needs values of the derivative of the function at the endpoints of the 
interval. 

Other methods of interpolation are commonly used. Trigonometric interpolation, in 
particular the Fast Fourier TransfOIm discussed in Chapter 8, is used with large amounts 
of data when the function has a periodic nature. Interpolation by rational functions is also 
used. If the data are suspected to be inaccurate, smoothing techniques can be applied, 
and some form of least squares fit of data is recommended. Polynomials, trigonometric 
functions, rational functions, and splines can be used in least squares fitting of data. We 
consider these topics in Chapter 8. 

Interpolation routines included in the IMSL Library are based on the book A Practi
cal Guide to Splines by Carl de Boor [Deb] and use interpolation by cubic splines. The 
subroutine CSDEC is for interpolation by cubic splines with user-supplied end conditions, 
CSPER is for interpolation by cubic splines with periodic end conditions, and CSHER 
is for interpolation by quasi-Hermite piecewise polynomials. The subroutine CSDEC in
corporates Algorithms 3.4 and 3.5. The subroutine CSINT uses the not-a-knot condition 
mentioned at the end of Section 3.4. There are also cubic splines to minimize oscillations 
and to preserve concavity. Methods for two-dimensional interpolation by bicubic splines 
are also included. 

The NAG library Pttp://www.netlib.org contains the subroutines EOIAEF for poly
nomial and Hermite interpolation, EOIBAF for cubic spline interpolation, and EOIBEF 
for piecewise cubic Hermite interpolation. The subroutine EO IABF is used to interpolate 
data at equally spaced points. The routine EOIAAF is applied if the data are given at un
equally spaced points. NAG also contains subroutines for interpolating functions of two 
variables. 

The netlib library contains the subroutines cubspl.f under the package pppack to com
pute the cubic spline with various endpoint conditions. Under the package slatec, polint.f 
produces the Newton's divided difference coefficients for a discrete set of data points and 
under the package slatec/pchip are various routines for evaluating Hermite piecewise poly
nomials. 

The MATLAB function INTERPI can be used to interpolate a discrete set of data 
points, using either nearest neighbor interpolation, linear interpolation, cubic spline inter
polation, or cubic interpolation. INTERPI outputs the polynomial evaluated at a discrete 
set of points. POLYFIT, based on a least squares approximation (see Section 8.1), can be 
used to find an interpolating function of degree at most n that passes through n + 1 specified 
points. Cubic splines can be produced with the function SPLINE. 

Maple is used to construct an interpolating polynomial using the command 

>interp(X,Y,x); 

where X is the list [x [0] , x [1] , ... ,x [n]], Yis the list [f (x [0]), f(x [1] ), ... , f (x En] )], 
and x is the variable to be used. 
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The natural cubic spline can also be constructed with Maple. First enter 

>readlib(spline); 

to make the package available. With X and Y as in the preceding paragraph the command 

>spline(X,Y,x,3); 

constructs the natural cubic spline interpolating X = [x [0] , ... ,x [n]] and Y = [y [0], 
... ,y en] ] , where x is the variable and 3 refers to the degree of the cubic spline. Linear 
and quadratic splines can also be created. 

General references to the methods in this chapter are the books by Powell [Po] and by 
Davis [Da]. The seminal paper on splines is due to Schoenberg [Scho]. Important books 
on splines are by Schultz [Schul], De Boor [Deb], Diercx [Di], and Schumaker [Schum] . 

• 

*. -.". '", ." ... ' , 
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A sheet of corrugated roofing is constructed by pressing a flat sheet of 

aluminum into one whose cross section has the form of a sine wave. 

A corrugated sheet 4 ft long is needed, the height of each wave is 

1 in. from the center line, and each wave has a period of approximately 

271" in. The problem of finding the length of the initial flat sheet is one of 

determining the length of the curve given by fix) = sinx from x = 0 

in. to x = 48 in. From calculus we know that this length is 

L = i 48 
/1 + (f'(X»2 dx = i 48 

./1 + (COSX)2 dx, 

so the problem reduces to evaluating this integral. Although the sine 

function is one of the most common mathematical functions, the calcu

lation of its length involves an elliptic integral of the second kind, which 

cannot be evaluated by ordinary methods. Methods are developed in this 

chapter to approximate the solution to problems of this type. This par

ticular problem is considered in Exercise 21 of Section 4.4 and Exercise 

10 of Section 4.5. 

We mentioned in the introduction to Chapter 3 that one reason for 

using algebraic polynomials to approximate an arbitrary set of data is 
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that, given any continuous function defined on a closed interval, there 

exists a polynomial that is arbitrarily close to the function at every point 

in the interval. Also, the derivatives and integrals of polynomials are eas

ily obtained and evaluated. It should not be surprising, then, that most 

procedures for approximating integrals and derivatives use the polyno

mials that approximate the function. 

4.1 Numerical Differentiation 

The derivative of the function f at Xo is 

f'(xo) = lim f(xo + h) - f(xo). 
h-"O h 

This formula gives an obvious way to generate an approximation to f' (x): simply compute 

f(xo + h) - f(xo) 

h 

for small values of h. Although this may be obvious, it is not very successful. due to our 
old nemesis, roundoff error. But it is certainly the placc to start. 

To approximate !'(xo), suppose first that Xo E (a, b), where f E C2[a. hi. and that 
Xl = Xo + h for some h =1= 0 that is sufficiently small to ensure that x J E l (/. h]. We 
construct the first Lagrange polynomial PO,I(X) for f determined by XlJ and XJ. with its 
error term: 

f(x) = Po, 1 (x) + (x - xo~~x - Xl) j"(~(x» 

f(xo)(X - Xo - h) f(xo + h)(x - Xo) (x - xo)(x - Xo - h) ". 
= -h + h + 2 . f (~(x)), 

for some ~(x) in [a, b]. Differentiating gives 

so 

f'(x) = f(xo + h) - f(xo) + Dx 
h 

(X - xo)(x - Xo - h) ". . 
" f'(~(x») 
"-

--
f(xo + h) - f(xo) 2(x - xo) - h " 

h + 2 f(~(x») 

+ (x - xo)(x - xo - h) Dx(ff/(~(x»). 
2 . 

f'(x) ~ f(xo + h) - f(xo). 
h 
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One difficulty with this formula is that we have no information about Dxfl/(~(x», so the 
truncation error cannot be estimated. When x is Xo, however, the coefficient of Dxfl/ (~(x» 
is 0, and the formula simplifies to 

f'(xo) = f(xo + h) - f(xo) _ h fl/(O. 
h 2 

(4.1 ) 

For small values of h, the difference quotient [f(xo + h) - f(xo)]/ h can be used to 
approximate f' (xo) with an error bounded by Mlh 1/2, where M is a bound on I fl/ (x) I for 
x E [a, b]. This formula is known as the forward-difference formula if h > a (see Figure 
4.1) and the backward-difference formula if h < O. 

y 
Slope !'(xo) 

;;;:..--==-~s lope 

Xo Xo + h 

f(xo + h) - f(xo) 

h 

Let f (x) = In x and Xo = 1.8. The forward-difference fOIl1lula 

f(1.8 + h) - f(1.8) 

h 

is used to approximate f'(1.8) with error 

Ihf"(~)1 Ihl Ihl 
--'---'---' = < where 1.8 < ~ < 1.8 + h. 

2 2~2 - 2(1.8)2' 

The results in Table 4.1 are produced when h = 0.1, 0.01, and 0.001. 

f(1.8 + h) - f(1.8) Ih I 
h f(1.8 + h) 

2(1.8)2 h 

0.1 0.64185389 0.5406722 0.0154321 
0.01 0.59332685 0.5540180 0.0015432 
0.001 0.58834207 0.5554013 0.0001543 

x 

Since f'(x) = l/x, the exact value of f'(1.8) is 0.555, and the error bounds are quite 
close to the true approximation error. _ 
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To obtain general derivative approximation formulas, suppose that {xo, XI, ... , xn} 
are (n + 1) distinct numbers in some interval I and that I E C+I (l). From Theorem 3.3, 

I(x) = t l(xdLk(x) + (x - xo) ... (x - Xn) I(n+l) (;(x)), 
k=O (n + I)! 

for some ~ (x) in I, where Lk (x) denotes the kth Lagrange coefficient polynomial for f at 
Xo, Xl, ... , Xn . Differentiating this expression gives 

+ (x - xo)··· (x - xn) D [f(n+l)(~(x»]. 
(n + 1)! x 

Again, we have a problem estimating the truncation error unless x is one of the num
bers x). In this case, the term multiplying DAf(n+I)(~(x))] is 0, and the formula becomes 

n f(n+l)(Hx») n 
f'ex)~ = L f(Xk)L~(xJ) + ] n (x) - Xk), 

k=O (n + 1)! k=O 
(4.2) 

k¥} 

which is called an (n + I)-point formula to approximate f'ex)~. 
In general, using more evaluation points in Eq. (4.2) produces greater accuracy, al

though the number of functional evaluations and growth of roundoff error discourages this 
somewhat. The most common formulas are those involving three and five evaluation points. 

We first derive some useful three-point formulas and consider aspects of their errors. 
Since 

we have 
2x - Xl - x, 

L~(x) = - . 

Similarly, 

I 2x - Xo - X2 
L I (x) = ----'---'--

(XI - XO)(XI - X2) 
and 

Hence, from Eq. (4.2), 

2X)-XI- X2 

(xo - XI)(XO - X2) 

(xo - XI)(XO -X2) 

I 2x - Xo - XI 
L 2 (x) = . 

(X2 - XO)(X2 - xd 

2x) - Xo - X2 

(XI - XO)(XI - X2) 

for each j = 0, I, 2, where the notation ~j indicates that this point depends on x j. 

(4.3) 

The three formulas from Eq. (4.3) become especially useful if the nodes are equally 
spaced, that is, when 

XI = Xo + hand X2 = Xo + 2h, for some h i- O. 

We will assume equally spaced nodes throughout the remainder of this section. 
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Using Eq. (4.3) with xi = Xo, XI = Xo + h, and X2 = Xo + 2h gives 

Doing the same for xi = XI gives 

1 1 
-- f(xo) + -f(X2) 

2 2 

and for xi = Xl, 

I I 
f (Xl) = h 

Since XI = Xo + hand X2 = Xo + 2h, these fonnulas can also be expressed as 

, I 
f (xo) = h 

I 1 
f(xo+h)=

h 

I 1 
f (xo + 2h) = h 

3 I 
-- f(xo) + 2f(xo + h) - - f(xo + 2h) 

2 2 

1 1 h2 
(3) 

- 2 f(xo) + 2 f(xo + 2h) - 6" f (~I), and 

I 3 h 2 

2 f(xo) - 2f(xo + h) + 2 f(xo + 2h) + 3" f(3)(~l)' 

As a matter of convenience, the variable substitution Xo for Xo + h is used in the middle 
equation to change this formula to an approximation for f' (xo). A similar change, Xo for 
Xo + 2h, is used in the last equation. This gives three fOlIIlulas for approximating l' (xo): 

I hl 
f'(XO) = [-3f(xo) + 4f(xo + h) - f(xo + 2h)] + - f(3)(~o), 

2h 3 

I h2 

f'(xo) = 2h [- f(xo - h) + f(xo + h)] - 6" f(3)(~I)' and 

I h2 

f'(XO) = [f(xo - 2h) - 4f(xo - h) + 3f(xo)] + - f(3)(~2)' 
2h 3 

Finally, note that since the last of these equations can be obtained from the first by simply 
replacing h with -h, there are actually only two formulas: 

I h 2 

f'(XO) = 2h [-3f(xo) + 4f(xo + h) - f(xo + 2h)] + 3"f(3)(~O)' (4.4) 

where ~o lies between Xo and Xo + 2h, and 

(4.5) 

where ~l lies between (xo - h) and (xo + h). 

, 
• 

, 
, , 

-, 

( 

) 
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Although the errors in both (4.4) and (4.5) are O(h2), the error in Eq. (4.5) is approx
imately half the error in Eq. (4.4). This is because Eq. (4.5) uses data on both sides of Xo 

and Eq. (4.4) uses data on only one side. Note also that / needs to be evaluated at only two 
points in Eq. (4.5), whereas in Eq. (4.4) three evaluations are needed. Figure 4.2 gives an 
illustration of the approximation produced from Eq. (4.5). The approximation in Eq. (4.4) 
is useful near the ends of an interval, since information about / outside the interval may 
not be available. 

y 

Slope 
1 

2h [/(xo + h) - /(xo - h)] 

Xo - h Xo Xo + h x 

The methods presented in Eqs. (4.4) and (4.5) are called three-point formulas (even 
though the third point f(xo) does not appear in Eq. (4.5». Similarly, there are five-point 
formulas that involve evaluating the function at two more points, whose error teIln is 
O(h4 ). One is 

I h4 
f'(xo) = -[f(xo - 2h) - 8f(xo - h) + 8f(xo + h) - /(xo + 2h)] + -/5)(0, 

12h 30 . 

(4.6) 

where ~ lies between Xo - 2h and Xo + 2h, whose derivation is considered in Section 
4.2. The other five-point formula is useful for end-point approximations, particularly with 
regard to the clamped cubic spline interpolation of Section 3.4. It is 

, 1 
/ (xo) = 12h [-25/(xo) + 48/(xo + h) - 36/(xo + 2h) 

h4 
+ 16/(xo + 3h) - 3f(xo + 4h)] + - f(5)(~), 

5 

(4.7) 

where ~ lies between Xo and Xo + 4h. Left-endpoint approximations are found using this 
formula with h > 0 and right-endpoint approximations with h < O. 



172 

EXAMPLE 2 

, 

T.lble 4.2 

C HAP T E R 4 • Numerical Differentiation and Integration 

Values for f(x) = xex are given in Table 4.2. 

x I(x) 

1.8 10.889365 
1.9 12.703199 
2.0 14.778112 
2.1 17.148957 
2.2 19.855030 

Since l' (x) = (x + l)eX, we have f' (2.0) = 22.167168. Approximating f' (2.0) using the 
various three- and five-point fonnulas produces the following results. 

Three-Point Formulas 
Using (4.4) with h = 0.1 : i2[-3f(2.0) + 4f(2.1) - f(2.2)] = 22.032310, 

Using (4.4) with h = -0.1 : -~.2[ -3f(2.0) + 4f(1.9) - f(1.8)] = 22.054525, 

Using (4.5) with h = 0.1 : 0~2[f(2.1) - f(1.9)] = 22.228790, 

Using (4.5) with h = 0.2 : 0
1
4 [f(2.2) - f(1.8)] = 22.414163. 

The errors in the formulas are approximately 

1.35 x 10-1, 1.13x1O-I , -6.16x1O-2 , and -2.47 x 10-1, 

respectively. 

Five-Point Formula 
Using (4.6) with h = 0.1 (the only five-point forIllula applicable): 

1 [f(1.8) - 8f(1.9) + 8f(2.1) - f(2.2)] = 22.166996. 
1.2 

The error in this formula is approximately 

1.69 X 10-4 . 

The five-point formula is clearly superior. Note also that the error from Eq. (4.5) with 
h = 0.1 is approximately half of the magnitude of the error produced using Eq. (4.4) with 
either h = 0.1 or h = -0.1. • 

Methods can also be derived to find approximations to higher derivatives of a function 
using only tabulated values of the function at various points. The derivation is algebraically 
tedious, however, so only a representative procedure will be presented. 

Expand a function f in' a third Taylor polynomial about a point Xo and evaluate at 
Xo + h and Xo - h. Then 

f (xo + h) = f (xo) + f' (xo)h + ~ fit (xo)h 2 + ~ f'" (xo)h 3 + 2~ f(4) (~1 )h4 
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and 

h I 1 II 2 1 III 3 1 (4) 4 
f(xo - ) = f(xo) - f (xo)h + 2 f (xo)h - 6 f (xo)h + 24 f (~_l)h, 

where Xo - h < ~_I < Xo < ~I < Xo + h. 
If we add these equations, the term involving fl (xo) cancels and we obtain 

Solving this equation for f" (xo) gives 

Suppose f(4) is continuous on [xo-h, xo+h]. Since ~[f(4)(~d+ f(4)(~_I)] is between 
f(4)(~d and f(4)(~_d, the Intermediate Value Theorem implies that a number ~ exists 
between ~I and ~_I, and hence in (xo - h, Xo + h), with 

This penults us to rewrite Eq. (4.8) as 

1 h2 

!"(xo) = h2[f(xO - h) - 2f(xo) + f(xo + h)] - 12 f(4)(0, (4.9) 

for some ~, where Xo - h < ~ < Xo + h. 

For the data given in Example 2, for f(x) = xex , we can use Eq. (4.9) to approximate 
1"(2.0). Since I"(x) = (x + 2)eX, the exact value is 1"(2.0) = 29.556224. Using (4.9) 
with h = 0.1 gives 

1 
!,,(2.0) ~ [f(1.9) - 2f(2.0) + f(2.1)) = 29.593200, 

0.01 

and using (4.9) with h = 0.2 gives 

!,,(2.0) ~ 1 [f(1.8) - 2f(2.0) + f(2.2)] = 29.704275. 
0.04 

The errors are approximately -3.70 x 10-2 and -1.48 x to-I, respectively. _ 

A particularly important subject in the study of numerical differentiation is the effect 
roundoff error plays in the approximation. Let us examine Eq. (4.5), 

I 1 h
2 

(3) 
f (xo) = 2h [f(xo + h) - f(xo - h)] - 6 f (~I), 

more closely. Suppose that in evaluating f (xo + h) and f (xo - h) we encounter roundoff - -errors e(xo + h) and e(xo - h). Then our computed values f(xo + h) and f(xo - h) are 
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related to the true values I(xo + h) and I(xo - h) by the formulas 

-
I(xo + h) = I(xo + h) + e(xo + h) 

and 

-
I(xo - h) = I(xo - h) + e(xo - h). 

The total error in the approximation, 

- - 2 
r I(xo + h) - I(xo - h) _ e(xo + h) - e(xo - h) h (3) 

I (xo) - 2h - 2h - "6 I (~1), 

is due in part to roundoff error and in part to truncation error. If we assume that the roundoff 
errors e(xo ± h) are bounded by some number £ > 0 and that the third derivative of I is 
bounded by a number M > 0, then 

- -
f

lex ) _ I(xo + h) - I(xo - h) 
. 0 2h 

£ h2 

< - + -M. 
- h 6 

To reduce the truncation error, h 2 M /6, we must reduce h. But as h is reduced, the roundoff 
error £ / h grows. In practice, then, it is seldom advantageous to let h be too small since the 
roundoff error will dominate the calculations. 

Consider using the values in Table 4.3 to approximate I' (0.900), where I (x) = sin x. The 
true value is cos 0.900 = 0.6216l. 

• . 
x smx x smx 

0.800 0.71736 0.901 0.78395 
0.850 0.75128 0.902 0.78457 
0.880 0.77074 0.905 0.78643 
0.890 0.77707 0.910 0.78950 
0.895 0.78021 0.920 0.79560 
0.898 0.78208 0.950 0.81342 
0.899 0.78270 1.000 0.84147 

Using the formula 

'0.900 ~ f(0.900 + h) - f(0.900 - h) 
f () 2h ' 

with different values of h, gives the approximations in Table 4.4. 
The optimal choice for h appears to lie between 0.005 and 0.05. If we perform some 

analysis on the error tellll, 
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Approximation 
h to 1'(0.900) Error 

0.001 0.62500 0.00339 
0.002 0.62250 0.00089 
0.005 0.62200 0.00039 
0.010 0.62150 -0.00011 
0.020 0.62150 -0.00011 
0.050 0.62140 -0.00021 
0.100 0.62055 -0.00106 

we can use calculus to verify (see Exercise 23) that a minimum for e occurs at h = ~3E' / M, 
where 

M = max 1/"/(x)1 = max I cosxl = cosO.8 ~ 0.6967l. 
XE[O.800, 1.00] XE[O.800, J.OO] 

Since values of I are given to five decimal places, it is reasonable to assume that the round
off error is bounded by E' = 0.000005. Therefore, the optimal choice of h is approximately 

h = 3 3(0.000005) ~ 0.028 
0.69671 ' 

which is consistent with the results in Table 4.4. 
In practice, we cannot compute an optimal h to use in approximating the derivative, 

since we have no knowledge of the third derivative of the function. But we must remain 
aware that reducing the step size will not always improve the approximation. _ 

We have considered only the roundoff-error problems that are presented by the three
point formula Eq. (4.5), but similar difficulties occur with all the differentiation forlllulas. 
The reason can be traced to the need to divide by a power of h. As we found in Section 
1.2 (see, in particular, Example 3), division by small numbers tends to exaggerate roundoff 
error and this operation should be avoided if possible. In the case of numerical differen
tiation, it is impossible to avoid the problem entirely, although the higher-order methods 
reduce the difficulty. 

Keep in mind that as an approximation method, numerical differentiation is unstable, 
since the small values of h needed to reduce truncation error also cause the roundoff error to 
grow. This is the first class of unstable methods we have encountered, and these techniques 
would be avoided if it were possible. However, in addition to being used for computational 
purposes, the formulas are needed for approximating the solutions of ordinary and partial
differential equations. 

E X ERe I 5 ESE T 4.1 

1. Use the forward-difference fonnulas and backward-difference fonnulas to determine each 
missing entry in the following tables. 
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a. x I(x) rex) b. x I(x) rex) 

0.5 0.4794 0.0 0.00000 
0.6 0.5646 0.2 0.74140 
0.7 0.6442 0.4 1.3718 

2. The data in Exercise 1 were taken from the following functions. Compute the actual errors in 
Exercise 1, and find error bounds using the error formulas. 

a. I(x) = sinx b. I(x) = eX - 2x 2 + 3x - 1 

3. Use the most accurate three-point formula to determine each missing entry in the following 
tables. 

a. x f(x) rex) b. x f(x) rex) 

1.1 9.025013 8.1 16.94410 
1.2 11.02318 8.3 17.56492 
1.3 13.46374 8.5 18.19056 
1.4 16.44465 8.7 18.82091 

c. x f(x) rex) d. x I(x) rex) 

2.9 -4.827866 2.0 3.6887983 
3.0 -4.240058 2.1 3.6905701 
3.1 -3.496909 2.2 3.6688192 
3.2 -2.596792 2.3 3.6245909 

4. The data in Exercise 3 were taken from the following functions. Compute the actual errors in 
Exercise 3, and find error bounds using the error formulas. 

a. I(x) = e2x b. I(x) = x lnx 

c. I(x) = x cosx - x 2 sin x d. I(x) = 2(lnx)2 + 3 sin x 

5. Use the formulas given in this section to determine, as accurately as possible, approximations 
for each missing entry in the following tables. 

a. x 

2.1 
2.2 
2.3 
2.4 
2.5 
2.6 

f(x) rex) 

-1.709847 
-1.373823 
-1.119214 

-0.9160143 
-0.7470223 
-0.6015966 

b. x 

-3.0 
-2.8 
-2.6 
-2.4 
-2.2 
-2.0 

f(x) 

9.367879 
8.233241 
7.180350 
6.209329 
5.320305 
4.513417 

rex) 

6. The data in Exercise 5 were taken from the following functions. Compute the actual errors in 
Exercise 5, and find error bounds using the error formulas and Maple. 

a. I(x) = tan x b. I(x) = ex
/

3 + x 2 

7. Use the following data and the knowledge that the first five derivatives of I are bounded on 
[1,5] by 2, 3, 6, 12 and 23, respectively, to approximate r (3) as accurately as possible. Find 
a bound for the error. 

x 1 2 3 4 5 

I(x) 2.4142 2.6734 2.8974 3.0976 3.2804 

8. Repeat Exercise 7, assuming instead that the third derivative of I is bounded on [1, 5] by 4. 
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9. Repeat Exercise 1 using four-digit rounding arithmetic, and compare the errors to those in 
Exercise 2. 

10. Repeat Exercise 3 using four-digit chopping arithmetic, and compare the errors to those in 
Exercise 4. 

11. Repeat Exercise 5 using four-digit rounding arithmetic, and compare the errors to those in 
Exercise 6. 

12. Consider the following table of data: 

x 0.2 004 0.6 0.8 1.0 

I(x) 0.9798652 0.9177710 0.808038 0.6386093 0.3843735 

a. Use all the appropriate formulas given in this section to approximate /,(0.4) and /,,(004). 

h. Use all the appropriate formulas given in this section to approximate I' (0.6) and /,,(0.6). 

13. Let I(x) = cOSJrX. Use Eq. (4.9) and the values of I(x) at x = 0.25,0.5, and 0.75 to 
approximate I" (0.5). Compare this result to the exact value and to the approximation found in 
Exercise 11 of Section 304. Explain why this method is particularly accurate for this problem, 
and find a bound for the error. 

14. Let I(x) = 3xex - cosx. Use the following data and Eq. (4.9) to approximate /,,(1.3) with 
h = 0.1 and with h = 0.01. 

x 1.20 1.29 1.30 1.31 lAO 

I(x) 11.59006 13.78176 14.04276 14.30741 16.86187 

Compare your results to /" ( 1. 3). 

15. Consider the following table of data: 

x 0.2 0.4 0.6 0.8 1.0 

I(x) 0.9798652 0.9177710 0.8080348 0.6386093 0.3843735 

a. Use Eq. (4.7) to approximate I' (0.2). 

h. Use Eq. (4.7) to approximate /,(1.0). 

c. Use Eq. (4.6) to approximate 1'(0.6). 

16. Derive an O(h4) five-point formula to approximate /'(xo) that uses I(xo - h), I(xo), I(xo + 
h), I(xo + 2h), and I(xo + 3h). [Hint: Consider the expression A/(xo - h) + BI(xo + h) + 
C I (xo + 2h) + D I (xo + 3h). Expand in fourth Taylor polynomials, and choose A, B, C, and 
D appropriately.] 

17. Use the formula derived in Exercise 16 and the data of Exercise 15 to approximate /,(004) and 
/'(0.8). 

18. a. Analyze the roundoff errors, as in Exarnple-4, for the formula 

I
'() I(xo + h) - I(xo) h 1"(1: ) 

Xo = h - 2 <;0· 

h. Find an optimal h > 0 for the function given in Example 2. 

19. In Exercise 7 of Section 3.3 data were given describing a car traveling on a straight road. That 
problem asked to predict the position and speed of the car when t == 10 s. Use the following 
times and positions to predict the speed at each time listed. 
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Time 0 3 5 8 10 13 

Distance 0 225 383 623 742 993 

20. In a circuit with impressed voltage 8(t) and inductance L, Kirchhoff's first law gives the 
relationship 

di 
8(t) = L- + Ri, 

dt 

where R is the resistance in the circuit and i is the current. Suppose we measure the current 
for several values of t and obtain: 

t 1.00 1.01 1.02 l.03 l.0 

i 3.10 3.12 3.14 3.18 3.24 

where t is measured in seconds, i is in amperes, the inductance L is a constant 0.98 henries, 
and the resistance is 0.142 ohms. Approximate the voltage 8(t) when t = 1.00, 1.01, 1.02, 
1.03, and 1.04. 

21. All calculus students know that the derivative of a function f at x can be defined as 

f'ex) = lim f(x + h) - f(x). 
h-.O h 

Choose your favorite function f, nonzero number x, and computer or calculator. Generate 
approximations f: (x) to f' (x) by 

I f(x + 10-") - f(x) 
fn(x) = 10-n ' 

for n = 1, 2, ... ,20, and describe what happens. 

22. Derive a method for approximating fill (xo) whose error term is of order h 2 by expanding the 
function f in a fourth Taylor polynomial about Xo and evaluating at Xo ± hand Xo ± 2h. 

23. Consider the function 

where M is a bound for the third derivative of a function. Show that e(h) has a minimum at 
,J3t:! M. 

4.2 Richardson's Extrapolation 

Richardson's extrapolation is used to generate high-accuracy results while using low
order formulas. Although the name attached to the method refers to a paper written by 
L. F. Richardson and J. A. Gaunt [RGJ in 1927, the idea behind the technique is much 
older. An interesting article regarding the history and application of extrapolation can be 
found in [Joy]. 

Extrapolation can be applied whenever it is known that an approximation technique 
has an error telIll with a predictable fonn, one that depends on a parameter, usually the step 
size h. Suppose that for each number h 'I- 0 we have a fonnula N(h) that approximates 

> 
> 
---
-, 

-, 
r 
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an unknown value M and that the truncation error involved with the approximation has the 
form 

for some collection of unknown constants K" K 2, K 3, .... 
Since the truncation error is O(h), we would expect, for example, that 

M - N(O.I) ;:::: O.lK1, M - N(O.Ol) ;:::: O.OlK1, 

and, in general, M - N(h) ~ Klh, unless there was a large variation in magnitude among 
the constants K 1, K 2, K3, .... 

The object of extrapolation is to find an easy way to combine the rather inaccurate 
O(h) approximations in an appropriate way to produce formulas with a higher-order trun
cation error. Suppose, for example, we could combine the N (h) formulas so as to produce 

A 

an O(h2) approximation formula, N(h), for M with 

A A 

for some, again unknown, collection of constants KJ, K2, .... Then we would have 

.... .... '" '" 
M - N(O.I) ~ O.OIK2, M - N(O.OI) ~ 0.0001 K 2 , 

A A 

and so on. If the constants Kl and K2 are roughly of the same magnitude, then the N(h) 

approximations would be much better than the corresponding N(h) approximations. The 
A 

extrapolation continues by combining the N (h) approximations in a manner that produces 
fonnulas with O(h3) truncation error, and so on. 

To see specifically how we can generate these higher-order formulas, let us consider 
the fOlffiula for approximating M of the fonn 

(4.10) 

Since the formula is assumed to hold for all positive h, consider the result when we replace 
the parameter h by half its value. Then we have the formula 

h h h 2 h3 

M = N "2 + Kl2 + K2 4 + K3 g + .... 

Subtracting (4.10) from twice this equation eliminates the terUl involving K, and gives 

h h 
M = N - + N - - N(h) 

2 2 
+K2 

To facilitate the discussion, we define N, (h) = N (h) and 

Then we have the O(h2) approximation formula for M: 

K2 2 3K3 3 M = N2(h) - 2 h - 4 h _ .... (4.11) 
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If we now replace h by h /2 in this formula, we have 

h K2 2 3K3 3 
M = N2 2 - 8 h - 32 h - .... (4.12) 

This can be combined with Eq. (4.11) to eliminate the h2 term. Specifically, subtracting 
(4.11) from 4 times Eq. (4.12) gives 

h 3K3 3 
3M = 4N2 2 - N2 (h) + 8 h + ... , 

and dividing by 3 gives an O(h3
) formula for approximating M: 

By defining 

h 
M= N2 -

2 

N2(h/2) - N2(h) 
+ 3 

K3 3 + h + ... 8 . 

N2 (h/2) - N2(h) 
+ 3 ' 

we have the O(h3) fOImula: 

K3 3 
M = N3 (h) + 8 h + .... 

The process is continued by constructing an O(h4) approximation 

an O(h5) approximation 

and so on. In general, if M can be written in the fOlIn 

m-I 

M = N(h) + L Kjh j + O(hm
), 

j=1 

then for each j = 2, 3, ... , m, we have an 0 (h') approximation of the fOIm 

(4.13) 

(4.14) 

These approximations are generated by rows in the order indicated by the numbered entries 
in Table 4.5. This is done to take best advantage of the highest-order formulas. 

Extrapolation can be applied whenever the truncation error for a formula has the form 

m-I 

L Kjhaj + O(ham
), 

j=1 
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O(h) O(h2) O(h3) O(h4) 

1: NI (h) = N(h) 

2: NI(~) == N(~) 3: N2(h) 

4: NI(~) == N(~) 5: N2(~) 6: N3 (h) 

7: N I (;) == N(;) 8: N2(~) 9: N3(~) 10: N4 (h) 

for a collection of constants K j and when al < a2 < a3 < ... < am. In the next example 
we have aj = 2j. 

The centered difference fOImula in Eq. (4.5) to approximate f'(xo) can be expressed with 
an error fonnula: 

,1 h 2 
/1/ h4 (5) 

f (Xo) = 2h [f(xo + h) - f(xo - h)] - (5 f (xo) - 120f (xo) - .... 

Since this error formula contains only even powers of h, extrapolation is more effective 
than as outlined in the opening discussion. In this case, we have the O(h2) approximation 

, h 2 
/II h4~) 

f (xo) = N1(h) - (5 f (xo) - 120f (xo) - ... , (4.15) 

where 

1 
Nl(h) = N(h) = 2h [f(xo + h) - f(xo - h)]. 

Replacing h by h/2 in this fOImula gives the approximation 

, h h 2 
/1/ h4 (5) 

f (xo) = Nl 2 - 24f (xo) - 1920f (xo) - .... 

Subtracting (4.15) from 4 times this equation eliminates the O(h2) teun that involves 
1'" (xo) and gives 

Dividing by 3 provides an O(h4) formula 

, h4 (5) 
f (xo) = N2(h) + 4801 (xo) + ... , 

where 

Continuing this procedure gives, for each j = 2,3, ... , an O(h2j ) approximation 

N j _l(h/2) - Nj-1(h) 
+ 4j-1 - 1 . 
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Notice that the denominator of the quotient is 41 -I - 1 instead of 2j -I - 1 because we are 
now eliminating powers of h2 instead of powers of h. Since (h/2)2 = h2/4, the multipliers 
used to eliminate the powers of h2 are powers of 4 instead of 2. 

Suppose that Xo = 2.0, h = 0.2, and f(x) = xeX
• Then 

1 
N 1(0.2) = N(0.2) = [J(2.2) - f(1.8)] = 22.414160, 

0.4 

NI(O.I) = N(O.I) = 22.228786, 

and 

NI (0.05) = N (0.05) = 22.182564. 

The extrapolation table for these data is shown in Table 4.6. The exact value of f' (x) = 
xeX + eX at Xo = 2.0 to six decimal places is 22.167168, so all the digits of N3(0.2) are 
exact, even though the best original approximation, NI (0.05), has only one decimal place 
of accuracy. -

N] (0.2) = 22.414160 

N] (0.1) = 22.228786 

N] (0.05) = 22.182564 

= 22.166995 

N
2
(O.I) = N](O.05) + N,(O.05) - N](O.l) 

3 
= 22.167157 

N
3
(O.2) = N

2
(O.1) + N2 (0.1) - N2 (0.2) 

15 
= 22.167168 

Since each column beyond the first in the extrapolation table is obtained by a simple 
averaging process, the technique can produce high-order approximations with minimal 
computational cost. However, as k increases, the roundoff error in NI (h/2k) will generally 
increase because the instability of numerical differentiation is related to the step size h /2k . 

In Section 4.1, we discussed both three- and five-point methods for approximating 
f' (xo) given various functional values of f. The three-point methods were derived by 
differentiating a Lagrange interpolating polynomial for f. The five-point methods can be 
obtained in a similar manner, but the derivation is tedious. Extrapolation can be used to 
derive these formulas more easily. 

Suppose we expand the function f in a fourth Taylor polynomial about Xo. Then 

f (x) = f (xo) + !' (xo)(x - xo) + ~ f" (xo)(x - xO)2 + ~ f"' (xo)(x - xO)3 

1 1 + 24 f(4)(xo)(x _XO)4+ 120 f (5)(g)(x -xo)5, 

for some number g between x and Xo. Evaluating f at Xo + h and Xo - h gives 
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f(xo + h) = f(xo) + f'(xo)h + -21 
f"(xo)h 2 + ~ f"'(xo)h 3 (4.16) 

. 6 

+ 1 f(4) (xo)h4 + 1 f(S)(~1)h5 
24 120 

and 

f (xo - h) = f (xo) - f' (xo)h + ~ f" (xo)h 2 
- ~ f'" (xo)h 3 (4.17) 

1 . 1 
+ f(4)(x )h4 - f(S)(1: )hs 

24 0 120 .,-2 , 

where Xo - h < ~2 < Xo < ~l < Xo + h. Subtracting Eq. (4.17) from Eq. (4.16) produces 

h3 hS 

f(xo + h) - f(xo - h) = 2hf'(xo) + "3 f"'(xo) + 120[f(S)(~d + f(S)(~2)]' (4.18) 

If f(S) is continuous on [xo - h, Xo + h], the Intennediate Value Theorem implies that 
a number ~ in (xo - h, Xo + h) exists with 

As a consequence, Eq. (4.18) can be solved for f'(xo) to give the O(h2) approximation 

1 h2 h4 
f'(xo) = 2h [f(xo + h) - f(xo - h)) - "6 f"'(xo) - 120f(S)(h (4.19) 

Although the approximation in Eq. (4.19) is the same as that given in the three-point 
fOIIlluia in Eq. (4.5), the unknown evaluation point occurs now in f(S), rather than in 1"'. 
Extrapolation takes advantage of this by first replacing h in Eq. (4.19) with 2h to give the 
new formula 

1 4h2 16h4 
h 

f'(XO) = 4h [f(xo + 2h) - f(xo - 2h)] - 6 f"'(xo) - 120 f(S)(~), (4.20) 

h 

where ~ is between Xo - 2h and Xo + 2h. 
Multiplying Eq. (4.19) by 4 and subtracting Eq. (4.20) produces 

I 2 1 
3f (xo) = h[f(xO + h) - f(xo - h)] - 4h [f(xo + 2h) - f(xo - 2h)] 

_ ~ f(5)(~) + 2h4 f(S)(~) 
30 15 . 

If f(5) is continuous on [xo - 2h, Xo + 2h], an alternative method can be used to show 
_ h 

that f(S)(~) and f(S)(~) can be replaced by a common value f(S)(~). Using this result and 
dividing by 3 produces the five-point fonnula 

1 h4 
f'(XO) = 12h [f(xo - 2h) - 8f(xo - h) + 8f(xo + h) - f(xo + 2h)] + 3Qf(S)(n, 

• 



184 C HAP T E R 4 • Numerical Dlfferentlatlon and Integratlon 

which is the five-point fonnula given as Eq. (4.6). Other fOImulas for first and higher 
derivatives can be derived in a similar manner. Some of these are considered in the exer-

• Clses. 
The technique of extrapolation is used throughout the text. The most prominent appli

cations occur in approximating integrals in Section 4.5 and for deteImining approximate 
solutions to differential equations in Section 5.8. 

E X ERe I S ESE T 4.2 

1. Apply the extrapolation process described in Example I to determine N3 (h), an approximation 
to f'(xo), for the following functions and stepsizes. 

2. 
3. 
4. 
5. 

B. f(x) = lnx, xo::!: 1.0, h =:= 0.4 b. f(x) = x + eX, Xo = 0.0, h = 0.4 

c. f(x) = 2x sin x, Xo = 1.05, h = 0.4 d. f(x) = x3 cosx, Xo = 2.3, h = 0.4 

Add another line to the extrapolation table in Exercise 1 to obtain the approximation N4 (h). 
. . 

Repeat Exercise 1 using four-digit rounding arithmetic .. 

Repeat Exercise 2 using four-digit rounding arithmetic. 

The following data give approximations to the integral 
• 

M = sin x dx. 
o 

h 
Nl (h) = 1.570796, Nl - = 1.896119, . . 2 

h 
Nl 4' = 1.974232, 

h 
Nl 8 = 1.993570. 

Assuming M = N1(h) + K 1h2 + K2h4 + K3h6 + K4h8 + O(hlO), construct an extrapolation 
table to determine N4 (h). 

. 

6. The following data can be used to approximate the integral 

3,,/2 
M = cos x dx. 

o 

Nl (h) = 2.356194, 
h 

Nl 2 = -0.4879837, 

h 
Nl 4' = -0.8815732, 

h 
Nl '8 = -0.9709157. 

Assume a formula exists of the type given in Exercise 5 and determine N4 (h). 

7. Show that the five-point formula in Eq. (4.6) applied to f(x) = xeX at Xo = 2.0 gives N2(0.2) 

in Table 4.6 when h = 0.1 and N2 (0.1) when h = 0.05. 

S. The forward-difference formula can be expressed as 

, 1 h" h2 
III 3 

f (Xo) = h'[f(xo + h) - f(xo)] - '2 f (Xo) - 6' f (Xo) + O(h ). 

Use extrapolation to derive an O(h3) formula for f'(xo}. 

9. Suppose that N(h) is an approximation to M for every h > 0 and that 

M = N(h) + Klh + K2h2 + K3h3 + ... , 
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for some constants K I• K2, K3, .... Use the values N(h), N (~), and N (~) to produce an 
O(h 3

) approximation to M. 

10. Suppose that N(h) is an approximation to M for every h > 0 and that 

for some constants K I, K2, K3, .... Use the values N(h), N (~), and N (;) to produce an 
O(h6) approximation to M. 

11. In calculus, we learn that e = limh->O(l +- h)l/h. 

a. Determine approximations to e corresponding to h = 0.04, 0.02, and 0.01. 

b. Use extrapolation on the approximations, assuming that constants Kl, K 2 , ••. , exist with 
e = (I + h)l/h + Klh + K2h2 + K3h3 + . ", to produce an O(h3) approximation to e, 
where h = 0.04. 

c. Do you think that the assumption in part (b) is correct? 

12. a. Show that 

2 + h I/h 
lim = e. 
h-->O 2 - h 

b. Compute approximations to e using the formula N (h) = (;~~) 1/ h, for h = 0.04, 0.02, 
and 0.01. 

c. Assume that e = N(h) + Klh + K2h2 + K3h3 + .... Use extrapolation, with at least 
16 digits of precision, to compute an O(h3) approximation to e with h == 0.04. Do you 
think the assumption is correct? 

d. Show that N(-h) = N(h). 

e. Use part (d) to show that Kl = K3 = K5 = ... = 0 in the formula 

so that the formula reduces to 

f. Use the results of part (e) and extrapolation to compute an 0 (h6
) approximation to e with 

h = 0.04. 

13. Suppose the following extrapolation table has been constructed to approximate the number M 
with M = Nl(h) + K lh2 + K2h4 + K3h6: 

NI(h) 

h 
N2(h) Nl -

2 

h 
N2 

h 
N3(h) Nl 

4 2 

a. Show that the linear interpolating polynomial PO•I (h) through (h 2• Nl (h» and (h 2/4. NI (h/2» 
satisfies PO. 1 (0) = N2(h). Similarly. show that PI.2(0) = N2(h/2). 

b. Show that the linear interpolating polynomial Po.2(h) through (h4. N2(h» and (h4/16. N2(h/2» 
satisfies po.z(O) = N 3 (h). 
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14. Suppose that N, (h) is a formula that produces 0 (h) approximations to a number M and that 

for a collection of positive constants K" K 2 , .•.. Then N, (h), N, (hI2), N, (hI4), ... are 
alI lower bounds for M. What can be said about the extrapolated approximations N2 (h), 
N3 (h), ... ? 

15. The semiperimeters of regular polygons with k sides that inscribe and circumscribe the unit 
circle were used by Archimedes before 200 B.C. to approximate 7T, the circumference of a 
semicircle. Geometry can be used to show that the sequence of inscribed and circumscribed 
semiperimeters {pd and {Pk }, respectively, satisfy 

with Pk < 7T < Pt, whenever k > 4. 

a. Show that P4 = 2,.J2 and P4 = 4. 

b. Show that for k > 4, the sequences satisfy the recurrence relations 

c. Approximate 7T to within 10-4 by computing Pk and Pk until Pk - Pk < 10-4 . 

d. Use Taylor Series to show that 

7T= 

and 

7T= 

1 2 

k 

1 2 27T 5 

k + 15 

1 4 

k + ... 

1 4 

k 
- ... 

e. Use extrapolation with h = 11 k to bener approximate 7T . 

• 

4.3 Elements of Numerical Integration 

The need often arises for evaluating the definite integral of a function that has no explicit 
antiderivative or whose antiderivative is not easy to obtain. The basic method involved in 
approximating f: f (x) dx is called numerical quadrature. It uses a sum 

n 

La;f(x;) 
;=0 

to approximate I: f(x) dx. 
. The methods of quadrature in this section are based on the interpolation polynomials 
given in Chapter 3. We first select a set of distinct nodes {xo, ... ,xn } from the interval 
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la, b]. Then we integrate the Lagrange interpolating polynomial 

Il 

PIl(x) = L f(x;)L;(x) 
;=0 

and its truncation error term over [a, b] to obtain 

b b Il 

f(x) dx = L f(x;)L;(x) dx + 
b n f(n+l) (Hx» D(x - x) dx 

a ; =0 '(n + I)! a a ;=0 

n I 
= had(X;) + (n + I)! 

b n D (x - x;)f(n+I)(s(x» dx, 
a ;=0 

where Hx) is in [a, b] for each x and 

b 

a;= L;(x)dx, foreachi=O,l, ... ,n. 
a 

The quadrature fOImula is, therefore, 

with error given by 

b Il 

f(x) dx ~ La; f(x;), 
a 

1 
EU) = (n + l)! 

;=0 

b n n (x - x;)f(n+I)(s(x» dx. 
a i=O 

187 

Before discussing the general situation of quadrature formulas, let us consider fonllu
las produced by using first and second Lagrange polynomials with equally spaced nodes. 
This gives the 'Irapezoidal rule and Simpson's rule, which are collllllonly introduced in 
calculus courses. 

To derive the Trapezoidal rule for approximating I: f(x) dx, let Xo = a, XI = b, 
h = b _. a and use the linear Lagrange polynomial: 

Then, 

b Xl 
(x - xd f(xo) + (x - Xo) f(xd f(x) dx = dx (4.21 ) 
(xo - XI) (XI - XO) a xo 

1 Xl 

+- J"(;(x»(x - XO)(X - XI) dx. 
2 '0 

Since (x -xo)(x -XI) does not change sign on [xo, xd, the Weighted Mean Value Theorem 
for Integrals can be applied to the error telm to give, for some l; in (xo, XI), 
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Xl Xl 

xo 
fl/(;(x»(X - XO)(X - x» dx = fl/(;) (x - XO)(X - Xl) dx 

= fl/(;) 

h 3 

= -- fl/(;)· 
6 

Consequently, Eq. (4.21) implies that 

b 

f(x) dx = 
a 

Since h = Xl - Xo, we have the following rule: 

Trapezoidal Rule: 

b h h 3 

f(x) dx = 2 [f(xo) + f(x»] - 121"(;)· 
a 

Xl 

This is called the Trapezoidal rule because when f is a function with positive values, 
1: f(x) dx is approximated by the area in a trapezoid, as shown in Figure 4.3. 

, 

y 

/ 

a =Xo XI = b X 

Since the error tenn for the Trapezoidal rule involves 1", the rule gives the exact 
result when applied to any function whose second derivative is identically zero, that is, any 
polynomial of degree one or less. 

Simpson's rule results from integrating over [a, b] the second Lagrange polynomial 
with nodes Xo = a, X2 = b, and Xl = a + h, where h = (b - a)j2. (See Figure 4.4.) 
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y 

f 

a = Xo x 

Therefore, 

b X2 

I(x) dx = 
a xo 

(x - Xo)(X - xd 
+ I(xz) dx 

(Xz - Xo)(xz - xd 

X2 (x - Xo)(X - XI)(X - xz) 
+ 1(3)(~(x» dx. 

xo 6 

Deriving Simpson's rule in this manner, however, provides only an O(h4) error tellll in
volving 1(3). By approaching the problem in another way, a higher-order term involving 
1(4) can be derived. 

To illustrate this alternative fonnula, suppose that I is expanded in the third Taylor 
polynomial about XI' Then for each x in [xo, xz]. a number ~(x) in (xo, xz) exists with 

, 1"(xI) z I"'(xd 3 1(4)(~(x» 4 
I(x) = l(xI)+ I (xd(x-xd+ 2 (X-XI) + 6 (x-xd + 24 (X-Xl) 

and 

x2 

I(x) dx = (4.22) 
xo 

Since (x - x\)4 is never negative on [xo, xz], the Weighted Mean Value Theorem for Inte
grals implies that 

I X2 1(4) (1= ) 
1(4)(~(X»(x _ xd4 dx = 51 

24 xo 24 xo 

X2 

, 

for some number ~I in (xo, xz). 
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However, h = X2 - XI = XI - XO, so 

whereas 

Consequently, Eq. (4.22) can be rewritten as 

X2 h3 1(4) (I: ) 
I(x) dx = 2hl(Xl) + - !"(Xl) + 51 h5

. 
~ 3 60 

If we now replace I" (XI) by the approximation given in Eq. (4.9) of Section 4.1, we have 

x2 h3 1 h2 

I(x)dx = 2hl(xI) + 3" J;2[f(xo) - 2/(xd + I(X2)] - 12/(4)(;2) 
xo 

It can be shown by alternative methods (see Exercise 18) that the values;1 and;2 in this 
expression can be replaced by a common value; in (xo, X2). This gives Simpson's rule. 

Simpson's Rule: 

x2 h h5 

I(x) dx = 3 [f(xo) + 4/(xd + I(X2)] - 90/(4)(;). 
xo 

Since the error terIU involves the fourth derivative of I, Simpson's rule gives exact 
results when applied to any polynomial of degree three or less. 

The Trapezoidal rule for a function Ion the interval [0, 2] is 

2 

I(x) dx ~ 1(0) + 1(2), 
o 

and Simpson's rule for Ion [0,2] is 

2 1 
° I(x) dx ~ 3'[/(0) + 41(1) + 1(2)). 

The results to three places for some elementary functions are summarized in Table 4.7. 
Notice that in each instance Simpson's Rule is significantly better. _ 

f(x) x 2 X4 1/(x + 1) v'1 + x 2 • eX smx 

Exact value 2.667 6.400 1.099 2.958 1.416 6.389 
Trapezoidal 4.000 16.000 1.333 3.326 0.909 8.389 
Simpson's 2.667 6.667 1.111 2.964 1.425 6.421 
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The standard derivation of quadrature error formulas is based on deteunining the class 
of polynomials for which these fOlJllulas produce exact results. The next definition is used 
to facilitate the discussion of this derivation. 

The degree of accuracy, or precision, of a quadrature fOIIDula is the largest positive inte
ger n such that the forIDula is exact for Xk, for each k = 0, 1, ... , n. _ 

Definition 4.1 implies that the Trapezoidal and Simpson's rules have degrees of preci
sion one and three, respectively. 

Integration and summation are linear operations; that is, 

b b b 

(af(x) + {3g(x» dx = a f(x) dx + {3 g(x) dx 
a a a 

and 

n n n 

L(af(xj) + {3g(Xj» = a L f(Xi) + {3 L g(Xj), 
i=O j=O i=O 

for each pair of integrable functions f and g and each pair of real constants a and {3. This 
implies (see Exercise 19) that the degree of precision of a quadrature fOllnula is n if and 
only if the error E(P(x» = 0 for all polynomials P(x) of degree k = 0, 1, ... ,n, but 
E(P(x» =1= 0 for some polynomial P(x) of degree n + 1. 

The Trapezoidal and Simpson's rules are examples of a class of methods known as 
Newton-Cotes formulas. There are two types of Newton-Cotes fOIlllulas, open and closed. 

The (n + I)-point closed Newton-Cotes formula uses nodes Xi = Xo + ih, for i = 
0,1, ... ,n, where Xo = a, Xn = band h = (b - a)jn. (See Figure 4.5.) It is called closed 
because the endpoints of the closed interval [a, b] are included as nodes. The formula 

y 

.x 

. -.. 
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assumes the form 

where 

ai = 

b . n 

I(x) dx ~ Lad(Xi), 
a i-O 

Li(X) dx = 
Xn n (x - X.) n J dx. 

xo j=O (Xi - Xj) 
#i 

The following theorem details the error analysis associated with the closed Newton
Cotes formulas. For a proof of this theorem, see [IK, p. 313]. 

Suppose that ,£7=oad(Xi) denotes the (n + I)-point closed Newton-Cotes formula with 
Xo = a, Xn = b, and h = (b - a)/n. There exists ~ E (a, b) for which 

b n hn+3 l(n+2)(~) n 
a I(x) dx = f;ad(Xi) + (n + 2)! 0 t

2
(t - 1)··· (t - n) dt, 

if n is even and IE Cn+2 [a, b], and 

b n hn+2 I(n+l)(~) 
a I(x) dx = {;ad(Xi) + (n + I)! 

n 

t(t - 1) .. · (t - n) dt, 
o 

if n is odd and IE Cn+1[a, b]. • 
Note that when n is an even integer, the degree of precision is n + I, although the 

interpolation polynomial is of degree at most n. In the case where n is odd, the degree of 
precision is only n. 

Some of the common closed Newton-Cotes formulas with their error terms are as 
follows: 

n = 1: Trapezoidal rule 

XI h h3 

I(x) dx = 2 [/(xo) + I(Xl)] -12 /"(n, where Xo < ~ < Xl· 
XO 

(4.23) 

n = 2: Simpson's rule 

X2 h h5 

I(x) dx = 3"[/(xo) + 4/(xd + I(X2)] - 9O/(4)(~), where Xo < ~ < X2· 
Xo 

(4.24) 

n = 3: Simpson's Three-Eighths rule 

~ 3h 3h5 

lex) dx = 8 [f(xo) + 3!(Xl) + 3!(X2) + !(X3)] - '80 !(4)(n, (4.25) 
xo 

where Xo < ~ < X3. 
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n =4: 

(4.26) 

The open Newton-CoteslO1mulas use the nodes X; = xo+ih, for each i = 0, I, ... ,n, 
where h = (b - a)/(n + 2) and Xo = a + h. This implies that Xn = b - h, so we label the 
endpoints by setting X_I = a and Xn+! = b, as shown in Figure 4.6. Open fonnulas contain 
all the nodes used for the approximation within the open interval (a, b). The fonDulas 
become 

b 

I(x) dx = 
x.+I n 

I(x) dx ~ La;f(x;), 
a X_I ;=0 

where again 

b 

a; = L;(x) dx. 
a 

f 

x X I=b X 
" n 

The following theorem is analogous to Theorem 4.2; its proof is contained in [IK, 
p. 314). 

Suppose that L~=oad(x;) denotes the (n + I)-point open Newton-Cotes forIllula with 
X_I = a, XIl+1 = b, and h = (b - a)/(n + 2). There exists ~ E (a, b) for which 

n+1 

t2 (t -I)···(t -n)dt, 
-I 
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if n is even and f E C n+2 [a, b], and 

b n hn+2 f(n+l)(t;) n+l 

f(x) dx = La;f(x;) + t(t - 1)··· (t - n) dt, 
a ;=0 (n+l)!_1 

if n is odd and f E cn+ 1 [a, b]. • 

Some of the common open Newton-Cotes formulas with their error terms are as fol
lows: 

n = 0: Midpoint rule 

XI h3 
f(x) dx = 2hf(xo) + - 1"(0, where X-I < t; < XI· 

LI 3 
(4.27) 

n = 1: 

X2 3h 3h3 

f(x) dx = 2 [f(xo) + f(xI)] + 4 1"(t;), where X-I < t; < X2. (4.28) 
X-I 

n = 2: 

X3 4h l4h5 

f(x) dx = [2f(xo) - f(Xj) + 2f(X2)J + f(4)(t;), 
X-I 3 45 

(4.29) 

where X-I < ~ < X3· 

n = 3: 

X4 5h 95 
f(x) dx = 24 [llf(xo) + f(xI) + f(X2) + llf(x3)] + 144 h5 f(4)(0, (4.30) 

X-I 

where X-I < ~ < X4' 

Using the closed and open Newton-Cotes fOIlIlulas listed as (4.23)-(4.26) and (4.27)
(4.30) to approximate J;/4 sinx dx = I - .Ji/2 ~ 0.29289322 gives the results in 
Table 4.8. • 

n 

Closed fonnulas 
Error 
Open fonnulas 
Error 

o 

0.30055887 
0.00766565 

1 2 3 

0.27768018 0.29293264 0.29291070 
0.01521303 0.00003942 0.00001748 
0.29798754 0.29285866 0.29286923 
0.00509432 0.00003456 0.00002399 

4 

0.29289318 
0.00000004 
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E X E R ( I S ESE T 4.3 
1. Approximate the following integrals using the Trapezoidal rule. 

a. 

c. 1
1.5 

1 x
2

lnx dx 

1
1.6 2x 

2 dx 
1 X - 4 

e. 

g. 1
,,/4 

° x sinx dx 

b. 1°·5 2 dx 
° x-4 

d. 11 x 2e-x dx 

1
0.35 2 

f. dx ° x 2 
- 4 

h. 1
"/4 

° e
h 

sin 2x dx 

195 

2. Find a bound for the error in Exercise I using the error formula, and compare this to the actual 
error. 

3. Repeat Exercise I using Simpson's rule. 

4. Repeat Exercise 2 using Simpson's rule and the results of Exercise 3. 

5. Repeat Exercise I using the Midpoint rule. 

6. Repeat Exercise 2 using the Midpoint rule and the results of Exercise 5. 

7. The Trapezoidal rule applied to f: f(x) dx gives the value 4, and Simpson's rule gives the 
value 2. What is f(I)? 

8. The Trapezoidal rule applied to f02 
I(x) dx gives the value 5, and the Midpoint rule gives the 

value 4. What value does Simpson's rule give? 

9. Find the degree of precision of the quadrature formula 

1
1 .J3.J3 

-I I(x) dx = f - 3 + I 3 . 

10. Let h = (b - a)j3, Xo = a, XI = a + h, and X2 = b. Find the degree of precision of the 
quadrature formula 

l
b 9 3 

f(x) dx = -hf(xI) + -hl(X2). 
a 4 4 

11. The quadrature formula f~1 f(x) dx = cof( -l)+cJ/(OHcz/(l) is exact for ail polynomials 
of degree less than or equal to 2. Determine Co, CI, and C2. 

12. The quadrature formula f02 
f(x) dx = cof(O) + cJ/(1) + C7.J(2) is exact for all polynomials 

of degree less than an equal to 2. Determine Co, CI, and C2. 

13. Find the constants Co. CI. and XI so that the quadrature fonrtula 

has the highest possible degree of precision. 

14. Find the constants xo, Xlo and CI so that the quadrature formula 

I 1 
f(x) dx = - f(xo) + CJ/(XI) 

° 2 
has the highest possible degree of precision. 
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15. Approximate the following integrals using formulas (4.23) through (4.30). Are the accuracies 
of the approximations consistent with the error formulas? Which of parts (d) and (e) give the 
better approximation? 

1
0.1 

a. 0 -/1 +x dx 

1.5 

c. eX dx 

e. 

l.l 

5.5 I 
- dx+ 

I x 

10 1 
- dx 

5.5 X 

16. Given the function I at the following values, 

b. 

d. 

f. 

1
,,/2 

o (sinx)2 dx 

10 I 
- dx 

I X 

I 

X
l/3 dx 

° 

x 1.8 2.0 2.2 2.4 2.6 

I (x) 3.12014 4.42569 6.04241 8.03014 10.46675 

approximate J12~6 I(x) dx using all the appropriate quadrature formulas of this section. 

17. Suppose the data of Exercise 16 have roundoff errors given by the following table. 

x 1.8 2.0 2.2 2.4 2.6 

Error in I(x) 2 x 10-6 -2 X 10-6 -0.9 X 10-6 -0.9 X 10-6 2 X 10-6 

Calculate the errors due to roundoff in Exercise 16. 

18. Derive Simpson's rule with error term by using 

XO 

Find aQ, aI, and a2 from the fact that Simpson's rule is exact for I(x) = xn when n = 1,2, 
and 3. Then find k by applying the integration formula with I (x) = X4. 

19. Prove the statement following Definition 4.1; that is, show that a quadrature formula has degree 
of precision n if and only if the error E(P(x» = 0 for all polynomials P(x) of degree k = 
0, 1, ... ,n, but E(P(x» i= 0 for some polynomial P(x) of degree n + 1. 

20. Derive Simpson's three-eighths rule, Eq. (4.25), with error term by the use of Theorem 4.2. 

21. Derive Eq. (4.28) with error term by the use of Theorem 4.3. 

4.4 Composite Numerical Integration 

The Newton-Cotes fOlmulas are generally unsuitable for use over large integration inter
vals. High-degree fonnulas would be required, and the values of the coefficients in these 
formulas are difficult to obtain. Also, the Newton-Cotes formulas are based on interpola
tory polynomials that use equally spaced nodes, a procedure that is inaccurate over large 
intervals because of the oscillatory nature of high-degree polynomials. In this section, we 
discuss a piecewise approach to numerical integration that uses the low-order Newton
Cotes formulas. These are the techniques most often applied. 
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Consider finding an approximation to 104 eX dx. Simpson's rule with h = 2 gives 

Since the exact answer in this case is e4 - eO = 53.59815, the error -3.17143 is far larger 
than we would nonnally accept. 

To apply a piecewise technique to this problem, divide [0, 4] into [0, 2] and [2,4] and 
use Simpson's rule twice with h = 1. This gives 

4 2 4 
eX dx = eX dx + eX dx 

o 0 2 

1 1 
~ _[eo +4e + e2 ] + _[e2 + 4e3 + e4 ] 

3 3 
1 

= _[eo +4e + 2e2 + 4e3 + e4
] 

3 

= 53.86385. 

The error has been reduced to -0.26570. Encouraged by our results, we subdivide the 
intervals [0, 2] and [2,4] and use Simpson's rule with h = ;, giving 

4 1 2 3 4 

eXb= ~dx+ eXdx+ ~dx+ eXdx 
o 0 1 2 3 

1 I 
~ -[eo + 4e 1

/
2 + e] + -[e + 4e3/

2 + e2
] 

6 6 
1 1 + _[e2 + 4e5/

2 + e3] + _[e3 + 4e7/ 2 + e4 ] 
6 6 

The error for this approximation is -0.01807. 
To generalize this procedure, choose an even integer n. Subdivide the interval [a, b] 

into n subintervals, and apply Simpson's rule on each consecutive pair of subintervals. (See 
Figure 4.7 on page 198.) With h = (b - a)/n and Xj = a + jh, for each j = 0,1, ... , n, 
we have 

a 

b n/2 

I(x)dx = L 
j=l 

n/2 

=L 
j=! 

I(x) dx 
X2j-2 

for some ~j with X2j-2 < ~j < X2j, provided that I E C4 [a, b]. Using the fact that, for 
each j = 1, 2, . " , (n /2) - 1, we have I (XZj) appearing in the telIll corresponding to the 
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y 

y = f(x) 
I 

I I 
I r 
I I I 
I I I 

I I I I 
I I I I 
I I I I 
I I , I 
I I I I 
I I I I 
I I I I 
I I I I • 
I 1 I I 

Q = Xo X2 X2} I X2i x2/+ I b=x n x 

interval [X2j-2, X2j] and also in the term corresponding to the interval [X2j, X2j+2], we can 
reduce this sum to 

b h (n/2)-1 n/2 
f(x) dx = 3' f(xo) + 2 L f(X2j) + 4 L f(X2j-l) + f(xn) 

a j=l j=l 

The error associated with this approximation is 

where X2j-2 < ~j < X2j, for each j = 1, 2, ... ,nI2. 
If f E C4 [a, b], the Extreme Value Theorem implies that f(4) assumes its maximum 

and minimum in [a, b]. Since 

we have 

and 

By the Intermediate Value Theorem, there is a J-L E (a, b) such that 
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Thus, 

or, since h = (b - a)/n, 

EU) = _ (b - a) h4 f(4) (/L). 
180 

These observations produce the following result. 

199 

Let f E C4 [a, b], n be even, h = (b - a)/n, and x) = a + jh, for each j = 0, 1, ... , n. 
There exists a /L E (a, b) for which the Composite Simpson's rule for n subintervals can 
be written with its error term as 

b h (n/2)-1 n/2 

f(x) dx = - f(a) + 2 L f(X2) + 4 L f(X2)-d + feb) 
a 3 )=1 )=1 

• 
Algorithm 4.1 uses the Composite Simpson's rule on n subintervals. This is the most 

frequently used general-purpose quadrature algorithm. 

Composite Simpson's Rule 

To approximate the integral I = J: f(x) dx: 

INPUT endpoints a, b; even positive integer n. 

OUTPUT approximation X I to I. 

Step 1 Set h = (b - a)/n. 

Step 2 Set X 10 = f(a) + feb); 
XIl = 0; (Summation of f(x2i-1).) 
X I2 = O. (Summation of f (X2i)') 

Step 3 For i = 1, ... ,n - 1 do Steps 4 and 5. 

Step 4 Set X = a + ih. 

Step 5 If i is even then set XI2 = X/2 + f(X) 
else set XIl = XIl + f(X). 

Step 6 Set XI = h(XIO + 2· XI2 + 4· XIl)/3. 

Step 7 OUTPUT (Xl); 
STOP. • 

The subdivision approach can be applied to any of the Newton-Cotes forlllulas. The 
extensions of the Trapezoidal (see Figure 4.8) and Midpoint rules are given without proof. 
Since the Trapezoidal rule requires only one interval for each application, the integer n can 
be either odd or even. 
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y 

y = I(x) 

Let f E c2 [a, b], h = (b - a) / n, and x j = a + j h, for each j = 0, 1, . . . ,n. There exists 
a /-L E (a, b) for which the Composite Trapezoidal rule for n subintervals can be written 
with its error term as 

b h n-\ b - a 
f(x) dx = - f(a) + 2 L f(xj) + feb) - h2 !"(/-L). • 

a 2 j=! 12 

For the Composite Midpoint rule, n must again be even. (See Figure 4.9.) 

y 

• 

y = I(x) 

x 

Let f E C2[a, b], n be even, h = (b - a)/(n + 2), and Xj = a + (j + l)h for each 
j = -1, 0, . .. ,n + 1. There exists a /-L E (a, b) for which the Composite Midpoint rule 
for n + 2 subintervals can be written with its error term as 

b n/2 b 
f(x) dx = 2h L f(X2j) + - a h2 !"(/-L). 

a j=O 6 • 

,- . 
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Consider approximating fa" sin x dx with an absolute error less than 0.00002, using the 
Composite Simpson's rule. The Composite Simpson's rule gives, for some /l in (0, rr), 

7r h (n/2)-1 n/2 h4 

o sinx dx = 3 2 h sinx2j +4 hSinX2j-l -780 sin/l. 

Since the absolute error is to be less than 0.00002, the inequality 

rr h4 rr h4 rr 5 

--::- sin fI < = 4 < 0.00002 
180 F - 180 180n 

is used to determine n and h. Completing these calculations gives n > 18. If n = 20, then 
h = rr /20, and the formula gives 

" 'IT 9 
sinx dx ~ ~ 2 LSin 

o 60 j=1 

• 
jJr 

10 

10 

+4 LSin 
j=1 

(2i - l)rr 

20 
= 2.000006. 

To be assured of this degree of accuracy using the Composite Trapezoidal rule requires 
that 

'IT h2 Jr3 
< = --=-2 < 0.00002, 
- 12 12n 

or that n ~ 360. Since this is many more calculations than are needed for the Composite 
Simpson's rule, we would not want to use the Composite Trapezoidal rule on this problem. 
For comparison purposes, the Composite Trapezoidal rule with n = 20 and h = rr /20 

• gives 

7r • rr 
smxdx ~-

a 40 

19 

2Lsin 
j=1 

• pr 

20 

19 

+ sin 0 + sinJr = rr 2'" sin 
40 L-

j",,1 

= 1.9958860. 

• jrr 

20 

The exact answer is 2, so Simpson's rule with n = 20 gave an answer well within the 
required error bound, whereas the Trapezoidal rule with n = 20 clearly did not. _ 

Most CAS incorporate both the Composite Simpson's rule and the Composite Trape
zoidal Rule. In Maple, you first access to the library where they are defined by entering 

>with(student); 

The calls for the methods are trapeZOid (f , x=a .. b, n) and simpson (f, x=a .. b, n). 
For our example, 

>f:=sin(x); 

f := sin(x) 

>trapezoid(f,x=O .. Pi,20); 

19 

LSin 
i",,1 

1 • 

-20 1Jr 
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>evalf(%); 

1.995885974 

>evalf(simpson(f,x=O .. Pi,20)); 

2.000006785 

The Composite Midpoint rule is also in the Maple library and can be accessed with the 
command 

>evalf(middlesum(f, x=o ... Pi,10)); 

which gives the approximation 2.008248408. 
To demonstrate Maple code for the midpoint method, we define f(x), a, b, 11, and h 

with the commands 

>f:=x->sin(x); 
>a:=O; b:=Pi; n:=18; h:=(b-a)/(n+2); 

We also need a variable to calculate the running sum, which we initialize to O. 

>Tot:=O; 

In Maple the counter-controlled loop is defined by 

for loop control variable from initial-value to tenninal value do 
statement; 
statement; 
• 
• 
• 

statement; 
od; 

We set the loop control variable j, which begins at 0 and goes to n /2 = 9 in steps of 1. For 
each value of j = 0, 1, ... ,9 the loop is traversed and each calculation inside the loop is 
perfonned until the word od is encountered. The reserved words involved are for, from, 
to, do, and od. Note that no semicolon (;) follows the do statement. 

> for j from 0 to n/2 do 
> xj:=a+(2*j+l)*h; 
> Tot:=evalf(Tot+f(xj)) 
>od; 

This produces a series of results culminating in the final summation 

nl2 9 

Tot = L f (X2j) = L f (X2j) = 6.392453222. 
j=O j=O 

We then multiply by 2h to finish the Composite Midpoint method: 

>Tot:=evalf(2*h*Tot); 

Tot := 2.008248408 
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An important property shared by all the composite integration techniques is a stabil
ity with respect to roundoff error. To demonstrate this, suppose we apply the Composite 
Simpson's rule with n subintervals to a function I on [a, b) and determine the maximum -bound for the roundoff error. Assume that I (Xj) is approximated by I (Xj) and that 

-
I(xj) = I(xj) + ej, for each i = 0, 1, ... ,n, 

-where ej denotes the roundoff error associated with using I(Xj) to approximate !(Xj). 
Then the accumulated error, e(h), in the Composite Simpson's rule is 

h (n/2)-1 n/2 
e(h) = L e2j + 4 L e2j-l + en - eo +2 

3 j=l j=l 

(n/2)-1 nJ2 
h 

L le2jl + 4 L le2j-ll + lenl < - leal + 2 - • 

3 j=l j=l 

If the roundoff errors are uniformly bounded bye, then 

e(h) < ~ [e + 2 (~ - 1) e + 4 G) e + e] = ~ 3ne = nhe. 

But nh = b - a, so 

e(h) < (b - a)e, 

a bound independent of h (and n). This means that, even though we may need to divide 
an interval into more parts to ensure accuracy, the increased computation that is required 
does not increase the roundoff error. This result implies that the procedure is stable as h 
approaches zero. Recall that this was not true of the numerical differentiation procedures 
considered at the beginning of this chapter. 

E X ERe I S ESE T 4.4 

1. Use the Composite Trapezoidal rule with the indicated values of n to approximate the follow
ing integrals. 

2 2 

a. xlnxdx, n=4 b. x 3ex dx, n=4 
I -2 

2 2 " 
C. 2 dx, n=6 d. x 2 cosx dx, n=6 

0 x +4 0 

2 3 
X 

e. e2x sin 3x dx, n=8 f. 2 dx, n=8 
0 I x +4 

5 I 37</8 

g. dx, n=8 h. tan x dx, n=8 
3 .JX2 - 4 0 

2. Use the Composite Simpson's rule to approximate the integrals in Exercise 1. 

3. Use the Composite Midpoint rule with n + 2 subintervals to approximate the integrals in 
Exercise 1. 
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4. Approximate I: x 2e-x2 dx using h = 0.25. 

a. Use the Composite Trapezoidal rule. 

b. Use the Composite Simpson's rule. 

c. Use the Composite Midpoint rule. 

5. Suppose that J(O) = I, J(0.5) = 2.5, J(I) = 2, and J(0.25) = J(0.75) = a. Find a if the 
Composite Trapezoidal rule with n = 4 gives the value 1.75 for 101 J(x) dx. 

6. The Midpoint rule for approximating I~I J(x) dx gives the value 12, the Composite Midpoint 
rule with n = 2 gives 5, and Composite Simpson's rule gives 6. Use the fact that J( -1) = 
J(1) and J( -0.5) = J(0.5) - 1 to determine J( -I), J( -0.5), J(O), J(0.5), and J(I). 

7. Determine the values of nand h required to approximate 

2 

e2x sin3x dx 

° 
to within 10-4 . 

a. Use the Composite Trapezoidal rule. 

b. Use the Composite Simpson's rule. 

c. Use the Composite Midpoint rule. 

8. Repeat Exercise 7 for the integral fo" x 2 cos x dx. 

9. Determine the values of n and h required to approximate 

[2 _1---,- dx 
10 x +4 

to within 10-5 and compute the approximation. 

a. Use the Composite Trapezoidal rule. 

b. Use the Composite Simpson's rule. 

c. Use the Composite Midpoint rule. 

10. Repeat Exercise 9 for the integral 112 x lnx dx. 

11. Let I be defined by 

x 3 + 1, 
I(x) = 1.001 + 0.03(x - 0.1) + 0.3(x - 0.1)2 + 2(x - 0.1)3, 

1.009 + 0.I5(x - 0.2) + 0.9(x - 0.2)2 + 2(x - 0.2)3, 

a. Investigate the continuity of the derivatives of J. 

O<x<O.I, 

0.1 < x < 0.2, 

0.2 < x < 0.3. 

b. Use the Composite Trapezoidal rule with n = 6 to approximate foo. 3 I(x) dx, and esti
mate the error using the error bound. 

c. Use the Composite Simpson's rule with n = 6 to approximate 10°·3 J(x) dx. Are the 
results more accurate than in part (b)? 

12. Show that the error E(f) for Composite Simpson's rule can be approximated by 

h4 
- [f"'(b) - r'(a)). 

180 
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13. a. Derive an estimate for E (f) in the Composite Trapezoidal rule using the method in 
Exercise 12. 

b. Repeat part (a) for the Composite Midpoint rule. 

14. Use the error estimates of Exercises 12 and 13 to estimate the errors in Exercise 8. 

15. Use the error estimates of Exercises 12 and 13 to estimate the errors in Exercise 10. 

16. In multivariable calculus and in statistics courses it is shown that 

100 I e~(1/2)(x/u)2 dx = I, 
~OO a-/fii 

for any positive a. The function 

f(x) = 1 e~(I/2)(x/u)2 
a-/fii 

is the normal density function with mean IL = 0 and standard deviation a. The probability that 
a randomly chosen value described by this distribution lies in [a, b] is given by t f(x) dx. 
Approximate to within 1O~5 the probability that a randomly chosen value described by this 
distribution will lie in 

a. [-a, a] b. [-2a,2a] c. [-3a,3a] 

17. Determine to within 1O~6 the length of the graph of the ellipse with equation 4x2 + 9y2 = 36. 

18. A car laps a race track in 84 seconds. The speed of the car at each 6-second interval is de
termined using a radar gun and is given from the beginning of the lap, in feetJsecond, by the 
entries in the following table. 

Time 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 

Speed 124 134 148 156 147 133 121 109 99 85 78 89 104 116 123 

How long is the track? 

19. A particle of mass m moving through a fluid is subjected to a viscous resistance R, which is a 
function of the velocity v. The relationship between the resistance R, velocity v, and time t is 
given by the equation 

[

V(I) m 
t = duo 

v(to) R(u) 

Suppose that R(v) = -v..;v for a particular fluid, where R is in newtons and v is in me
ters/second. If m = 10 kg and v(O) = 10 mis, approximate the time required for the particle 
to slow to v = 5 mls. 

20. To simulate the thermal characteristics of disk brakes (see the following figure), D. A. Se
crist and R. W. Hornbeck [SH] needed to approximate numerically the "area averaged lining 
temperature," T, of the brake pad from the equation 

'0 

T(r)r()p dr 
T = .:...r'-'-,-=,--___ , 

'0 

r()p dr 

where r. represents the radius at which the pad-disk contact begins, ro represents the outside 
radius of the pad-disk contact, ()p represents the angle subtended by the sector brake pads, and 
T (r) is the temperature at each point of the pad, obtained numerically from analyzing the heat 
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equation (see Section 12.2). Suppose r. = 0.308 ft, ro = 0.478 ft, (Jp = 0.7051 radians, and 
the temperatures given in the following table have been calculated at the various points on the 
disk. Approximate T. 

r (ft) T(r) (OF) 

0.308 640 
0.325 794 
0.342 885 
0.359 943 

r (ft) 

0.376 
0.393 
0.410 
0.427 

T(r) eF) 

1034 
1064 
1114 
1152 

Brake 
pad 

Brake disk 

r (ft) T(r) (oF) 

0.444 1204 
0.461 1222 
0.478 1239 

21. Find an approximation to within 10-4 of the value of the integral considered in the application 
opening this chapter: . 

48 

"It + (COSX)2 dx . 
o 

22. The equation 

x 1 
--==e-t2

/
2 dt = 0.45 

o .j2; 

can be solved for x by using Newton's method with 

f(x) = 

and 

To evaluate f at the approximation Pk, we need a quadrature formula to approximate 

Pk 

o 



4.5 Romberg Integration 207 

a. Find a solution to I(x) = 0 accurate to within 10-5 using Newton's method with Po = 
0.5 and the Composite Simpson's rule. 

b. Repeat (a) using the Composite Trapezoidal rule in place of the Composite Simpson's 
rule. 

4.5 Romberg Integration 

Romberg integration uses the Composite Trapezoidal rule to give preliminary approxima
tions and then applies the Richardson extrapolation process to improve the approximations. 
Recall from Section 4.2 that Richardson extrapolation can be perfonned on any approxi
mation procedure of the fOlln 

where the K I , K 2 , ••• ,Kn are constants and N(h) is an approximation to the unknown 
value M. The truncation error in this forlllula is dominated by K I h when h is small, so this 
fOImula gives O(h) approximations. Richardson's extrapolation uses an averaging tech
nique to produce formulas with higher-order truncation error. In Section 4.2 we saw how 
this could be used to produce derivative approximations. In this section we will use extrap
olation to approximate definite integrals. 

To begin the presentation of the Romberg integration scheme, recall that the Compos
ite Trapezoidal rule for approximating the integral of a function f on an interval [a, b] 
using m subintervals is 

b h 
f(x) dx = -

a 2 

m-I 

f(a) + feb) + 2 L f(Xj) 
j=1 

_ (b - a\2f"( ) 
12 J-L , 

where a < J-L < b, h = (b - a)/m and Xj = a + jh, for each j = 0,1, ... ,m. 
We first obtain Composite Trapezoidal rule approximations with ml = 1, m2 = 2, 

m3 = 4, ... , and mn = 2n
-

l
, where n is a positive integer. The step size hk corresponding 

to mk is hk = (b -a)/mk = (b -a)/2k- l . With this notation the Trapezoidal rule becomes 

a 

b hk 
f(x) dx =-

2 
f(a) + feb) + 2 

where J-Lk is a number in (a, b). 

(b - a) 
- h2 f"() 12 k J-Lk, 

(4.31 ) 

If the notation Rk,l is introduced to denote the portion of Eq. (4.31) used for the trape
zoidal approximation, then 

hi (b - a) 
RJ,I = '2 [f(a) + feb)] = 2 [f(a) + feb)]; 

h2 
R2,l = '2[f(a) + feb) + 2f(a + h2)] 
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(b -a) 
= I(a) + I(b) + 21 4 . 

1 
= 2[R1,l + hd(a + h2»); 

(b -a) 
a+ 2 

1 
R3,l = 2{R2,1 + h2[f(a + h3) + I(a + 3h3)]}; 

and, in general (see Figure 4.10), 

Zk-2 
1 

Rk,l = 2 'Rk-l,l + hk- 1 k I (a + (2i - l)hk ) , 

for each k = 2, 3, ... ,n. (See Exercises 12 and 13.) 

y y 

y = [(x) y = f(x) 

b x a b x a 

(4.32) 

y = f(x) 

b x 

Using Eq. (4.32) to perform the first step of the Romberg integration scheme for approxi
mating Jo7r sin x dx with n = 6 leads to the equations 

Rl,l = ~[SinO + sinrr) = 0; 

R21 = ~ [Rl 1 + rr sin ::] = 1.57079633; , 2' 2 

R3,1 = ~ R2,l +; sin ~ + sin 3; = 1.89611890; 

1 
R41 =, 2 

. rr . 3rr . 5rr . 7n 
sm '8 + sm 8 + sm 8 + sm 8 

RS,l = 1.99357034, and R6,1 = 1.99839336. 

= 1.97423160; 

• 
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Since the correct value for the integral in Example 1 is 2, the convergence is quite 
slow. Richardson extrapolation will be used to speed the convergence. 

It can be shown, although not easily (see [RR, pp. 136-138]), that if f E (",'O[a, b], 

the Composite Trapezoidal rule can be written with an alternative error term in the fOHn 

h Xl 00 

f(x) dx - Rk,l = L Kih~i = Klh~ + L Kih~i, (4.33) 
a i=l i=2 

where each Ki is independent of hk and depends only on f(21- l l(a) and j(2i-l)(b). 

With the Composite Trapezoidal rule in this fOIm, we can eliminate the term involving 
h~ by combining this equation with its counterpart with hk replaced by hk+1 = hd2, giving 

b 00 00 Kh2i K h2 OG KhZ; 
f(x)dx - Rk+J.l = LKih;~l = L '2/ = I k + L ';k. 

a ;=1 ;=1 2 4 ;=2 4 
(4.34) 

Subtracting Eq. (4.33) from 4 times (4.34) and simplifying gives the 0 (ht) fOIIllula 

h 

f(x) dx - R + Rk+ll - Rk,l 
Hl.1 3 

cc 

= L: K
; 

;=2 3 

Extrapolation can then be applied to this fOImula to obtain an 0 (hZ) result, and so on. 
To simplify the notation we define 

R - R + Rk,l - Rk-I,l 
k,2 - k, I 3 ' 

for each k = 2,3, ... , n, and apply the Richardson extrapolation procedure to these val
ues. Continuing this notation, we have, for each k = 2,3,4, ... , nand j = 2, .. , ,k, an 
O(h;i) approximation formula defined by 

Rk J' I - Rk 1 J - 1 
R ·=R· +' , k,/ k,j-l 4i-1 _ I • ( 4.35) 

The results that are generated from these formulas are shown in Table 4.9. 

RJ 1 • 

R2.1 R2.2 
R3.1 R3,2 R3.3 
R41 • R42 • R4.3 R44 • 

• 
• • • 

R" 1 • Rn2 • Rn3 • 
R,,4 , Rn,n 

The Romberg technique has th~ additional desirable feature that it allows an entire 
new row in the table to be calculated by doing one additional application of the Composite 
Trapezoidal rule. Then it uses an averaging of the previously calculated values to obtain the 
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succeeding entries in the row. The method used to construct a table of this type calculates 
the entries row by row, that is, in the order Rl.l, R2.1, R 2,2, R3,1, R3.2, R 3,3, etc. Algorithm 
4.2 describes this technique in detail. 

Romberg 

To approximate the integral I = 1: f (x) dx, select an integer n > O. 

INPUT endpoints a, b; integer n. 

OUTPUT an array R. (Compute R by rows; only the last 2 rows are saved.in storafW) 

Step 1 Set h = b - a; 

Rll = ~(f(a) + f(b». 

Step 2 OUTPUT (RI,J). 

Step 3 For i = 2, ... ,n do Steps 4--8. 

2;-2 

Step 4 
I 

Set R2,1 = 2 Rl.l + h L f(a + (k - 0.5)h) . 
k-= 1 

Step 5 

(Approximation from Trapezoidal method.) 

For j = 2, , ., , i 
R 2,j-l - R1,j-l 

set R 2 J' = R 2 J' - 1 + -"--',-----;-1 -..:.:!.-~. , . 4)- - I 

Step 6 OUTPUT (Rz.j for j = I, 2, ... ,i). 

Step 7 Set h = hj2. 

(Extrapolation.) 

Step 8 For j = 1,2 . ... ,i set R1,j = R2. j . (Update row I of R.) 

Step 9 STOP. • 

In Example 1, the values for R 1,1 through R6,1 were obtained for approximating fo1f sin x d x. 
With Algorithm 4.2, the Romberg table is shown in Table 4.10. • 

Although there are 21 entries in the table, only the six in the first column require 
function evaluations since these are the only entries generated by the integration technique. 
The other entries are obtained by an averaging process. 

0 
1.57079633 2.09439511 
1.89611890 2.00455976 1.99857073 
1.97423160 2.00026917 1.99998313 2.00000555 
1.99357034 2.00001059 1.99999975 2.00000001 1.99999999 
1.99839336 2.00000 103 2.00000000 2.00000000 2.00000000 2.00000000 
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Algorithm 4.2 requires a preset integer n to determine the numher of rows to be gen~ 
erated. We could also set an error tolerance for the approximation and generate II. \\ ithin 
some upper hound, until consecutive diagonal entries Rn.~ I.n- I and Rn./I agree tll \\ ithin 
the tolerance. To guard against the possihility that two consecutive row elemenh agree 
with each other but not with the value of the integral heing approximated, it is common t(l 
ger,cntc approximations until not only Rn-l. n - I - R n.n I is within the tolerance. hut also 
I Rn -2,n-2 - RfI~~l.n·-ll Although not a universal safeguard, this will ensure that tW() dIffer
ently generated sets of approximations agree within the specified tolerance before R,II, • is 

accepted as sufficiently accurate. 
Romberg integration applied to f on 1 a, h J relies on the assumption that the Composi Ie 

Trapezoidal rule has an error term that can be expressed in the form of Eq. ! 4.':\3): that is. 
we must have f E C 2k+2[a. h 1 for the kth row to be generated. General-purpose algorithms 
using ROlllherg integration include a check at each stage to ensure that this assumption is 
fulfilled. These methods are known as calltious Romher!; algorithms and are de ... crihed 
in IJoh I. This reference also descrihes methods for using the Romberg technique a, an 
adaptive procedure, similar to the adaptive Simpson's rule that will be discussed in SectlOll 
4.6. 

E X ERe I 5 ESE T 4.5 

1. Use Romberg integration tI, compute R,; for the following integrak 

a. 

e. 

e. 

g. 

. I , ! x 2 1nxdx 
, I 

[

Il'S 2 
-,--dx 

I x~ -- 4 • I 

[

,,/4 

. ell sin 2-, dx 
, I) 

t S 

-/xx clx J, x 2 ~ 4 

2. Calculate R4,4 for the integrals in Exercise I, 

h. 

d. 

f. 

I XC sinx dx 1
" '4 

o 

f 
1.(' 2x 

,-- dx 
x~ ~ 4 

JT .14 

h. r I iCOSX)C dx 
Jo 

3. Use Romberg integration to approximate the integrals in Exercise I to within 10''', Compute 

the Romberg tabk until either IR" 1,,,-1 ~ R",,, I < 10·1>, or n = 10, Compare your rc,ulh to 

the exact values of the integrals. 

4. Apply Romberg integration to the followmg integrals until R" I" I and R"" agree tp \\ Ithlll 
10 4 

a. j'l X I/J <Ix 
1/ 

b. 1
0, 

f ~ x) d.\ . where 

" 
x' + 1. O<r OJ 

jlr) = 1.001 + 0.03(\ - 0,1) + O.3(x - 0,1)2 + 2(x ~ 01 )'. D,I·\ I I 

1.009 + 0.1 SIx ~ 0,2) + 0.9(x ~ 0.2)2 + 2(x ~ (2)1, 0.2 . , 
, 
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5. Use the following data to approximate 1;5 f(xl dx as accurately as posslhle. 

x 1 2 , 3 4 5 
--t--~. -.-.~. --+---+-----j~ 

I(x) 2.4142 2.6734 2.8974 3.0976 3.2X()4 

6. Romberg integration is used to ;:pproximate 

If Rll = 0.250 and R2c = 0.2315, what is R21 ') 

7. Romberg integration is used to approximate 

1 1 /(x) dx. 

If f(2) = 0.51342, /(3) = 0.36788, R'1 = 0.43687, and R" = 0.436h2. tilll 

8. Romherg integration for approximating .C f (x) dx gives R II = 4 and R22 = ~. hnd :, . I. 

9. Romberg integration for approximating .t:: I(x) dx gives RII = 8, Rn = ~,and R .. 
Find R,I . 

10. Use Romberg integration to compute the following approximations to 

"R 

1 /1 + (eosx)2 dx. 
I) 

[Note: The results in this exercise arc most interesting if you are using a lkvicl' "ith hl'!" C,'I' 
seven- and nine-digit arithmetic. I 

a. Detelmine RI I, R21 , R1.l, R4 . 1, and RS. I , and use these approximatiolh til l'I"c!Ic't Ih,' 
value of the integral. 

h. Determine R22 , R
"

, R44 , ami Rss, and modify your prediction. 

c. Determine Rfl I, Rh .2- R(;l, R64 , R6S , and Ro.f>, and modify your predict lOll 

d. Determine Rn , R8~, R4 ,'J, and RIOlO, and make a final prediction. 

e. Explain why this integral causes difficulty with Romberg integratiull anci hili'. II CellI h,' 

reformulated to more easily determine an accurate approximation. 

n. Show that the approximation obtained from Ru is the same as that given h\ the (', 'llll"'''tl 

Simpson's rule described in Theorem 4.4 with h = hk . 

12. ShO\\ that, for any k, 

.k , 

I - "-I 
. 2) hi_I -I- L ((II 

, 
I ~ --1-111. , 

, _ _ 1 

13. Lse the result oj Exercise 12 to verify Eq. (4.32); that is, shov' that for all J.:. 

I 

14. In Exercise 24 of Section 1.1, a Maclaurin series was integrated to approximate nil I '. \1 :1l'I" 
erf(x) is the nomlal distrihution error function defined by 
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2 l X 

2 erf(x) = .jii 0 e -/ dt. 

Approximate erf( 1) to within lO-7. 

4.6 Adaptive Quadrature Methods 

Figure 4.11 

The composite formulas require the use of equally spaced nodes. This is inappropriate 
when integrating a function on an interval that contains both regions with large functional 
variation and regions with small functional variation. If the approximation error is to be 
evenly distributed, a smaller step size is needed for the large-variation regions than for 
those with less variation. An efficient technique for this type of problem should predict the 
amount of functional variation and adapt the step size to the varying requirements. These 
methods are called Adaptive quadrature methods. The method we discuss is based on 
the Composite Simpson's rule, but the technique is easily modified to use other composite 
procedures. 

Suppose that we want to approximate f: f (x) dx to within a specified tolerance E > O. 
The first step in the procedure is to apply Simpson's rule with step size h = (b - a)/2. 
This produces (see Figure 4.11) 

b h5 
f(x) dx = Sea, b) - - f(4) (J-L), for some J-L in (a. b), 

a 90 
(4.36 ) 

where 

h 
Sea, b) = 3 [f(a) + 4f(a + h) + feb)]. 

y 

~:--...S({/. b) y = I(x) 

a b x 
h h 
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The next step is to detellnine an accuracy approximation that does not require f(4) (f-L). 

To do this, we apply the Composite Simpson's rule with n = 4 and step size (b - a)/4 = 
h/2, giving 

a 

b h 
f(x) dx = 6 f(a) + 4f 

h 
a+-

2 
+2f(a+h)+4f 

h 4 (b - a) f(4)(-) 
2 180 f-L , 

3h 
a + 2 

for some il in (a, b). To simplify notation, let 

and 

h a+b 
S a, 

2 
=6 f(a)+4f 

h 
a+-

2 
+f(a+h) 

3h 
a+ 2 

Then Eq. (4.37) can be rewritten (see Figure 4.12) as 

b a+b 
f(x) dx = S a, 2 

a 

a + b 1 
+S b --

2' 16 

+ feb) . 

+f(b) 

(4.37) 

( 4.38) 

The error estimation is derived by assuming that f-L ::::::: il or, more precisely, that j<4)(f-L) ::::::: 
f(4)(il), and the success of the technique depends on the accuracy of this assumption. If it 
is accurate, then equating the integrals in Eqs. (4.36) and (4.38) implies that 

y 

( a+b) (a+b) 
S a, 2 + S 2 ' b 

a , 
Y 

/ 

h 

2 

, , 

, ' , ; 

a+b 
2 

,'. : ,: 

y = f(x) 

x 
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so 

a+b 
5 a, 

2 
+5 

a +b b 
2 ' 

I 
--

16 

h 5 16 a+b a+b 
90f(4)(I1-) ;::::; 15 Sea, b) - S a, 2 - S 2' b . 

Using this estimate in Eq. (4.38) produces the error estimation 

b a+b 
f(x) dx - S a, 2 - 5 

a 

I a+b 
;::::; 15 Sea, b) - S a, 2 

a +b b 
2 ' 

-S a+b b 
2 ' • 

215 

This result means that Sea, (a + b)/2) + S«a + b)/2, b) approximates f: f(x) dx about 
15 times better than it agrees with the known value sea, b). Thus, if 

we expect to have 

and 

a+b 
sea, b) - S a, 2 -S 

a+b 
2 ,b < 158, 

b a+b 
f(x)dx-S a, 2 -S a+b b 

2 ' 
< 8, 

a 

a+b 
S a, 2 + S 

a+b 
2 ,b 

is assumed to be a sufficiently accurate approximation to f: f (x) dx. 

( 4.39) 

(4.40) 

To check the accuracy of the error estimate given in (4.39) and (4.40), consider its applica
tion to the integral 

lr/2 

sinx dx = 1. 
o 

In this case, 

( 
7r) 7r/4 [ . 7r . 7rJ 7r ..fi S 0, '2 = 3 sin 0 + 4 sm "4 + sm '2 = 12 (2 2 + 1) = l.002279878 

and 

S(O 7r)+s(7r 7r)=_7r/8 
'4 4'2 3 

. 0 . 7r 7r . 37r . 7r 
sm + 4 sm - + 2 sin - + 4 sm + sm -

8 4 8 2 

= 1.000134585, 
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so 

1 S(O TC)_S(O TC)_S(TC TC) =0.000143020. 
15 ' 2 ' 4 4' 2 

• 

This closely approximates the actual error, 

Jr/2 

sinx dx - 1.000134585 = 0.000134585, 
o 

even though D; sin x = sin x varies significantly in the interval (0, TC /2). • 
When the approximations in (4.39) differ by more than 158, we apply the Simpson's 

rule technique individually to the subintervals [a, (a + b)/2J and [(a + b)/2, bJ. Then we 
use the error estimation procedure to determine if the approximation to the integral on each 
subinterval is within a tolerance of 8/2. If so, we sum the approximations to produce an 
approximation to 1: 1 (x) dx within the tolerance 8. 

If the approximation on one of the subintervals fails to be within the tolerance 8/2, that 
subinterval is itself subdivided, and the procedure is reapplied to the two subintervals to 
determine if the approximation on each subinterval is accurate to within 8/4. This halving 
procedure is continued until each portion is within the required tolerance. Although prob
lems can be constructed for which this tolerance will never be met, the technique is usually 
successful, because each subdivision typically increases the accuracy of the approximation 
by a factor of 16 while requiring an increased accuracy factor of only 2. 

Algorithm 4.3 details this Adaptive quadrature procedure for Simpson's rule, although 
some technical difficulties arise that require the implementation to differ slightly from the 
preceding discussion. For example, in Step 1 the tolerance has been set at 108 rather than 
the 158 figure in Inequality (4.39). This bound is chosen conservatively to compensate for 
error in the assumption 1(4) (J-L) >=:::: 1(4) (jl). In problems where 1(4) is known to be widely 
varying, you should lower this bound even further. 

The procedure listed in the algorithm first approximates the integral on the leftmost 
subinterval in a subdivision. This requires the efficient storing and recalling of previously 
computed functional evaluations for the nodes in the right half subintervals. Steps 3, 4, 
and 5 contain a stacking procedure with an indicator to keep track of the data that will be 
required for calculating the approximation on the subinterval immediately adjacent and to 
the right of the subinterval on which the approximation is being generated. The method is 
easier to implement on a computer using a recursive programming language. 

Adaptive Quadrature 

To approximate the integral I = f: 1 (x) dx to within a given tolerance: 

INPUT endpoints a, b; tolerance TOL; limit N to number of levels. 

OUTPUT approximation APP or message that N is exceeded. 

Step 7 Set APP = 0; 
i = 1; 
TOLi = 10 TOL; 
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ai = a; 
hi = (b - a)/2; 
FA = f(a); 
FCi = f(a + hi); 
FBi == feb); 
Si == hi (FAi + 4FC + FBi)(3; (Approximation from Simpson's 

method for entire interval.) 

Li = 1. 

Step 2 While i > 0 do Steps 3-5. 

Step 3 Set FD == f(ai + hd2); 
FE == f(ai + 3hd2); 
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Sl == hi (FAi + 4FD + FC) /6; (Approximations from Simpson's 
method for halves of subintervals.) 

S2 == hi (FCi + 4FE+FBi)/6; 
VI == ai; (Save data at this level.) 
V2 == FAi ; 

V3 = Fei ; 

V4 == FBi; 
Vs == hi; 
V6 == TOLi ; 

V7 == Si; 
Vs == Li· 

Step 4 Set i == i-I. (Delete the level.) 
Step5 IfISl+S2-v71 < V6 

then set APP == APP + (SI + S2) 
else 

if(vs > N) 
then 

OUTPUT ('LEVEL EXCEEDED'); (Procedur€fails.) 
STOP. 

else (Add one level.) 
set i == i + 1; (Datafor right half subinterval.) 

ai == VI + V5; 

FAi == V3; 

FCi == FE; 
FBi == v4; 

hi == V5/2; 
TOLi == V6/2; 
Si == S2; 
Li == Vs + 1; 

set i == i + 1; (Data for left half subinterval.) 

ai == VI; 

FA == V2; 

FCi == FD; 
FBi == V3; 

hi == hi-I; 
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TOLi = TaLi-I; 
Si = SI; 

Li = L i- I • 

Step 6 OUTPUT (APP); (APP approximates I to within TaL.) 
STOP. • 

The graph of the function I(x) = (WO/x2) sineW/x) for x in [1,3] is shown in Figure 
4.13. Using the Adaptive Quadrature Algorithm 4.3 with tolerance 10-4 to approximate 

f/ I (x) dx produces -1.426014, a result that is accurate to within 1.1 x 10"':5. The ap
proximation required that Simpson's rule with n = 4 be performed on the 23 subintervals 
whose endpoints are shown on the horizontal axis in Figure 4.13. The total number of 
functional evaluations required for this approximation is 93. 

y 
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The largest value of h for which the standard Composite Simpson's rule gives 10-4 

accuracy is h = 8
1
8' This application requires 177 function evaluations, nearly twice as 

many as Adaptive quadrature. _ 

E X ERe I S ESE T 4.6 

1. Compute the Simpson's rule approximations Sea, b), Sea, (a + b)/2), and S(Ca + b)/2, b) for 
the following integrals, and verify the estimate given in the approximation formula. 

1.5 

a. x 2lnx dx 
1 

c. 1
0.35 2 

-::-- dx 
° x 2 

- 4 
1f/4 

e. e3x sin2x dx 

° 
3.5 

g. 
3 

b. 

d. 

f. 

h. 

° ["/4 
10 x

2 
sinx dx 

1.6 

1 

1f/4 

° 

2x 
-::---:- dx 
x 2 -4 

(cosx)2 dx 

2. Use Adaptive quadrature to find approximations to within 10-3 for the integrals in Exercise 1. 
Do not use a computer program to generate these results. 

3. Use Adaptive quadrature to approximate the following integrals to within 10-5 . 

3 3 

a. e2x sin3x dx b. e1x sin2x dx 
1 1 

5 15 

[4x cos(2x) - (x - 2)2] dx c. [2xcos(2x) - (x - 2)2] dx d. 
0 

4. Use Simpson's Composite rule with n = 4,6, 8, ... , until successive approximations to the 
following integrals agree to within 10-6 . Determine the number of nodes required. Use the 
Adaptive Quadrature Algorithm to approximate the integral to within 10-6

, and count the 
number of nodes. Did Adaptive quadrature produce any improvement? 

1f 1f 

a. xcosx2 dx b. x sinx2 dx 
o o 

" " 
c. x 2cosx dx d. x 2 sinxdx 

o o 

5. Sketch the graphs of sin(l/x) and cos(i/x) on [0.1,2]. Use Adaptive quadrature to approxi
mate the integrals 

1
2 I 

sin - dx and 
0.1 x 

2 1 
cos - dx 

0.1 X 

to within 10-3 . 

6. Let T(a, b) and T(a, a;b)+ T(a;b ,b) be the single and double applications of the Trapezoidal 

rule to J: f(x) dx. Derive the relationship between 

a+b 
T(a, b) - T a, 2 -T 

a+b 
. 2 ,b 
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and 

l
b a+b 

a j(x) dx - T a, 2 

7. The differential equation 

-T a+b b 
2 ' 

mu"(t)+ku(t) = Focoswt 

• 

describes a spring-mass system with mass m, spring constant k, and no applied damping. The 
term Fo cos wt describes a periodic external force applied to the system. The solution to the 
equation when the system is initially at rest (u'(O) = u(O) = 0) is 

Fo 
u(t) = 2 2 [cos wt - cos WotJ , 

m(wo - w ) 

k 
where Wo = - 1= w. 

m 

Sketch the graph of u when m = I, k = 9, Fo = I, w = 2, and t E [0, 27l'J. Approximate , 
10"" u(t) dt to within 10-4

. 

8. If the term CUi (t) is added to the left side of the motion equation in Exercise 7, the resulting 
differential equation describes a spring-mass system that is damped with damping constant 
c 1= O. The solution to this equation when the system is initially at rest is 

U(t)=cle"'+C2 er2'+ 2 2 ;° 2 22[cwsinwt+m(w~-w2)coswt], 
c w +m (wo - w) 

where 

-c + Jc2 - 4w5m2 
rl = 

2m 
and r2 = 

-c - Jc2 - 4w5m2 

2m 
• 

a. Let m = 1, k = 9, Fo = 1, c = 10, and w = 2. Find the values of CI and C2 so that 
u(O) = u(l) = O. 

b. Sketch the graph of u(t) for t E [0, 27l'J and approximate 102" u(t) dt to within 10-4
. 

9. The study of light diffraction at a rectangular aperture involves the Fresnel integrals 

c(t) = 
, 7l' 
cos _w2 dw 

o 2 
and 

, 7l' 
set) = sin _w2 dw. 

o 2 

Construct a table of values for c(t) and set) that is accurate to within 10-4 for values of 
t = 0.1,0.2, ... ,1.0. 

4.7 Gaussian Quadrature 

The Newton-Cotes formulas in Section 4.3 were derived by integrating interpolating poly
nomials. Since the error terIIl in the interpolating polynomial of degree n involves the 
(n + l)st derivative of the function being approximated, a fonnula of this type is exact 
when approximating any polynomial of degree less than or equal to n. 
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y 

Figure 4.15 

y 
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All the Newton-Cotes formulas use values of the function at equally-spaced points. 
This restriction is convenient when the formulas are combined to form the composite rules 
we considered in Section 4.4, but it can significantly decrease the accuracy of the approx
imation. Consider, for example, the Trapezoidal rule applied to determine the integrals of 
the functions shown in Figure 4.14. 

y y 

X2 = b x X2 = b x X2 = b x 

The Trapezoidal rule approximates the integral of the function by integrating the linear 
function that joins the endpoints of the graph of the function. But this is not likely the best 
line for approximating the integral. Lines such as those shown in Figure 4.15 would likely 
give much better approximations in most cases. 

y y 

X2 b x X2 X x 

Gaussian quadrature chooses the points for evaluation in an optimal, rather than 
equally spaced, way. The nodes Xl, X2, ... ,Xn in the interval [a, b] and coefficients 
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CI, C2, ... , Cn, are chosen to minimize the expected error obtained in the approximation 

b n 

I(x) dx ~ L Ci!(Xi). 
a i=1 

To measure this accuracy, we assume that the best choice of these values is that which 
produces the exact result for the largest class of polynomials, that is, the choice that gives 
the greatest degree of precision. 

The coefficients CI, CZ, .•• ,Cn in the approximation fOlmula are arbitrary, and the 
nodes XI, XZ, ... ,Xn are restricted only by the fact that they must lie in [a, b], the interval 
of integration. This gives us 2n parameters to choose. If the coefficients of a polynomial 
are considered parameters, the class of polynomials of degree at most 2n - I also contains 
2n parameters. This, then, is the largest class of polynomials for which it is reasonable 
to expect the formula to be exact. With the proper choice of the values and constants, 
exactness on this set can be obtained. 

To illustrate the procedure for choosing the appropriate parameters, we will show how 
to select the coefficients and nodes when n = 2 and the interval of integration is [-1, 1]. 
We will then discuss the more general situation for an arbitrary choice of nodes and coeffi
cients and show how the technique is modified when integrating over an arbitrary interval. 

Suppose we want to detellnine CI, C2, XI, and X2 so that the integration formula 

I 

I(x) dx ~ Cl/(XI) + Czf(X2) 
-I 

gives the exact result whenever I(x) is a polynomial of degree 2(2) - I = 3 or less, that 
is, when 

for some collection of constants, aQ, ai, a2, and a3. Because 

X dx + az 

this is equivalent to showing that the formula gives exact results when I (x) is 1, X, X2, 
and x3. Hence, we need CI, C2, XI, and X2, so that 

I 

CI . 1 + C2 . 1 = I dx = 2, 
-I 

Z 2 
CI . X I + C2 . X z = 

I 2 
x2 dx = -, 

3 -I 

I 

CI . XI + C2 . Xz = X dx = 0, 
-I 

I 

d 3 3 an CI . X I + C2 . Xz = x3 dx = O. 
-I 

A little algebra shows that this system of equations has the unique solution 

CI = 1, Cz = 1, 
v'3 

and 
v'3 

XI =- , X2 = , 
3 3 

which gives the approximation formula 

I -v'3 v'3 
I(x) dx ~ I +1 

3 
• 

3 -I 
(4.41) 
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This formula has degree of precision 3, that is, it produces the exact result for every poly
nomial of degree 3 or less. 

This technique could be used to determine the nodes and coefficients for formulas that 
give exact results for higher-degree polynomials, but an alternative method obtains them 
more easily. In Sections 8.2 and 8.3 we will consider various collections of orthogonal 
polynomials, functions that have the property that a particular definite integral of the prod
uct of any two of them is O. The set that is relevant to our problem is the set of Legendre 
polynomials, a collection {Po (x), PI (x), ... , Pn (x), ... , } with properties: 

1. For each n, Pn(x) is a polynomial of degree n. 

2. f~1 P(x)Pn(x) dx = 0 whenever P(x) is a polynomial of degree less than n. 

The first few Legendre polynomials are 

Po(x) = 1, PI (x) = x, 

3 3 
P3(X) = x - -x, 

5 
and 

2 I 
P2(X) =x --, 

3 

The roots of these polynomials are distinct, lie in the interval (-1, 1), have a symmetry 
with respect to the origin, and, most importantly, are the correct choice for determining the 
parameters that solve our problem. 

The nodes XI, X2, ... , Xn needed to produce an integral approximation formula that 
gives exact results for any polynomial of degree less than 2n are the roots of the nth-degree 
Legendre polynomial. This is established by the following result. 

Suppose that XI, X2, ... , Xn are the roots of the nth Legendre polynomial Pn (x) and that 
for each i = I, 2, ... , n, the numbers Ci are defined by 

Ci = 
I n 

n x - Xj dx. 

_lj=IXi-Xj 
Hi 

If P(x) is any polynomial of degree less than 2n, then 

I n 

P(x) dx = LCiP(Xi). 
-I ;=1 

• 

Proof Let us first consider the situation for a polynomial P(x) of degree less than n. 
Rewrite P(x) as an (n - I)st Lagrange polynomial with nodes at the roots of the nth 
Legendre polynomial Pn(x). This representation of P(x) is exact, since the error term 
involves the nth derivative of P and the nth derivative of P is O. Hence, 

I I 

P(x) dx = 
-I -I 

n n LD x -Xj P(Xi) 
, I ' I Xi - x)' 
1= )= 

dx 

Hi 
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n 

=L 
i=1 

1 n n x -Xj dx 
_I j=1 Xi - Xj 

n 

P(Xi) = LCiP(Xi), 
i=1 

j'li 

which verifies the result for polynomials of degree less than n. 
If the polynomial P(x) of degree at least n but less than 2n is divided by the nth 

Legendre polynomial Pn(x), we get two polynomials Q(x) and R(x) of degree less than n: 

P(X) = Q(x)Pn(x) + R(x). 

We now invoke the unique power of the Legendre polynomials. First, the degree of the 
polynomial Q(x) is less than n, so (by Legendre property 2), 

1 

Q(x)Pn(x) dx = O. 
-I 

Next, since Xi is a root of Pn (x) for each i = 1, 2, ... , n, we have 

P(Xi) = Q(Xi)Pn(Xi) + R(x;) = R(xi). 

Finally, since R(x) is a polynomial of degree less than n, the opening argument implies 
that 

1 n 

R(x) dx = LCiR(xi)' 
-I i=1 

Putting these facts together verifies that the formula is exact for the polynomial P(x): 

1 

P(x) dx = 
-1 

1 

[Q(x)Pn(x)+R(x)] dx = 
-1 

1 n n 

R(x)dx = LCiR(xi) = LCiP(Xi). 
-I i=1 i=1 

• • • 

The constants Ci needed for the quadrature rule can be generated from the equation 
in Theorem 4.7, but both these constants and the roots of the Legendre polynomials are 
extensively tabulated. Table 4.11 lists these values for n = 2, 3,4, and 5. Others can be 
found in [StS]. 

An integral I: f(x) dx over an arbitrary [a, b] can be transformed into an integral 
over [-1, 1] by using the change of variables (see Figure 4.16 on page 225): 

2x-a-b 1 
t= .: >x= -[(b-a)t+a+b]. 

b-a 2 

This pennits Gaussian quadrature to be applied to any interval [a, b], since 

b 1 

f(x) dx = f 
a -1 

(b - a)t + (b + a) 
2 

(b -a) 
2 dt. (4.42) 
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n Roots rn,i Coefficients Cn,i 

2 0.5773502692 1. 
-0.5773502692 1.0000000000 

3 0.7745966692 0.5555555556 
O. 0,8888888889 

-0.7745966692 0.5555555556 
4 0.8611363116 0.3478548451 

0.3399810436 0.6521451549 
-0.3399810436 0.6521451549 
-0.8611363116 0.3478548451 

5 0.9061798459 0.2369268850 
0.5384693101 0.4786286705 
O. 0.5688888889 

-0.5384693101 0.4786286705 
-0.9061798459 0.2369268850 

t 

1 2x-a-b 
(b, 1) 

t= 
b-a 

a b x 

-1 
(a, -1) 

Consider the problem of finding approximations to 1/.5 e-x2 dx. Table 4.12 lists the values 
for the Newton-Cotes fOImulas given in Section 4.3. The exact value of the integral to 
seven decimal places is 0.1093643. 

n 

Closed formulas 
Open formulas 

o 

0.1048057 

1 

0.1183197 
0.1063473 

2 

0.1093104 
0.1094116 

3 

0.1093404 
0.1093971 

4 

0.1093643 

The Gaussian quadrature procedure applied to this problem requires that the inte
gral first be transfoImed into a problem whose interval of integration is [-I, 1]. Using 
Eq. (4.42), we have 

1.5 2 1 1 
e-x dx = - e(-U+5)2/16) dt. 

1 4 -I 
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The values in Table 4.11 give the following Gaussian quadrature approximations for 
this problem: 

n = 2: 

n = 3: 

1.5 1 
e-x2 dx ~ -[(0.5555555556)e-(5+0.77459 

1 4 
12)"/16 + (0.8888888889)e-(5)2/16 

+ (0.5555555556)e-(5-0.7745966692)2/16] 

= 0.1093642. 

For further comparison, the values obtained using the Romberg procedure with n = 4 are 
listed in Table 4.13. • 

0.1183197 
0.1115627 
0.1099114 
0.1095009 

0.1093104 
0.1093610 
0.1093641 

0.1093643 
0.1093643 0.1093643 

E X ERe I S ESE T 4.7 

1. Approximate the following integrals using Gaussian quadrature with n = 2, and compare your 
results to the exact values of the integrals. 

1
1.5 

a. 1 x2 ln x dx 

0.35 2 
2 dx 

x -4 
c. 

o 
rr(4 

e. e3x sin 2x dx 
o 

3.5 

g. 
3 

2. Repeat Exercise 1 with n = 3. 

3. Repeat Exercise 1 with n = 4. 

4. Repeat Exercise 1 with n = 5. 

d. 

f. 

h. 

rr/4 

x 2 sin x dx 
o 

1.6 2x 
--::----: d x 

1 x 2 -4 
rr(4 

(COSX)2 dx 
o 

5. Determine constants a, b, c, and d that will produce a quadrature formula 

1: f(x) dx = af( -1) + bf(l) + cJ'( -1) + dJ'(I) 

that has degree of precision 3. 
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Determine constants a, b, c, and d !hat will produce a quadrature fonnula 

I 

f(x) dx = af( -I) + bf(O) + cf(l) + df'( -I) + ef' (I) 
-I 

!hat has degree of precision 4. 

6. Verify the entries for the values of n = 2 and 3 in Table 4.11 by finding the roots of the respec
tive Legendre polynomials, and use The equations preceding this table to find the coefficients 
associated with the values. 

7. Show that the fonnula Q(P) = L:7 I cjP(Xj) cannot have degree of precision greater than 
2n - 1, regardless of the choice of CI, , .. , Cn and XI, ... ,Xn • [Hint: Construct a polynomial 
that has a double root at each of the Xj 's.] 

4.8 Multiple Integrals 

Figure 4.17 

The techniques discussed in the previous sections can be modified in a straightforward 
manner for use in the approximation of multiple integrals. Consider the double integral 

f(x, y) dA, 

R 

where R = {(x, y) I a :::: x :::: b, c < y :::: d}, for some constants a, b, c, and d, 
is a rectangular region in the plane. (See Figure 4.17.) We will employ the Composite 

z 

z = f(x, y) 

d 

y 
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Simpson's rule to illustrate the approximation technique, although any other composite 
formula could be used in its place. 

To apply the Composite Simpson's rule, we divide the region R by partitioning both 
[a, b] and [c, d] into an even number of subintervals. To simplify the notation, we choose 
even integers n and m and partition [a, b] and [c, d] with the evenly spaced mesh points 
Xo, XI, ... , Xn and Yo, YI, ... , Ym, respectively. These subdivisions determine step sizes 
h = (b - a)/n and k = (d - c)/m. Writing the double integral as the iterated integral 

b d 

f(x, y) dA = f(x, y) dy dx, 
a c 

R 

we first use the Composite Simpson's rule to approximate 

d 

f(x, y) dy, 
c 

treating X as a constant. Let Yj = c + jk, for each j = 0, 1, ... , m. Then 

(mj2)-1 mj2 
d k 

f(x, y) dy = 3 f(x,yo)+2 L f(X,Y2j)+4Lf(x,Y2j-l) +f(x, Ym) 
c j=1 j=1 

(d - C)k4 a4f(x, J.L) 

180 ay4 
, 

for some J.L in (c, d). Thus, 

b d k 
f(x,y)dydx=3 

c 

b (mj2)-1 

f(x,yo)dx+2 L 
j=l 

b 

f(x, Y2j) dx 
a a a 

mj2 b b 

+4L f(x, Y2j-l) dx + f(x, Ym) dx 
j=1 a a 

(d - c)k4 
-

180 

b a4 f(x, J.L) 
4 dx. 

a ay 

The Composite Simpson's rule is now employed on the integrals in this equation. Let 
Xi =a+ih,foreachi=O,I, ... ,n. Then for each j =0, 1, ... ,m,wehave 

b h 
a f(x, Yj) dx = "3 

(nj2)-1 nj2 

f(xo, Yj) + 2 L f(x2i, Yj) + 4 L f(X2i-l, Yj) + f(xn , Yj) 
i=1 i=1 

for some ~j in (a, b). The resulting approximation has the form 
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b 

a 

d hk 
lex, y) dy dx ;::::: -

c 9 

(n/Z)-1 

!(XO,yo)+2 L !(XZi,YO) 
i=1 

n/Z 
+ 4 L !(X2j_I, Yo) + !(Xn, Yo) 

i=1 

(m/Z)-I (m/2)-1 (n/Z)-I 

+2 L !(Xo, YZj) + 2 L L f(X2i' YZj) 
j=1 j=1 i=1 

(mjZ)-1 nj2 (mj2)-1 

+ 4 L L !(X2i-l, Y2j) + L !(Xn , Y2j) 
j=1 (=1 j==1 

m/2 m/2 (nI2)-1 

+ 4 L !(Xo, Y2j-d + 2 L L !(X2i, Y2j-l) 
j=1 j=1 i=1 

m/2 nl2 mlZ 

+ 4 L L !(X2i-b YZj-l) + L !(Xn , YZj-l) 
j=1 i=1 j=1 

(nIZ)-1 nl2 

229 

+ !(Xo,Ym) +2 L !(X2j,Ym) +4 L!(X2i-I,Ym) 
i==1 1=1 

The error tenn E is given by 

E = -k(b -a)h4 a4!(~O,Yo) +2 (mf- I a4f(~2j'Y2j) +4 f a4!(~2j_I'Y2j_l) 
540 ax4 j=1 OX4 j=1 ox4 

a4!(~m,Ym) (d-c)k4 ba4!(x,t-t) 
+ ax4 - 180 a oy4 dx. 

If a4 ! / Ox4 is continuous, the Intermediate Value Theorem can be repeatedly applied 
to show that the evaluation of the partial derivatives with respect to x can be replaced by a 
common value and that 

. 4 
E = _-_k_{b __ a)_h_ 

540 

(d - c)k4 

180 

for some (Tj, 7IJ in R. If a4! /oy4 is also continuous, the Weighted Mean Value Theorem 
for Integrals implies that 

ba
4
!(x,t-t) d =(b- )o4!(A A) 
O 

4 X a 0 4 7], t-t , 
a Y Y 
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for some (ij, fl) in R. Since m = (d - c)/ k, the error term has the fOIln 

or 

-k(b - a)h4 

E = ---'----
540 

E = _ --'.-(d_ -_c,-) (_b~_a,-) 
180 

for some (17, f.L) and (ij, fl) in R. 

The Composite Simpson's rule applied to approximate 

2.0 1.5 

In(x + 2y) dy dx, 
1.4 1.0 

with n = 4 and m = 2 uses the step sizes h = 0.15 and k = 0.25. The region of integration 
R is shown in Figure 4.18, together with the nodes (Xi, Yj), where i = 0, 1,2,3,4 and 
j = 0,1,2 and, the coefficients wi,}, of f(Xi, Yj) = In (Xi + 2Yj) in the sum. 

y 

1 4 2 4 I 
1.50 

4 16 
1.25 

8 16 4 

1 4 2 4 1 
1.00 

1.40 1.55 1.70 1.85 2.00 x 

The approximation is 
• 

2.0 1.5 (0.15)(0.25) 4 2 
In(x + 2y) dy dx ~ L L Wi.j In (Xi + 2Yj) 

1.0 9 i=O j=O 1.4 

= 0.4295524387. 

Since 

a4 f -6 
8x4 (x, y) = (x + 2y)4 and 

84 f -96 
8y4 (x, y) = (x + 2y)4' 
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and the maximum value of (x+~y)4 on R occurs at (l.4, 1.0), the error is bounded by 

lEI ::s (0.5)(0.6) (0.15)4 max 6 + (0.25)4 max 96 
180 (x,y)inR (x + 2y)4 (x,y)inR (x + 2y)4 

< 4,72 x 10-6 . 

The actual value of the integral to ten decimal places is 

2,0 1.5 

In(x + 2y) dy dx = 0.4295545265, 
1.4 1.0 

so the approximation is accurate to within 2.1 x 10-6 . • 
The same techniques can be applied for the approximation of triple integrals as well 

as higher integrals for functions of more than three variables. The number of functional 
evaluations required for the approximation is the product of the number of functional eval
uations required when the method is applied to each variable. 

To reduce the number of functional evaluations, more efficient methods such as Gaus
sian quadrature, Romberg integration, or Adaptive quadrature can be incorporated in place 
of the Newton-Cotes fOImulas, The following example illustrates the use of Gaussian 
quadrature for the integral considered in Example 1. 

Consider the double integral given in Example 1. Before employing a Gaussian quadrature 
technique to approximate this integral, we transform the region of integration 

R = { (x, y) I 1.4 < x < 2.0, 1.0 < y < 1.5} 

into 

A 

R = {(u, v) I -1 < u < 1, -1 < v < I}. 

The linear transfonnations that accomplish this are 

1 
u = (2x - 1.4 - 2,0) and 

2.0-1.4 

1 
v = ---(2y - 1.0 - 1.5), 

1.5 - 1.0 

or, equivalently, x = O.3u + 1.7 and y = 0.25v + 1.25. Employing this change of variables 
gives an integral on which Gaussian quadrature can be applied: 

2.0 1.5 I I 

In(x + 2y) dy dx = 0.075 In(0.3u + 0.5v + 4.2) dv duo 
1.4 1.0 -I -I 

The Gaussian quadrature fonnula for n = 3 in both u and v requires that we use the nodes 

UI = VI = '3,2 = 0, Uo = Vo = '3,1 = -0.7745966692, 

and 

U2 = V2 = '3,3 = 0.7745966692. 
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- -
The associated weights are c3,2 = 0.8 and c3,! = C3,3 = 0.5. (See Table 4.11.) Thus, 

2.0 1.5 3 3 

1.4 
In(x + 2y) dy dx ~ 0.075 L L C3,iC3,j In(0.3r3,i + 0.5r3,j + 4.2) 

1.0 i=! j=! 

= 0.4295545313. 

Although this result requires only 9 functional evaluations compared to 15 for the Com
posite Simpson's rule considered in Example 1, this result is accurate to within 4.8 x 10-9

, 

compared to 2.1 x 10-6 accuracy in Example 1. • 

The use of approximation methods for double integrals is not limited to integrals with 
rectangular regions of integration. The techniques previously discussed can be modified to 
approximate double integrals of the fonn 

b d(x) 

f(x, y) dy dx (4.43) 
a c(x) 

or 

d b(y) 

f(x, y) dx dy. (4.44) 
c a(y) 

In fact, integrals on regions not of this type can also be approximated by performing ap
propriate partitions of the region. (See Exercise 10.) 

To describe the technique involved with approximating an integral in the form 

b d(x) 

f(x, y) dy dx, 
a c(x) 

we will use the basic Simpson's rule to integrate with respect to both variables. The step 
size for the variable x is h = (b - a)/2, but the step size for y varies with x (see Figure 
4.19) and is written 

d(x) - c(x) 
k(x) = 2 . 

Consequently, 

b d(x) 

f(x, y) dy dx ~ 
b k(x) 

---'.3---'. [f(x, c(x» + 4f(x, c(x) + k(x» + f(x, d(x»] dx 
a c(x) a 

h k(a) 
~ 3 3 [f(a, c(a» + 4f(a, c(a) + k(a» + f(a, d(a»] 

4k(a + h) 
+ 3 [f(a+h,c(a+h»+4f(a+h,c(a+h) 

+ k(a + h» + f(a + h, d(a + h))] 

+ k~) [feb, c(b» + 4f(b, c(b) + k(b» + feb, deb»~] . 
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y 

d(a) 
deb) 

k( a) 'f'.--.. 
c(b) 
c(a) 

k(a + h) 

r-..... y = d(x) 

~_I} k(b) 

y = c(x) : 

a a + h 

(a) 

I 
I 

b x 

233 

z 

z = I(x, y) 

y 

y = d(x) 

x y = c(x) 

(b) 

Algorithm 4.4 applies the Composite Simpson's rule to an integral in the form (4.43). 
Integrals in the form (4.44) can, of course, be handled similarly. 

Simpson's Double 

To approximate the integral I = 1: fc~~~) I (x, y) dy dx: 

INPUT endpoints a, b: even positive integers m, n. 

OUTPUT approximation J to I. 

Step 1 Set h = (b - a)/n; 
JJ = 0; (End tellns.) 
h = 0; (Even terms.) 
h = O. (Odd tellns.) 

Step 2 For i = 0, I, ... ,n do Steps 3-8. 

Step3 Set x =a+ih; (CompositeSimpson'smethodforx.) 
HX = (d(x) - c(x»/m; 
KJ = f(x, c(x» + f(x, d(x»; (End terms.) 
K2 = 0; (Even terms.) 
K3 = O. (Odd temlS.) 

Step 4 For j = I, 2, ... ,m - 1 do Step 5 and 6. 
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Step 5 Set y = c(x) + jHX; 

Q = I(x, y). 

Step 6 If j is even then set K2 = K2 + Q 
else set K3 = K3 + Q. 

Step 7 Set L = (K[ + 2K2 + 4K3)HX/3. 

d(Xj) 

L ~ I (Xi, y) dy by the Composite Simpson's method. 
c(Xj) 

Step 8 If i = 0 or i = n then set 1[ = 1[ + L 
else if i is even then set h = h + L 
else set h = h + L. 

Step 9 Set 1 = h(J[ + 2h + 413)/3. 

Step 10 OUTPUT (1); 
STOP. 

To apply Gaussian quadrature to 

b d(x) 

a c(x) 

I(x, y) dy dx, 

• 

first requires transforming, for each X in [a, b], the interval [c(x), d (x)] to [ -1, 1] and then 
applying Gaussian quadrature. This results in the fOllllula 

b d(x) 

I(x, y) dy dx 
a c(x) 

b d (x) - c(x) ~ c . I 
2 ~ n,] 

a j=i 

(d(x) - c(x»rn,} + d(x) + c(x) 
x, 2 dx, 

where, as before, the roots r n,} and coefficients cn,} come from Table 4.11. Now the interval 
[a, b] is tranfonned to [-1,1], and Gaussian quadrature is applied to approximate the 
integral on the right side of this equation. The details are given in Algorithm 4.5. 

Gaussian Double Integral 

To approximate the integral f: fc~~~) I (x, y) dy dx: 

INPUT endpoints a, b; positive integers m, n. 
(The roots rj,) and coefficients Ci,} need to be available lor i = max{m, n} 
andlor 1 ~ j < i.) 

OUTPUT approximation 1 to I. 

Step 1 Set hI = (b - a)/2; 

h2 = (b + a)/2; 
1 = O. 

, 
( , 
• 
, , 

• 

-
• 

c 
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Step 2 For i = 1,2, ... ,m do Steps 3-5. 

Step 3 Set J X = 0; 
x=h\rm i+ h2; . , 
d\ = d(x); 
CI = c(x); 

kl = (d\ - cd/2; 
k2 = (d\ + c\)/2. 

Step 4 For j = 1,2, ... ,n do 
set y = k1rn.j + k2 ; 

Q = I(x, y); 
J X = J X + Cn.j Q. 

Step 5 Set J = J + Cm.ik\ J X. 

Step 6 Set J = hi J. 

Step 7 OUTPUT (1); 
STOP. 
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• 
The volume of the solid in Figure 4.20 is approximated by applying Simpson's Double 
Integral Algorithm with n = m = 10 to 

. 
• 

z 

I (0.1. 0.01, eO I) • (0.5, 0.25, eO.~) 

(0.1,0.001, eO OI ) 

y 

0.1 
• 

R :::-;-~~ (0.5, 0.25, 0) 

0.5 
(0.5. 0.125, 0) 

x 

. . . 



236 C HAP T E R 4 • Numerical Differentiation and Integration 

0.5 x 2 

eY/
x dy dx. 

This requires 121 evaluations of the function f(x, y) = eY/ x and produces the 0.0333054, 
which approximates the volume of the solid shown in Figure 4.20 to nearly seven decimal 
places. Applying the Gaussian Quadrature Algorithm with n = m = 5 requires only 25 
function evaluations and, gives the approximation, 0.03330556611, which is accurate to 11 
decimal places. _ 

Triple integrals of the [01 III 

b d(x) ~(x,y) 

f(x, y, z) dz dy dx 
a c(x) a(x,y) 

(see Figure 4.21) are approximated in a similar manner. Because of the number of calcu
lations involved, Gaussian quadrature is the method of choice. Algorithm 4.6 implements 
this procedure. 

Gaussian Triple Integral 

To approximate the integral t fc~;~) f~~~~) f(x, y, z) dz dy dx: 

INPUT endpoints a, b; positive integers m, n, p. 
(The roots ri,j and coefficients Ci.j need to be availablefor i = max{n, m, p} 
andfor 1 < j :S i.) 

OUTPUT approximation J to I. 

Step 1 Set hi = (b - a)/2; 
h2 = (b + a)/2; 
J = O. 

Step 2 For i = 1,2, ... ,m do Steps 3-8. 

Step 3 Set JX = 0; 
x = h1rm,i + h2; 
d1 = d(x); 
CI = c(x); 
kl = (d\ - cI)/2; 
k2 = (d\ + cI)/2. 

Step 4 For j = 1,2, '" ,n do Steps 5-7. 

Step 5 Set JY = 0; 
Y = klrn,j + k2 ; 

Ih = {3(x, y); 
al = a(x, y); 
II = ({31 - al)/2; 
12 = ({31 + ad/2. 



Figure 4.21 
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Step 6 For k = I, 2, ... , P do 
set z = l\rp,k + h; 

Q = f(x. y, z); 

if = if + Cp,kQ. 

Step 7 Set JX = JX + c",AJY. 

Step 8 Set 1 = J + Cm,iklJX. 

Step 9 Set 1 = hll. 

Step 10 OUTPUT (1); 
STOP. 

z = f3(x. y) 

z 

z = a(x. y) 

--?------ y 
y = c(x) 

R y = d(x) --- -
x 

The following example requires the evaluation of four triple integrals. 

The center of a mass of a solid region D with density function u occurs at 

where 

MYl = 

(x. y. Z) = 

xu(x, y, z) dV, MXl = 
D 

.-... - -

, 

yu(x, y, z) dV 
D 

237 

• 
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Figure 4.22 
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and 

Mxy = za(x,y,z)dV 
D 

are the moments about the coordinate planes and 

M = a(x, y, z)dV 
D 

is the mass. The solid shown in Figure 4.22 is bounded by the upper nappe of the cone 
Z2 = x 2 + y2 and the plane z = 2. Suppose that this solid has density function given by 

a(x, y, z) = Jx2 + y2. 

z 

1 1"">-<-2 
x 

y 

Applying the Gaussian Triple Integral Algorithm 4.6 with n = m = p = 5 requires 
125 function evaluations per integral and gives the following approximations: 

2 ./4-x2 2 

M= J x 2 + y2 dz dy dx 
-2 -./4-x2 ./x2+y2 

2 ./4-x2 2 

=4 J x 2 + y2 dz dy dx ~ 8.37504476, 
0 0 ./x2+y2 

2 J4-x2 2 

M yz = xJx2 + y2 dz dy dx ~ -5.55111512 X 10-17 , 

-./4-x2 ./x2+y2 -2 

2 J4-x2 2 

Mxz = yJx2 + y2 dz dy dx ~ -8.01513675 X 10-17
, 

-./4-x2 ./x2+y2 -2 
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2 

Mxy = 
-2 -J4-x2 

---;;---;;- zJ X 2 + y2 dz dy dx ~ 13.40038156. 
Jx 2+y2 

This implies that the approximate location of the center of mass is 

(x, y, z) = (0,0, 1.60003701). 

These integrals are quite easy to evaluate directly. If you do this, you will find that the exact 
center of mass occurs at (0,0, 1.6). • 

E X ERe I S ESE T 4.8 

1. Use Algorithm 4.4 with n = m = 4 to approximate the following douhle integrals. and 
compare the results to the exact answers. 

a. 
2.5 {14 

J, xl dy dx 
2.1 1.2 

b. 
r510.5 

Jo 0 e'-·' dy dx 

c. d. t51' Jl 0 (x
2 + Vi) dy dx 

2. Find the smallest values for n = m so that Algorithm 4.4 can be used to approximate the 
integrals in Exercise 1 to within 10-6 of the actual value. 

3. Use Algorithm 4.4 with (i) n = 4, m = 8, (ii) n = 8, m = 4, and (iii) n = m = 6 to 
approximate the following double integrals, and compare the results to the exact answers. 

a. {"/4 t osx 
(2y sin x + cos2 x) dy dx 

Jo }sinx 
b. fe IX lnxy dy dx 

c. 11 12x 

(x 2 + y3) dy dx d. 

e. 1" 1x 

cosx dy dx f. 1" l' cos y dy dx 

g. {O"/4 {oSinX I dy dx 
Jo Jo }I _ y2 

h. t,," /2 0
2
" J- (y sinx + x cos y) d\' dx 

4. Find the smallest values for n = m so that Algorithm 4.4 can be used to approximate the 
integrals in Exercise 3 to within 10-6 of the actual value. 

S. Use Algorithm 4.5 with n = m = 2 to approximate the integrals in Exercise I. and compare 
the results to those obtained in Exercise 1. 

6. Find the smallest values of n = m so that Algorithm 4.5 can be used to approximate the 
integrals in Exercise 1 to within 10-6 . Do not continue beyond n = m = 5. Compare the 
number of functional evaluations required to the number required in Exercise 2. 

7. Use Algorithm 4.5 with (i) n = m = 3, (ii) n = 3, m = 4, (iii) n = 4, m = 3, and (iv) 
n = m = 4 to approximate the integrals in Exercise 3. 

8. Use Algorithm 4.5 with n = m = 5 to approximate the integrals in Exercise 3. Compare the 
number of functional evaluations required to the number required in Exercise 4. 



240 C HAP T E R 4 • Numerical Differentiation and Integration 

9. Use Algorithm 4.4 with n = m = 14 and Algorithm 4.5 with n = m = 4 to approximate 

R 

for the region R in the plane bounded by the curves y = x 2 and y = ~. 
10. Use Algorithm 4.4 to approximate 

Jxy + y2 dA, 

R 

where R is the region in the plane bounded by the lines x + y = 6, 3 y - x = 2, and 3x - y = 2. 
First partition R into two regions Rl and Rz on which Algorithm 4.4 can be applied. Use 
n = m = 6 on both Rl and R2 • 

11. A plane lamina is a thin sheet of continuously distributed mass. If a is a function describing 
the density of a lamina having the shape of a region R in the xy-plane, then the center of the 
mass of the lamina (x, y) is 

ff xa(x, y) dA 
_ R 

x = -cf=-=f-a-(x-,-y)-d-A-' 

R 

ff ya(x, y) dA 
- R Y - -"'-::-:;------- ff a(x, y) dA . 

R 

Use Algorithm 4.4 with n = m = 14 to find the center of mass of the lamina described by 
R = { (x, y) I 0 < x < 1,0 < y < y'l - x 2 } with the density function a(x, y) = e-(x'+v

2
). 

Compare the approximation to the exact result. 

12. Repeat Exercise 11 using Algorithm 4.5 with n = m = 5. 

13. The area of the surface described by z = f (x, y) for (x, y) in R is given by 

R 

Use Algorithm 4.4 with n = m = 8 to find an approximation to the area of the surface on 
the hemisphere x2 + y2 + Z2 = 9, z > 0 that lies above the region in the plane described by 
R = { (x, y) I 0 < x :::: I, 0 < y < 1 }. 

14. Repeat Exercise 13 using Algorithm 4.5 with n = m = 4. 

15. Use Algorithm 4.6 with n = m = p = 2 to approximate the fallowing triple integrals, and 
compare the results to the exact answers. 

1 2 0.5 1 1 Y 

a. eX+Y+< dz dy dx b. izdz dy dx 
0 1 0 0 x 0 

[ x X+Y 

11

X x+y 

c. y dz dy dx d. zdzdydx 
x 2 x-y • o x 2 x-y 

" x xy 1 z 1 1 xy 
2 2 

e. - sin - dz dy dx f. eX +Y dz dy dx 
0 0 0 y y 0 0 -xy 

16. Repeat Exercise 15 using n = m = p = 3. 

17. Repeat Exercise 15 using n = m = p = 4 and n = m = p = 5. 
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18. Use Algorithm 4.6 with n = m = p = 4 to approximate 

J! J xy sin(yz) dV, 
s 

where S is the solid bounded by the coordinate planes and the planes x 
z = 1T /3. Compare this approximation to the exact result. 

19. Use Algorithm 4.6 with n = m = p = 5 to approximate 

.jxyz dV, 

s 

241 

J[, )' 1T /2, 

where S is the region in the first octant bounded by the cylinder x 2 + / = 4, the sphere 
x 2 + y2 + Z2 = 4, and the plane x + y + z = 8. How many functional evaluations are required 
for the approximation? 

4.9 Improper Integrals 

Figure 4.23 

Improper integrals result when the notion of integration is extended either to an interval 
of integration on which the function is unbounded or to an interval with one or more infi
nite endpoints. In either circumstance, the nonnal rules of integral approximation must be 
modified. 

We will first consider the situation when the integrand is unbounded at the left endpoint 
of the interval of integration, as shown in Figure 4.23. We will then show that the other 
improper integrals can be reduced to problems of this form. 

y 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

a b x 

It is shown in calculus that the improper integral with a singularity at the left endpoint, 

b dx 
~---:--, 

a (x - a)P 
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l:onverges if and only if 0 < p < I, and in this l:ase, we define 

b dx 

Q (x - a)P 

(b - a)l-p 

J-p 

If f is a function that can be written in the fOlln 

g(x) 
I(x) = (x -a)P' 

• 

where 0 < p < I and g is continuous on [a, b], then the improper integral 

b 

I(x) dx 
a 

also exists. We will approximate this integral using the Composite Simpson's rule, provided 
that g E C 5[a, b]. In that case, we can construct the fourth Taylor polynomial, P4(X), for 
g about a, 

. , g"(a) g"'(a) gC4)(a) 
P4(x) = g(a) + g (a)(x - a) + (x - a)2 + (x - a)3 + (x - a)4, 

2! 3! 4! 

and write 

b 

I(x) dx = 
a 

b g(x) - P4 (x) d 
x+ 

a (x -a)P 

b P4 (x) 
-...:....:.......:....:.... d X . 

a (x - a)P 

Since P (x )is a polynomial, we can exactly determine the value of 

(4.45 ) 

h P4(x) dx = ~ 
Q (x - a)P f::o 

.b (k)(a) 4 (k)(a) 
g (x - a)k- p dx = L g (b - a/+ I - p 

a k! k=ok!(k+l-p) 

( 4.46) 

This is generally the dominant portion of the approximation, especially when the Taylor 
polynomial P4 (x) agrees closely with g (x) throughout the interval [a, b l. 

To approximate the integral of I, we need to add this value to the approximation of 

a 

To determine this, we first define 

G(x) = 

h g(x) - P4(X) d 
x. 

(x - a)P 

g(X)-P4(X) 
(x-a)P . 

0, 

if a < x < b, 

if x = a. 

Since ° < p < I and pjk\a) agrees with g(k) (a) for each k = 0, I, 2, 3, 4, we have G E 

C4 [a, b]. This implies that the Composite Simpson's rule can be applied to approximate 
the integral of G on [a, b]. Adding this approximation to the value in Eg. (4.46) gives an 
approximation to the improper integral of Ion [a, b], within the accuracy of the Composite 
Simpson's rule approximation. 
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We will use the Composite Simpson's rule with h = 0.25 to approximate the value of the 
improper integral 

I eX 
r; dx. 

o yx 

Since the fourth Taylor polynomial for eX about x = 0 is 

we have 

o 
dx 

2 1 1 1 I 
2Xl/2 + _x 3/ 2 + _X 5/ 2 + x 7/ 2 + x 9/2 = lim 

M-+O+ 3 5 21 108 

2 1 1 1 
= 2 + 3 + 5 + 21 + 108 ::::::; 2.9235450. 

Table 4.14 lists the approximate values of 

1 (eX P4(X)) when 0 < x < 1, 
G(x) =..rx - , 

0, when x = o. 

x G(x) 

0.00 a 
0.25 0.0000170 
0.50 0.0004013 
0.75 0.0026026 
1.00 0.0099485 

Applying the Composite Simpson's rule using these data gives 

Hence, 

1 0.25 
G(x) dx ::::::; [0 + 4(0.0000170) + 2(0.0004013) 

o 3 

+ 4(0.0026026) + 0.0099485] = 0.0017691. 

1 eX 
..(X dx ::::::; 2.9235450 + 0.0017691 = 2.9253141. 

o x 

M 

This result is accurate within the accuracy of the Composite Simpson's rule approximation 
for the function G. Since IG(4)(x)1 < Ion [0.1], the error is bounded by 

1-0 4 
180 (0.25) = 0.0000217. • 
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To approximate the improper integral with a singularity at the right endpoint, we could 
apply the technique we used above but expand in tenns of the right endpoint b instead of 
the left endpoint a. Alternatively, we can make the substitution 

z=-x, dz=-dx 

to change the improper integral into one of the form 

b -a 

I(x) dx = I(-z) dz, (4.47) 
a -b 

which has its singularity at the left endpoint. (See Figure 4.24.) 

y y 
I I 
I I 
I I 
I I 
I I 
I I 

Y = I(x) 
I I 

Y = I(-z) I I 
I I 
I I .. 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

a b x -b -a z 

An improper integral with a singularity at c, where a < C < b, is treated as the sum of 
improper integrals with endpoint singularities since 

b c b 

I(x) dx = I(x) dx + I(x) dx. 
a a c 

The other type of improper integral involves infinite limits of integration. The basic 
integral of this type has the form 

a 

001 

- dx, 
x P 

for p > I. This is converted to an integral with left endpoint singularity at 0 by making the 
integration substitution 

Then 

-I t = x , 

a 

dt = _x-2 dx, so dx = _x 2 dt = _t-2 dt. 

00 1 
-dx= 
x P 

o t P 
--dt= 

Iia t2 
0 

Iia 1 
2 dt. t -P 
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In a similar manner, the variable change t _ X-I converts the improper integral 
laoo f (x) dx into one that has a left endpoint singularity at zero: 

f(x) dx = 
I/a 1 

-2f t -
o t 

dt. (4.48) 
00 

a 

It can now be approximated using a quadrature fonllula of the type described earlier. 

To approximate the value of the improper integral 

00 1 
1= X- 3/ 2 sin - dx, 

I X 

we make the change of variable t = X-I to obtain 

I 

1= t- I / 2 sint dt. 
o 

The fourth Taylor polynomial, P4(t), for sin t about 0 is 

1 3 
P4(t) = t - 6 t , 

so 

G(t) = 

sint - (+ !(3 
6 

---:t '-::/2:--""-- , 

0, 

ifO<t<1 -
ift = 0 

is in C4 [O, 1], and we have 

1= 
I 1 

tl/2 _ _ t5/ 2 dt + 
6 

I sint-t+!t3 

t l / 2 6 dt 
o o 

211 
= _t3/ 2 _ t7/ 2 + 

3 21 o 0 

I sint-t+!t3 

t l / 2 6 dt 

= 0.61904761 + 
o 

I sin t - t + !t3 

t l / 2 6 dt. 

Applying the Composite Simpson's rule with n = 16 to the remaining integral gives 

1= 0.0014890097 + 0.61904761 = 0.62053661, 

which is accurate to within 4.0 x 10-8. • 

E X ERe I S ESE T 4.9 

1. Use Simpson's Composite rule and the given values of n to approximate the following im
proper integrals. 
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a. 
1 

x- 1/4 sinx dx , b. n=4 
o 

1 e2x 
5", dx, 

o '\I x 2 
n=6 

c. 1
2 lnx 

1 (x - I) 1/5 dx, d. n=8 
1 COS 2x 

x l/3 dx, n=6 
o 

2. Use the Composite Simpson's rule and the given values of n to approximate the following 
improper integrals. 

a. 1
1 e-X 
~==dx, 

o v'l - x 
n=6 b. 1

2 xeX 
-:;-;:::===;:: d x • 

o ~(X_I)2 
n=8 

3. Use the transformation t = X-I and then the Composite Simpson's rule and the given values 
of n to approximate the following improper integrals. 

a. 1
00 1 

1 x2 + 9 dx, n = 4 b. 1
00 1 

1 I + X4 dx, n = 4 

c. 
00 cosx d 

3 x, 
X 

d. n=6 
1 

00 

x-4 sinx dx, n=6 
I 

4. The improper integral 1000 I (x) dx cannot be converted into an integral with finite limits using 
the substitution t = l/x because the limit at zero becomes infinite. The problem is resolved by 
first writing fooo 

I(x) dx = f~ I(x) dx + fl°O I(x) dx. Apply this technique to approximate 
the following improper integrals to within 10-6 . 

a. 1
00 1 

----; dx 
o 1 +X4 

b. 
00 

o 

5. Suppose a body of mass m is traveling vertically upward starting at the surface of the earth. If 
all resistance except gravity is neglected, the escape velocity v is given by 

00 

v2 = 2gR Z-2 dz, 
x 

wherez = -
R' I 

R = 3960 mi is the radius of the earth, and g = 0.00609 rniJs2 is the force of gravity at the 
earth's surface. Approximate the escape velocity v. 

6. The Laguerre polynomials {Lo(x), L 1(x) ... } form an orthogonal set on [0,00) and satisfy 
fooo e-X Li(x)Lj(x) dx = 0, for i t= j. (See Section 8.2.) The polynomial Ln(x) has n distinct 
zeros XI, X2, ••• , Xn in [0, 00). Let 

00 n -xTI x - Xj d en,i = e x. 

Show that the quadrature formula 

o x· - X· j=1 I J 
jf.i 

00 n 

I(x)e-X dx = I>n,d(Xi) 
i=1 o 

has degree of precision 2n - I. (Hint: Follow the steps in the proof of Theorem 4.7.) 

7. The Laguerre polynomials Lo(x) = I, LI(x) = 1 - x, L 2(x) = x 2 - 4x + 2, and L3(X) = 
- x3 + 9x2 - 18x + 6 are derived in Exercise II of Section 8.2. As shown in Exercise 6, these 
polynomials are useful in approximating integrals of the form 

100 

e-X I (x) dx = O. 
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a. Derive the quadrature fonnula using n = 2 and the zeros of L2 (x). 

b. Derive the quadrature fonnula using n = 3 and the zeros of L3(X). 

8. Use the quadrature fonnulas derived in Exercise 7 to approximate the integral 

9. Use the quadrature fonnuals derived in Exercise 7 to approximate the integral 

1
00 I 

----:-2 dx. 
-00 1 + x 

4.10 Survey of Methods and Software 

In this chapter we considered approximating integrals of functions of one, two, or three 
variables and approximating the derivatives of a function of a single real variable. 

The Midpoint rule, Trapezoidal rule, and Simpson's rule were studied to introduce the 
techniques and error analysis of quadrature methods. Composite Simpson's rule is easy to 
use and produces accurate approximations unless the function oscillates in a subinterval 
of the interval of integration. Adaptive quadrature can be used if the function is suspected 
of oscillatory behavior. To minimize the number of nodes while maintaining accuracy, we 
studied Gaussian quadrature. Romberg integration was introduced to take advantage of the 
easily applied Composite Trapezoidal rule and extrapolation. 

Most software for integrating a function of a single real variable is based on the adap
tive approach or extremely accurate Gaussian formulas. Cautious Romberg integration is 
an adaptive technique that includes a check to make sure that the integrand is smoothly 
behaved over subintervals of the integral of integration. This method has been successfully 
used in software libraries. Multiple integrals are generally approximated by extending good 
adaptive methods to higher dimensions. Gaussian-type quadrature is also recommended to 
decrease the number of function evaluations. 

The main routines in both the IMSL and NAG Libraries are based on QUADPACK: 
A Subroutine Package for Automatic Integration by R. Piessens, E. de Doncker-Kapenga, 
C. W. Uberhuber, and D. K. Kahaner published by Springer-Verlag in 1983 [PDUK]. The 
routines are also available as public domain software, at http://www.netlib.org/quadpack. 

The IMSL Library contains the function QDAG, which is an adaptive integration 
scheme based on the 21-point Gaussian-Kronrod rule using the lO-point Gaussian rule 
for error estimation. The Gaussian rule uses the ten points XI, ... , XIO and weights 

WI, ... , WIO to give the quadrature formula LID I W;J(Xi) to approximate f: f(x) dx. 
The additional points Xli, ... , X21, and the new weights VI, ... , V21, are then used in the 
Kronrod formula L;II V;J(Xi)' The results of the two formulas are compared to eliminate 
error. The advantage in using XI, ... , XIO in each formula is that f needs to be evaluated 
only at 21 points. If independent 10- and 21-point Gaussian rules were used, 31 func
tion evaluations would be needed. This procedure permits endpoint singularities in the 
integrand. 
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Other IMSL subroutines are QDAGS, which allows for end point singularities; 
QDAGP, which allows user-specified singularities; QDAGI, which allows infinite intervals 
of integration; and QDNG. which is a nonadaptive procedure for smooth functions. The 
subroutine TWODQ uses the Gauss-Kronrod rules to integrate a function of two variables. 
There is also a subroutine QAND to use Gaussian quadrature to integrate a function of n 
variables over n intervals of the fOlln [ai, b;J. 

The NAG Library includes the subroutine DOIAJF to compute the integral of lover 
the interval [a. b] using an adaptive method based on Gaussian Quadrature using Gauss 
lO-point and Kronrod 21-point rules. The subroutine DOIAHF is used to approximate 

f: I(x) dx using a family of Gaussian-type fOllllulas based on 1. 3. 5. 7, 15, 31. 63. 
127, and 255 nodes. These interlacing high-precision rules are due to Patterson [Pat] and 
are used in an adaptive manner. The subroutine DOIGBF is for multiple integrals and 
DOIGAF approximates an integral given only data points instead of the function. NAG 
includes many other subroutines for approximating integrals. 

The Maple function call 

>int(f,x=a, .b); 

computes the definite integral f: I (x) dx. The numerical method applies singularity han
dling routines and then uses Clenshaw-Curtis quadrature, which is described in [CC]. If 
this fails, due to singularities in or near the interval, then an adaptive double-exponential 
quadrature method is applied. The adaptive Newton-Cotes formula can be applied by spec
ifying the option ~Crule in the Maple function call 

>int(f,x=a .. b,digits,_NCrule); 

The method attempts to achieve a relative error tolerance 0.5 x lO(1-Digits), where Digi ts 
is a variable in Maple that specifies the number of digits of rounding Maple uses for numer
ical calculation. The default value for Digits is 10, but it can be changed to any positive 
integer n by the command Digi ts : =n; The MATLAB command QUAD approximates the 
definite integral f: I(x) dx using an adaptive Simpson's rule, and QUAD8 approximates 
the definite integral using an adaptive eight-panel Newton-Cotes rule. 

Although numerical differentiation is unstable, derivative approximation fOIInulas 
are needed for solving differential equations. The NAG Library includes the subroutine 
D04AAF for the numerical differentiation of a function of one real variable with differ
entiation to the fourteenth derivative being possible. The IMSL function DERIV uses an 
adaptive change in step size for finite differences to approximate the first, second, or third. 
derivative of I at x to within a given tolerance. IMSL also includes the subroutine QDDER 
to compute the derivatives of a function defined on a set of points using quadratic inter
polation. Both packages allow the differentiation and integration of interpolatory cubic 
splines constructed by the subroutines mentioned in Section 3.4. 

For further reading on numerical integration we recommend the books by Engels [E] 
and by Davis and Rabinowitz [DR]. For more infonnation on Gaussian quadrature see 
Stroud and Secrest [StS]. Books on multiple integrals include those by Stroud [Stro] and 
the recent book by Sloan and Joe [SJ]. 
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Oi erentia uations 
• • • 

T he motion of a swinging pendulum under certain simplifying assump

tions is iiescribed by the second-order differential equation 

d2 (J g 
dt2 + L sin (J = 0, 

I 
I 
I 
I 
I 
I L , , , 

(J 

, , 
I 
I 
I 
I 
I , 
I 
I 

where L is the length of the pendulum, g R:i 32.17 fUs2 is the gravitational 

constant of the earth, and (J is the angle the pendulum makes with the 

vertical. If, in addition, we specify the position of the pendulum when the 

motion begins, (J(to) = (Jo, and its velocity at that point, lJ'(to) = lfo, we 

have what is called an initial-value problem. 
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For small values of e, the approxima'tion e FId sin e can be used to 

simplify this problem to the linear initial-value problem 

This problem can be solved by a standard differential-equation tech

nique. For larger values of e, approximation methods must be used. A 

problem of this type is considered in Exercise 6 of Section 5.9. 

Any textbook on ordinary differential equations details a number of methods for 
explicitly finding solutions to first-order initial-value problems. In practice, however, 
few of the problems originating from the study of physical phenomena can be solved 
exactly. 

The first part of this chapter is concerned with approximating the solution yet) to a 
problem of the fOlln 

dy 
dt = f(t, y), fora ~ t ~ h, 

subject to an initial condition 

yea) = a. 

Later in the chapter we deal with the extension of these methods to a system of first-order 
differential equations in the form 

= h(t, y\, Y2,··· ,Yn), 

dY2 
dt =/2(t,y\,Y2,···,Yn), 

• 
• 
• 

= fn(t, y\, Y2,··· ,Yn), 

for a < t < h, subject to the initial conditions 

Y2(a) = a2, . " , 

We also examine the relationship of a system of this type to the general nth-order initial
value problem of the form 

• 

(n) f( '1/ (n-l) Y = t,Y,Y,Y , ... ,Y , 

for a < t < h, subject to the initial conditions 

y(a)=a\, y'(a)=az, . .. , n-l( ) y a = an. 

, 
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5.1 The Elementary Theory of Initial-Value Problems 

Definition 5.1 

EXAMPLE 1 

Definition 5.2 

Differential equations are used to model problems in science and engineering that involve 
the change of some variable with respect to another. Most of these problems require the 
solution to an initial-value problem, that is, the solution to a differential equation that 
satisfies a given initial condition. 

In most real-life situations, the differential equation that models the problem is too 
complicated to solve exactly, and one of two approaches is taken to approximate the so
lution. The first approach is to simplify the differential equation to one that can be solved 
exactly and then use the solution of the simplified equation to approximate the solution 
to the original equation. The other approach, which we will examine in this chapter, uses 
methods for approximating the solution of the original problem. This is the approach that 
is most commonly taken since the approximation methods give more accurate results and 
realistic error information. 

The methods that we consider in this chapter do not produce a continuous approxima
tion to the solution of the initial-value problem. Rather, approximations are found at certain 
specified, and often equally spaced, points. Some method of interpolation, commonly Her
mite, is used if intermediate values are needed. 

We need some definitions and results from the theory of ordinary differential equa
tions before considering methods for approximating the solutions to initial-value problems. 
Initial-value problems obtained by observing physical phenomena generally only approxi
mate the true situation, so we need to know whether small changes in the statement of the 
problem introduce correspondingly small changes in the solution. This is also important 
because of the introduction of roundoff error when numerical methods are used. 

A function f (t, y) is said to satisfy a Lipschitz condition in the variable Y on a set D C ]R2 

if a constant L > 0 exists with 

If(t, Yl) - f(t, Y2,)1 < LIYl - Y21, 

whenever (t, yj), (t, Y2) ED. The constant L is called a Lipschitz constant for f· • 

If D = {(t, y) I 1 < t < 2, -3 < Y < 4} and f(t, y) = tlYI, then for each pair of points 
(t, Yl) and (t, Y2) in D, we have 

If(t, Yl) - f(t, Y2)1 = ItlYll- tlY211 = ItIIlYII-IY211 < 21Yl - Yzl· 

Thus, f satisfies a Lipschitz condition on D in the variable Y with Lipschitz constant 2. 
The smallest value possible for the Lipschitz constant for this problem is L = 2, since, for 
example, 

If(2, 1) - f(2, 0)1 = 12 - 0/ = 2/1 - 01· • 
A set D C ]R2 is said to be convex if whenever (tl, Yt) and (t2, Y2) belong to D and A is in 
[0, 1], the point ((1 - ).)tl + Al2, (1 - A)Yt + AY2) also belongs to D. • 

In geometric tenllS, Definition 5.2 states that a set is convex provided that whenever 
two points belong to the set, the entire straight-line segment between the points also be
longs to the set. (See Figure 5.1.) The sets we consider in this chapter are generally of the 
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Figure 5.1 

Theorem 5.3 

Theorem 5.4 

EXAMPLE 2 
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. 

form D = {(t, y) I a :::: t :::: b, -00 < y < oo} for some constants a and b. It is easy to 
verify (see Exercise 5) that these sets are convex. 

Convex Not convex 

Suppose f (t, y) is defined on a convex set D C ]R2. If a constant L > 0 exists with 

al 
ay(t,y) ::::L, forall(t,y)ED, (5.1 ) 

then I satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L. • 

The proof of Theorem 5.3 is discussed in Exercise 4; it is similar to the proof of the 
corresponding result for functions of one variable discussed in Exercise 25 of Section 1.1. 

As the next theorem will show, it is often of significant interest to deteIluine whether 
the function involved in an initial-value problem satisfies a Lipschitz condition in its second 
variable, and condition (5.1) is 'generally easier to apply than the definition. We should 
note, however, that Theorem 5.3 gives only sufficient conditions for a Lipschitz condition 
to hold. The function in EXaIlI.ple 1, for instance, satisfies a Lipschitz condition, but the 
partial derivative with respect to y does not exist when y = O. 

The following theorem is a version of the fundamental existence and uniqueness theo
rem for first-order ordinary differential equations. Although the theorem can be proved 
with the hypothesis reduced somewhat, this form of the theorem is sufficient for our 
purposes. (The proof of the theorem, in approximately this form, can be found in [BiR, 
pp. 142-155].) 

Suppose that D = { (t, y) I a :::: t < b, -00 < y < 00 } and that I (t, y) is continuous on 
D. If f satisfies a Lipschitz condition on D in the variable y, then the initial-value problem 

y'(t) = I(t, y), a:::: t < b, yea) = a, 

has a unique solution yet) for a < t :::: b. • 
Consider the initial-value problem 

y' = 1 + t sin(ty), 0:5 t < 2, yeO) = o. 
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Holding t constant and applying the Mean Value Theorem to the function 

f(t, y) = 1 + t sin(ty) , 

we find that when Yl < Y2, a number ~ in (Yl, Y2) exists with 

f(t, Y2) - f(t, Yl) = a f(t,~) = t 2 cos(~t). 
Y2 - Yl ay 

Thus, 

and f satisfies a Lipschitz condition in the variable Y with Lipschitz constant L = 4. 
Since, additionally, f(t, y) is continuous when ° < t < 2 and -00 < Y < 00, Theorem 
5.4 implies that a unique solution exists to this initial-value problem. 

If you have completed a course in differential equations you might try to find the exact 
solution to this problem. -

Now that we have, to some extent, taken care of the question of when initial-value 
problems have unique solutions, we can move to the other question posed earlier in the 
section: 

How do we determine whether a particular problem has the proj:erty that small 
changes, or perturbations, in the statement of the problem introduce correspondingly 
small changes in the solution? 

As usual, we first need to give a workable definition to express this concept. 

Definition 5.5 The initial-value problem 

dy 
dt = f(t, y), a < t < b, yea) = a, (5.2) 

is said to be a well-posed problem if: 

1. A unique solution, y(t), to the problem exists; 

2. For any 8 > 0, there exists a positive constant k(8), such that whenever 1801 < 8 

and oCt) is continuous with lo(t)1 < 8 on [a, b], a unique solution, z(t). to 

dz 
dt = f(t, z) + oCt), a < t < b, z(a) = a + EO, (5.3) 

exists with 

Iz(t) - y(t)1 < k(8)8, for all a < t < b. -
The problem specified by Eq. (5.3) is called a perturbed problem associated with 

the original problem (5.2). It assumes the possibility of an error oCt) being introduced in 
the statement of the differential equation, as well as an error 80 being present in the initial 
condition. 
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Theorem 5.6 

EXAMPLE 3 
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Numerical methods will always be concerned with solving a perturbed problem since 
any roundoff error introduced in the representation perturbs the original problem. Unless 
the original problem is well-posed, there is little reason to expect that the numerical solu
tion to a perturbed problem will accurately approximate the solution to the original prob
lem. 

The following theorem specifies conditions that ensure that an initial-value problem is 
well-posed. The proof of this theorem can be found in [BiR, pp. 142-147J. 

Suppose D = {(t, y) I a S t < band -00 < y < oo}. If f is continuous and satisfies a 
Lipschitz condition in the variable y on the set D, then the initial-value problem 

dy 
dt = f(t, y), as t S b, y(a) = a 

is well-posed. • 
Let D = {(t, y) 10 < t < 1, -00 < y < oo}, and consider the initial-value problem 

~~ = y - t 2 + 1, 0 < t < 2, y(O) = 0.5. (5.4) 

Since 

Theorem 5.3 implies that f(t, y) = y _t2 + 1 satisfies a Lipschitz condition in y on D with 
Lipschitz constant 1. Since f is continuous on D, Theorem 5.6 implies that the problem is 
well-posed. 

To verify this directly, consider the perturbed problem 

dz 2 
- = Z - 1 + 1 + 8, 0 < 1 S 2, z(O) == 0.5 + co, 
dt 

where 8 and co are constants. The solutions to Eqs. (5.4) and (5.5) are 

y(t) = (1 + 1)2 - 0.5et and z(t) = (t + 1)2 + (8 + co - 0.5)et 
- 8, 

respectively. If 181 < c and leol < e, then 

Iy(t) - z(t)1 = 1(8 + eo)e t 
- 81 < 18 + eole

2 + 181 S (2e
2 + l)e, 

(5.5) 

for all t. Thus, the problem (5.4) is well-posed with k(e) = 2e2 + 1 for all e > O. • 

Maple can be used to solve many initial-value problems. Consider the problem 

dy 2 
-'- = Y - t + 1, 0 < t S 2, y(O) == 0.5. 
dt 

To define the differential equation, enter 

>deq:~D(y)(t)=y(t)-t*t+l; 
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and the initial condition 

>init:=y(O)=O.5; 

The names deq and init are chosen by the user. The command to solve the initial-value 
problems is 

>deqsol:=dsolve({deq,init},y(t)); 

The response is 

I 
deqsol := y(t) = 1 + t 2 + 2t - 2et 

To use the solution to obtain y(1.5), we enter 

>q:=rhs(deqsol); evalf(subs(t=1.5,q)); 

with the result 4.009155465. 
The function rhs is used to assign the solution of the initial-value problem to the 

function q, which we then evaluate at t = 1.5. The function dsolve can fail if an explicit 
solution to the initial-value problem cannot be found. For example, the command 

>deqso12:=dsolve({D(y) (t)=l+t*sin(t*y(t)),y(O)=O},y(t) ); 

does not succeed because an explicit solution cannot be found. In this case a numerical 
method must be used. 

E X ERe I S ESE T 5.1 

1. Use Theorem 5.4 to show that each of the following initial-value problems has a unique solu
tion, and find the solution. 

a. 

b. 

c. 

d. 

y'=ycost, O<t<l, y(O)=1. 

2 
y'=_y+t2et , l<t<2, y(1)=O. 

t 

2 
y' = --y +t2et

, 1:::: t < 2, y(l) = ../ie. 
t 

, _ 4t3y 
y - 1 + t4' 0:::: t < 1, y(O) = 1. 

2. For each choice of [(t, y) given in parts (a)-(d): 

i. Does I satisfy a Lipschitz condition on D = {(t, y) 10:::: t < 1, -00 < y < oo}? 

ii. Can Theorem 5.6 be used to show that the initial-value problem 

a. 

c. 

is well-posed? 

l(t, y) = t 2 y + 1 

l(t, y) = 1 - y 

y'=/(t,y), O<t<l, y(O) = 1, 

b. 

d. 

I(t, y) = ty 

4t 
I(t, y) = -ty + -

y 
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3. For the following initial-value problems, show that the given equation implicitly defines a 
solution. Approximate y(2) using Newton's method. 

a. 
y3 + y 

Y' = - 1 < t < 2 y(l) = I' y3 t + yt = 2 (3y2+ I)t' - - , , 

, y cost + 2teY 
y =-. ,1<t<2,y(l)=0; ysint+t2eY +2y=1 

smt + t 2eY + 2 
h. 

4. Prove Theorem 5.3 by applying the Mean Value Theorem to f(t, y), holding t fixed. 

S. Show that, for any constants a and b, the set D = { (t, y) I a < t < b, -00 < Y < oo} is 
convex. 

6. Suppose the perturbation 8(t) is proportional to t, that is, 8(t) = 8t for some constant 8. Show 
directly that the following initial-value problems are well-posed. 

a. y' = 1 - y, 0 < t < 2, yeO) = 0 

h. y' = t + y, 0 < t < 2, yeO) = -1 

2 
c. y'=-y+t2e', l<t<2, y(I)=O 

t 

d. 
2 

y'=--y+t2e', 1 <t::;::2, y(I)=.Jie 
t 

7. Picard's method for solving the initial-value problem 

y' = f(t, y), a < t ::;:: b, yea) = a, 

is described as follows: Let yo(t) = a for each t in [a, b]. Define a sequence (Yk(t)} of func
tions by 

, 
fer, Yk-l (r» dr, k = 1,2, .... 

a 

a. Integrate y' = f(t, yet»~, and use the initial condition to derive Picard's method. 

h. Generate yo(t), Yl (t), Y2 (t), and Y3(t) for the initial-value problem 

y'=-y+t+l, O<t<l, y(O)=1. 

c. Compare the result in part (b) to the Maclaurin series of the actual solution yet) = t+e-r
• 

5.2 Euler's Method 

Although Euler's method is seldom used in practice, the simplicity of its derivation can be 
used to illustrate the techniques involved in the construction of some of the more advanced 
techniques, without the cumbersome algebra that accompanies these constructions. 

The object of the method is to obtain an approximation to the well-posed initial-value 
problem 

dy 
dt = f(t, y), a < t < b, yea) = a. (5.6) 
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In actuality, a continuous approximation to the solution yet) will not be obtained; 
instead, approximations to y will be generated at various values, called mesh points, in 
the interval [a, b]. Once the approximate solution is obtained at the points, the approximate 
solution at other points in the interval are found by interpolation. 

We first make the stipulation that the mesh points are equally distributed throughout 
the interval [a, b]. This condition is ensured by choosing a positive integer N and selecting 
the mesh points 

ti =a+ih, foreachi =0, 1,2, ... ,N. 

The common distance between the points h = (b - a)/ N is called the step size. 
We will use Taylor's Theorem to derive Euler's method. Suppose that yet), the 

unique solution to (5.6), has two continuous derivatives on [a, b], so that for each 
i = 0, 1, 2, ... , N - 1, 

( ) () ( ) '() (tHI - ti )2 "(I:) 
Y ti+J = Y ti + tHI - ti Y ti + 2 Y ,>i, 

for some number ~i in (ti, tHI)' Since h = ti+1 - ti, we have 

and, since yet) satisfies the differential equation (5.6), 

(5.7) 

Euler's method constructs Wi ~ yeti), for each i = 1,2, ... ,N, by deleting the 
remainder tenn. Thus, Euler's method is 

Wo =a, 

Wi+1 = Wi + hj(ti' Wi), for each i = 0, 1, ... ,N - 1. (5.8) 

Equation (5.8) is called the difference equation associated with Euler's method. As 
we will see later in this chapter, the theory and solution of difference equations parallel, 
in many ways, the theory and solution of differential equations. Algorithm 5.1 implements 
Euler's method. 

Euler's 

To approximate the solution of the initial-value problem 

y'=j(t,y), a<t<b, y(a)=a, 

at (N + 1) equally spaced numbers in the interval [a, b]: 

INPUT endpoints a, b; integer N; initial condition a. 

OUTPUT approximation W to y at the (N + 1) values of t. 
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Step 1 Set h = (b - a)/N; 
t = a; 
W =a; 

OUTPUT (t, w). 

Step 2 For i = 1, 2, ... , N do Steps 3, 4. 

Step 3 Set W = W + hf(t, w); (Compute Wi.) 
t = a + ih. (Compute ti') 

Step 4 OUTPUT (t, w). 

Step 5 STOP. -
To interpret Euler's method geometrically, note that when Wi is a close approximation 

to yet;), the assumption that the problem is well-posed implies that 

f(ti, Wi) ~ y'(ti) = f(ti, y(ti». 

The graph of the function highlighting y(ti) is shown in Figure 5.2(a). One step in 
Euler's method appears in Figure 5.2(b), and a series of steps appears in Figure 5.3. 

EXAMPLE 1 Suppose Euler's method is used to approximate the solution to the initial-value problem 

Figure 5.2 

-o < t < 2, yeO) = 0.5, 

with N = 10. Then h = 0.2, ti = 0.2i, Wo = 0.5, and 

WHI = Wi + h(Wi - ti
2 + 1) = Wi + 0.2[Wi - 0.04i 2 + 1] = 1.2Wi - 0.OO8j2 + 0.2, 

for i = 0,1, ... ,9. The exact solution is yet) = (t + 1)2 - 0.5et
. Table 5.1 shows the 

comparison between the approximate values at ti and the actual values. _ 

• 
• 

y(t2) 

y(tl) 
y(to) = ex 

y' = f(t, y), 
yea) = ex 

(a) 

y 

y' = f(t, y), 
yea) = ex 

Slopey'(a) = f(a, a) 

t 

(b) 



Figure 5.3 

lable 5.1 

Lemmo 5.7 

5.2 Euler's Method 

ti Wi 

0.0 0.5000000 
0.2 0.8000000 
0.4 1.1520000 
0.6 1.5504000 
0.8 1.9884800 
1.0 2.4581760 
1.2 2.9498112 
1.4 3.4517734 
1.6 3.9501281 
1.8 4.4281538 
2.0 4.8657845 

Y 

y(b) 
y' = I(t, y), 
y(a) = ex 

WN -----------
I 
I 
I 
I 
I 
I 
I 

Wz I 
I . 

WI I 
ex I 

I 

to = a tl t z • • • tN = b 

Yi = y(ti) IYi - w;i 

0.5000000 0.0000000 
0.8292986 0.0292986 
1.2140877 0.0620877 
1.6489406 0.0985406 
2.1272295 0.1387495 
2.6408591 0.1826831 
3.1799415 0.2301303 
3.7324000 0.2806266 
4.2834838 0.3333557 
4.8151763 0.3870225 
5.3054720 0.4396874 

159 

t 

Note that the error grows slightly as the value of t increases. This controlled error 
growth is a consequence of the stability of Euler's method, which implies that the error is 
expected to grow in no worse than a linear manner. 

Although Euler's method is not accurate enough to warrant its use in practice, it is 
sufficiently elementary to analyze the error that is produced from its application. The error 
analysis for the more accurate methods that we consider in subsequent sections follows the 
same pattern but is more complicated. 

To derive an error bound for Euler's method, we need two computational lemmas. 

For all x > -1 and any positive m, we have 0 < (1 + x)m < emx . • 
Proof Applying Taylor's Theorem with I(x) = eX, Xo = 0, and n = 1 gives 
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where ~ is between x and zero. Thus, 

1 
0< 1 + x < 1 + x + -x2e~ = eX, - - 2 

and, since 1 + x ::: 0, 

• • • 

If s and t are positive real numbers, {ai }~ 0 is a sequence satisfying ao ::: -t / s, and 

ai+l < (1 +s)ai + t, for each i = 0,1,2, ... , k, (5.9) 

then 

t 
- - • 

s 

Prool For a fixed integer i, Inequality (5.9) implies that 

ai+l < (1 + s)ai + t 
:::: (1 + s)[(1 + s)ai-l + t] + t 
:::: (1 + s){(1 + s)[(1 + s)ai-2 + t] + t} + t 

• 
• 
• 

< (1 + s)i+1ao + [1 + (1 + s) + (1 + S)2 + ... + (1 + S)i]t. 

But 
• • 

1 + (1 + s) + (1 + S)2 + ... + (1 + s)t = L(1 + s)j 
j=O 

is a geometric series with ratio (1 + s) that sums to 

1- (1 +S)i+l = ~[(1 +s)i+l-IJ. 
1-(I+s) s 

Thus, 

(I+S)i+l_l . 
ai+l :::: (1 + s)i+lao + t = (1 + S)i+l 

s 

and using Lemma 5.7 with x = 1 + s gives 

t 
a· 1 < e(i+l)s ao + -• + - s 

t 
• 

s 

t 
ao +

s 

t 

s 

Suppose f is continuous and satisfies a Lipschitz condition with constant L on 

D = { (t, y) I a < t < b, -00 < y < oo} 

• 

, 

• • • 



5.2 Euler's Method 261 

and that a constant M exists with 

Iyl/(t) I s M, for all t E [a, b]. 

Let yet) denote the unique solution to the initial-value problem 

y' = I(t, y), a < t S b, yea) = a, 

and Wo, WI, ... , WN be the approximations generated by Euler's method for some positive 
integer N. Then, for each i = 0, 1, 2, ... , N, 

hM 
Iy(ti) - w;I < 2L [eL(I;-a) - 1]. 

Proof When i = 0 the result is clearly true, since y(to) = Wo = a. 
From Eq. (5.7), we have for i = 0, 1, ... , N - 1, 

h2 
1/ 

y(tHI) = yeti) + hl(ti, yeti»~ + -zy (~i)' 

and from the equations in (5.8), 

WHI = Wi +hl(ti, Wi). 

Consequently, using the notation Yi = y(ti) and Yi+1 = y(tH!), we have 

and 

h2 
1/ 

Yi+1 - Wi+1 = Yi - Wi + hU(ti, Yi) - l(ti, Wi)] + -ZY (~i) 

h2 
1/ 

IYi+1 - wi+Ii S IYi - wi! +hlf(ti, Yi) - f(ti, wi)1 + -ZIY (~;)I· 

(5.10) 

• 

Since I satisfies a Lipschitz condition in the second variable with constant L and 
lyl/(t)1 < M, we have 

h2M 
IYi+1 - wHIi < (1 + hL) IYi - w;I + 2 . 

Referring to Lemma 5.8 and letting s = hL, t = h2 M12, and aj = IYj - Wj I, for each 
j = 0, I, ... , N, we see that 

Iy W I < e(i+I)hL 
i+1 - i+1 _ -

Since Iyo - wol = 0 and (i + I)h = ti+1 - to = tHI - a, we have 

hM (I alL 
IYi+1 - wi+Ii S 2L (e ;+1- - I), 

for each i = 0, 1, ... , N - 1. • • • 

The weakness of Theorem 5.9 lies in the requirement that a bound be known for the 
second derivative of the solution. Although this condition often prohibits us from obtaining 



262 

EXAMPLE 2 

'nIble 5.2 

ti 0.2 

C HAP T E R 5 • Initial-Value Problems for Ordinary Differential Equations 

a realistic error bound, it should be noted that if afl at and afl ay both exist, the chain rule 
for partial differentiation implies that 

y"(t) = dy' (t) = l' (t, y(t)) = a! (t, y(t» + a! (t, y(t» . !(t, y(t». 
dt t at ay 

So it is at times possible to obtain an error bound for y"(t) without explicitly knowing y(t). 

Returning to the initial-value problem 

y' == y - t 2 + 1, 0<t<2 - - , yeO) = 0.5, 

considered in Example 1, we see that since f(t, y) = y - t2 + 1, we have 3f(t, y)/3y = 1 
for all y, so L = 1. For this problem, the exact solution is y (t) = (t + 1)2 - ~ et

, so 
y"(t) = 2 - 0.5et and 

ly"(t)1 S 0.5e2 
- 2, for all t E [0,2]. 

Using the inequality in the error bound for Euler's method with h = 0.2, L - 1, and 
M = 0.5e2 - 2 gives 

IYi - w;/ S 0.1(0.5e2 
- 2) (e ti 

- 1). 

Table 5.2 lists the actual error found in Example 1, together with this error bound. Note 
that even though the true bound for the second derivative of the solution was used, the error 
bound is considerably larger than the actual error. _ 

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Actual Error 0.02930 0.06209 0.09854 0.13875 0.18268 0.23013 0.28063 0.33336 0.38702 0.43969 
ErrorBound 0.03752 0.08334 0.13931 0.20767 0.29117 0.39315 0.51771 0.66985 0.85568 1.08264 

The principal importance of the error-bound fonnula given in Theorem 5.9 is that the 
bound depends linearly on the step size h. Consequently, diminishing the step size should 
give correspondingly greater accuracy to the approximations. 

Neglected in the result of Theorem 5.9 is the effect that roundoff error plays in the 
choice of step size. As h becomes smaller, more calculations are necessary and more round
off error is expected. In actuality then, the difference-equation fOlm 

Wo = a, 

Wi+l = Wi + h!(ti, Wi), for each i = 0,1, .,. , N - 1, 

is not used to calculate the approximation to the solution Yi at a mesh point ti. We use 
instead an equation of the fOlIll 

Uo = ex + 00, 

Ui+l = Ui + h!(ti, Ui) + Oi+l, for each i = 0,1, ... ,N - 1, (5.11) 
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where 8, denotes the roundoff error associated with Ui. Using methods similar to those in 
the proof of Theorem 5.9, we can produce an error bound for the finite-digit approximations 
to Yi given by Euler's method. 

Let yet) denote the unique solution to the initial-value problem 

y' = f(t, y), a::::: t ::::: b, yea) = ex (5.12) 

and Uo, U I, . . . , UN be the approximations obtained using (5.11). If 18,1 < " for each i = 
0,1, ... , N and the hypotheses of Theorem 5.9 hold for (5.12), then 

• 

hM 8 
2 + h [eL(fi-a) - 1] + 180 IeL (li-a), 

for each i = 0,1, ... , N. 

The error bound (5.13) is no longer linear in h. In fact, since 

lim 
"-+0 

= 00, 

(5.13) 

• 

the error would be expected to become large for sufficiently small values of h. Calculus can 
be used to detennine a lower bound for the step size h. Letting E(h) = (hM/2) + (8/ h) 
impliesthatE'(h) = (MI2) - (8Ih 2). 

If h < /28/ M, then E' (h) < 0 and E (h) is decreasing. 

If h > /281 M, then E' (h) > 0 and E (h) is increasing. 

The minimal value of E(h) occurs when 

h= (5.14) 

Decreasing h beyond this value tends to increase the total error in the approximation. Nor
mally, however, the value of 8 is sufficiently small that this lower bound for h does not 
affect the operation of Euler's method. 

E X ERe I S ESE T S.2 

1. Use Euler's method to approximate the solutions for each of the following initial-value prob
lems. 

a. y' = te3
' - 2y, O:s t ::: I, y(O) = 0, with h = 0.5 

b. y' = 1 + (t - y)2, 2 < t < 3, y(2) = 1, with h = 0.5 

c. y' = 1 + y It, 1:s t ::: 2, y(l) = 2, with h = 0.25 

d. y' = cos2t +sin3t, 0::: t :s 1, yeO) = 1, with h = 0.25 

2. The actual solutions to the initial-value problems in Exercise 1 are given here. Compare the 
actual error at each step to the error bound. 



264 C HAP T E R 5 • Initial-Value Problems jar Ordinary Differential Equations 

1 I 1 
a. yet) = _te3t _ _ e3t + _e-2t 

S 2S 2S 
b. 

1 
yet) = t +--

1- t 

c. y(t)=tlnt+2t d. 
1 . 1 4 

y(t) = 2 sm2t - 3 cos3t + 3 

3. Use Euler's method to approximate the solutions for each of the following initial-value prob
lems. 

a. y'=y/t-(y/t)2, I <t<2, y(I)=l, withh=O.l 

b. y' = 1 + y/t + (y/t)2, 1:::: t < 3, y(1) = 0, with h = 0.2 

c. y' = -(y + l)(y + 3), 0 < t < 2, yeO) = -2, with h = 0.2 

d. y'=-Sy+St2 +2t, O<t<l, y(O)=;, withh=O.1 

4. The actual solutions to the initial-value problems in Exercise 3 are given here. Compute the 
actual error in the approximations of Exercise 3. 

a. 

c. 

t 
yet) = 1 +lnt 

2 
yet) = -3 + 1 +e-2t 

b. 

d. 

yet) = t tan(ln t) 

I 
yet) = t2 + _e-5t 

3 

5. Given the initial-value problem 

2 
y'=_y+t2et , l<t<2, y(I)=O, 

t 

with exact solution yet) = t 2(et - e) : 

a. Use Euler's method with h = 0.1 to approximate the solution, and compare it with the 
actual values of y. 

b. 

c. 

Use the answers generated in part (a) and linear interpolation to approximate the follow
ing values of y, and compare them to the actual values. 

i. y(1.04) ii. y(1.SS) 
... 
III. y(1.97) 

Compute the value of h necessary for Iy(t;) - wi! < 0.1, using Eq. (S.lO). 

6. Given the initial-value problem 

I y 2 
y'=----y, l<t<2, y(I)=-I, 

t 2 t 

with exact solution yet) = -1/t: 

a. 

b. 

c. 

Use Euler's method with h = O.OS to approximate the solution, and compare it with the 
actual values of y. 

Use the answers generated in part (a) and linear interpolation to approximate the follow
ing values of y, and compare them to the actual values. 

i. y( 1.0S2) ii. y(1.SSS) 
... 
III. y(1.978) 

Compute the value of h necessary for Iy(ti) - Wi I < O.OS using eq. (S.IO). 

7. Given the initial-value problem 

y' = -y + t + 1, 0 < t < S, yeO) = 1, 

with exact solution yet) = e-t + t: 
a. Approximate yeS) using Euler's method with h = 0.2, h = 0.1, and h = O.OS. 

b. Determine the optimal value of h to use in computing yeS), assuming [) = 10-6 and that 
Eq. (S.14) is valid. 
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8. Use the results of Exercise 3 and linear interpolation to approximate the following values of 
yet). Compare the approximations obtained to the actual values obtained using the functions 
given in Exercise 4. 

9. 

a. y(1.2S) and y(1.93) b. y(2.l) and y(2.7S) 

c. y(1.4) and y(1.93) d. y(0.54) and y(0.94) 

hM 0 
Let E(h) = 2 + h' 

8. For the initial-value problem 

y' = -y + 1, 0 < t :5 1,. yeO) = 0, 

compute the value of h to minimize E(h). Assume 8 = S x 10-(·+1) if you will be using 
n-digit arithmetic in part (c). 

b. For the optimal h computed in part (a), use Eq. (S.13) to compute the minimal error 
obtainable. 

c. Compare the actual error obtained using h = 0.1 and h = 0.01 to the minimal error in 
part (b). Can you explain the results? 

10. Consider the initial-value problem 

y'=-1Oy, 0<t<2, y(O) = 1, 

which has solution yet) = e- lOt
• What happens when Euler's method is applied to this problem 

with h = O.l? Does this behavior violate Theorem S.9? 

11. In a book entitled Looking at History Through Mathematics, Rashevsky [Ra, pp. 103-110] 
considers a model for a problem involving the production of nonconformists in society. Sup
pose that a society has a population of x(t) individuals at time t, in years, and that all non
conformists who mate with other nonconformists have offspring who are also nonconformists, 
while a fixed proportion r of all other offspring are also nonconformist. If the birth and death 
rates for all individuals are assumed to be the constants b and d, respectively, and if con
formists and nonconformists mate at random, the problem can be expressed by the differential 
equations 

dx(t) = (b _ d)x(t) and 
dt 

dxn(t) 
-'-::d"":'t":'" = (b - d)xn(t) + rb(x(t) - x.(t», 

where Xn (t) denotes the number of nonconformists in the population at time t. 

8. Suppose the variable pet) = x.(t)!x(t) is introduced to represent the proportion of non
conformists in the society at time t. Show that these equations can be combined and 
simplified to the single differential equation 

dp(t) = rb(1 _ pet»). 
dt 

b. Assuming that p(O) = 0.01, b = 0.02, d = 0.015, and r = 0.1, approximate the solution 
pet) from t = 0 to t = SO when the step size is h = 1 year. 

c. Solve the differential equation for pet) exactly, and compare your result in part (b) when 
t = 50 with the exact value at that time. 

12. In a circuit with impressed voltage e having resistance R, inductance L, and capacitance C in 
parallel, the current i satisfies the differential equation 

di d2e 1 de 1 
-=C +- +-L8. 
dt dt2 R dt 
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Suppose C = 0.3 farads. R = 1.4 ohms. L = 1.7 henries. and the voltage is given by 

8(t) = e-O.06Jr ' sin(2t - Jr). 

If i(O) = O. find the current i for the values t = O.lj. where j == 0,1, .... 100. 

5.3 Higher-Order Taylor Methods 

Since the object of numerical techniques is to determine accurate approximations with 
minimal effort, we need a means for comparing the efficiency of various approximation 
methods. The first device we consider is called the local truncation error of the method. 
The local truncation error at a specified step measures the amount by which the exact 
solution to the differential equation fails to satisfy the difference equation being used for 
the approximation. 

DefInition 5.77 The difference method 

Wo =a 

Wi+l = Wi + hcp (ti , Wi)' for each i = 0,1 •.... N - 1, 

has local tnmcation error 

. (h) _ Yi+l - (Yi + hCP(ti' Yi» _ Yi+l - Y, _ A..(t. .) 
t', + I . - h - h 'I' I, Y, , 

for each i = 0, 1, ... , N - 1. • 
For Euler's method, the local truncation error at the ith step for the problem 

y'=!(t,y), a5t5h, y(a)=a, 

• 
IS 

Yi+1 - Yi 
t'i+l(h) = h -!(ti,Yi), foreachi=O.l, ... ,N-l, 

where, as usual, Yi = Y (ti) denotes the exact value of the solution at ti. This error is a local 
error because it measures the accuracy of the method at a specific step, assuming that the 
method was exact at the previous step. As such, it depends on the differential equation, the 
step size, and the particular step in the approximation. 

By considering Eq. (5.7) in the previous section, we see that Euler's method has 

When y"(t) is known to be bounded by a constant M on [a, b], this implies 
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so the local truncation error in Euler's method is O(h). 
One way to select difference-equation methods for solving ordinary differential equa

tions is in such a manner that their local truncation errors are O(h P ) for as large a value 
of p as possible, while keeping the number and complexity of calculations of the methods 
within a reasonable bound. 

Since Euler's method was derived by using Taylor's Theorem with n = 1 to approx
imate the solution of the differential equation, our first attempt to find methods for im
proving tl).e convergence properties of difference methods is to extend this technique of 
derivation to larger values of n. 

Suppose the solution yet) to the initial-value problem 

y' = f(t, y), a <t S b, yea) = a, 

has (n + 1) continuous derivatives. If we expand the solution, yet), in terms of its nth 
Taylor polynomial about ti and evaluate at ti+l, we obtain 

for some ~i in (ti, ti +}). 
Successive differentiation of the solution, y (t), gives 

and, in general, 

y'(t) = f(t, y(t», 

yl/U) = f'(t, yet)), 

Substituting these results into Eq. (5.15) gives 

h2 

y(ti+!) = y(td + hfCti, YCti» + 2" f'Ui, y(ti» + ... 

hn hn+! 
(n-l) (n) + ;;r f (ti, yeti»~ + (n + 1)1f (~i' Y(~i»' 

(5.16) 

The difference-equation method corresponding to Eq. (5.16) is obtained by deleting 
the remainder terIIl involving ~i' This method is called the 

Taylor method of order n: 

Wo = a, 

Wi+l = Wi +hT(n)(ti, Wi), foreach i = 0,1, ... , N -1, (5.17) 
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where 

h hn-I 
(n) , (n I) T (ti, Wi) = I (ti, Wi) + 2 I (ti' Wi) + ... + I I - (ti, Wi). 

n. 
Note that Euler's method is Taylor's method of order one. 

Suppose that we want to apply Taylor's method of orders two and four to the initial-value 
problem 

y'=y-t2 +1, O~t<2, y(O) =0.5, 

which was studied in the previous sections. We must find the first three derivatives of 
I(t, yet)) = yet) - t2 + 1 with respect to the variable t: 

and 

So 

and 

I'(t, yet»~ = ~(y - t 2 + 1) = y' - 2t = y - t 2 + 1 - 2t, 
dt 

f" (t, Y (t)) = ~ (y - t 2 + 1 - 2t) = y' - 2t - 2 
dt 

= y - t 2 + 1 - 2t - 2 = y - t 2 
- 2t - 1, 

fIllet, yet)) = ~(y - t 2 - 2t - 1) = y' - 2t - 2 = y - t 2 
- 2t - 1. 

dt 

(2) h I 2 h 2 
T (ti,Wi)=f(ti,wd+2f(ti,Wi)=Wi-ti +1+"2(Wi-ti -2ti+1) 

h 2 
= 1 + - (Wi - t· + 1) - hti 

2 ' 

(4) h I h
2 

" h
3 

", T (t- w·) = f(t- w·) + -f (t· w·) + -f (t· w·) + f (t- w·) ,,' ,,' 2 "I 6 "I 24 '" 

2 h 2 h
2 

2 
= W· - t· + 1 + -CWo - f. - 2t- + 1) + -CWo - t· - 2t· - 1) " 2'" 6'" 

h3 
+ -Cwo - t~ - 2t- - 1) 24 ' , , 

h h2 h3 

= 1 + "2 + "'6 + 24 (Wi - t?) - (hti) 

h h2 h 3 

+1+---- . 
2 6 24 

The Taylor methods of orders two and four are, consequently, 

Wo = 0.5, 

Wi+1 = Wi + h 
h 

1 + - (Wi - tl + 1) - hti 
2 
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and 

Wo = 0.5, 

Wi+l = Wi + h 
h hZ h3 

1 + "2 + "6 + 24 (Wi - t;) -
h h2 

1 + "3 + 12 hti 

h h2 h3 

+1+-----
2 6 24' 

for i = 0, 1, ... , N - 1. 
If h = 0.2, then N = 10 and ti = D.2i for each i = 1, 2, ... , 10. Thus, the second

order method becomes 

Wo == 0.5, 

Wi+! == Wi + 0.2 
0.2 2 

1 + 2 (Wi - 0.04i + 1) - 0.04i 

== 1.22wi - 0.0088i2 - 0.008i + 0.22, 

and the fourth-order method becomes 

Wi+! = Wi + 0.2 
0.2 0.04 0.008 ( 004. 2) 1 + + + W· - • 1 
2 6 24 I 

0.2 0.04 04' 0.2 0.04 0.008 
- 1 + 3 + 12 (. ,) + 1 + 2 - 6 - 24 

= 1.2214wi - 0.008856i2 - 0.00856i + 0.2186, 

for each i == 0, 1, . .. ,9. 
Table 5.3 lists the actual values of the solution y(t) == (t + 1)2 - O.Se', the results 

from the Taylor methods of orders two and four, and the actual errors involved with these 
methods. 

Taylor Taylor 
Exact Order 2 Error Order 4 Error 

ti yeti) Wi Iy(t;) - w;I Wi Iy(ti) - Wi I 

0.0 0.5000000 0.5000000 0 0.5000000 0 
0.2 0.8292986 0.8300000 0.0007014 0.8293000 0.0000014 
0.4 1.2140877 1.2158000 0.0017123 1.2140910 0.0000034 
0.6 1.6489406 1.6520760 0.0031354 1.6489468 0.0000062 
0.8 2.1272295 2.1323327 0.0051032 2.1272396 0.0000101 
1.0 2.6408591 2.6486459 0.0077868 2.6408744 0.0000153 
1.2 3.1799415 3.1913480 0.Q114065 3.1799640 0.0000225 
1.4 3.7324000 3.7486446 0.0162446 3.7324321 0.0000321 
1.6 4.2834838 4.3061464 0.0226626 4.2835285 0.0000447 
1.8 4.8151763 4.8462986 0.0311223 4.8152377 0.0000615 
2.0 5.3054720 5.3476843 0.0422123 5.3055554 0.0000834 
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Suppose we need to determine an approximation to an intermediate point in the table, 
for example, at t = 1.25. If we use linear interpolation on the Taylor method of order four 
approximations at t = 1.2 and t = 1.4, we have 

y(1.25) ~ 
1.25 - 1.4 

3.1799640 + 
1.2 - 1.4 

1.25 - 1.2 
3.7324321 = 3.3180810. 

1.4 - 1.2 

Since the true value is y(1.25) = 3.3173285, this approximation has an error of 0.0007525, 
which is nearly 30 times the average of the approximation errors at 1.2 and 1.4. 

To improve the approximation to y(1.25), we use cubic Hermite interpolation. This 
requires approximations to y'(1.2) and y'(1.4) as well as approximations to y(1.2) and 
y (1.4). But the derivative approximations are available from the differential equation since 
y'(t) = f(t, y(t». In our example y'(t) = yet) - t 2 + 1, so 

y' (1.2) = y(1.2) - (1.2)2 + I ~ 3.1799640 - 1.44 + 1 = 2.7399640 

and 

y'(1.4) = y(1.4) - (1.4)2 + 1 ~ 3.7324327 -1.96+ 1 = 2.7724321. 

The divided-difference procedure in Section 3.3 gives the information in Table 5.4. 
The underlined entries come from the data, and the other entries use the divided-difference 
formulas. 

1.2 

1.2 

1.4 

1.4 

so 

3.1799640 
2.7399640 

3.1799640 0.1118825 
2.7623405 -0.3071225 

3.7324321 0.0504580 
2.7724321 

3.7324321 

The cubic Hermite polynomial is 

yet) ~ 3.1799640 + (t - 1.2)2.7399640 + (t - 1.2)20.1118825 

+ (t - 1.2)2(t - 1.4)(-0.3071225), 

y(1.25) ~ 3.1799640 + 0.1369982 + 0.0002797 + 0.0001152 = 3.3173571, 

a result that is accurate to within 0.0000286. This is about the average of the errors at 1.2 
and at 1.4, or about 4% of the error obtained using linear interpolation. • 

If Taylor's method of order n is used to approximate the solution to 

y'(t) = f(t, y(t», a < t :s b, yea) = a, 

with step size h and if y E C n+1 [a, b], then the local truncation error is O(hn). • 
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Proof Note that Eq. (5.16) can be rewritten 

for some I;i in (ti, ti+l). So the local truncation error is 

for each i = 0,1, ... ,N - 1. Since y E Cn+1[a, b], we have yCn+l)(t) = j(n)(t, yet»~ 

bounded on [a, b] and Tj = O(hn ), for each i = 1,2, ... ,N. • • • 

E X ERe I S ESE T 5.3 

1. Use Taylor's method of order two to approximate the solutions for each of the following initial
value problems. 

a. y' = te3t - 2y, 0 < t < 1, y(O) = 0, with h = 0.5 

b. y' = 1 + (t - y)2, 2:'5 t :'53, y(2) = 1, with h = 0.5 

c. y'=I+y/t, l<t<2, y(1)=2,withh=0.25 

d. y'=cos2t+sin3t, O<t<l, y(0)=I,withh=0.25 

2. Repeat Exercise 1 using Taylor's method of order four. 

3. Use Taylor's method of order two and four to approximate the solution for each of the follow
ing initial-value problems. 

a. y' = y/t - (y/t)2, 1:'5 t :'5 1.2, y(1) = 1, withh = 0.1 

b. y'=sint+e-t
, O<t<l, y(O)=O,withh=O.5 

c. y' = l/t(l + y), I < t < 3, y(1) = -2, with h = 0.5 

d. y' = -ty + 4t/y, 0 < t < I, yeO) = I, with h = 0.25 

4. Use the Taylor method of order two with h = 0.1 to approximate the solution to 

y' = I + t sin(ty), 0 < t :'5 2, yeO) = o. 

5. Given the initial-value problem 

with exact solution yet) = t2(et - e): 

a. Use Taylor's method of order two with h = 0.1 to approximate the solution, and compare 
it with the actual values of y. 

b. Use the answers generated in part (a) and linear interpolation to approximate y at the 
following values, and compare them to the actual values of y. 

i. y(l.04) ii .• y(1.55) ill. y(1.97) 
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c. Use Taylor's method of order four with h = 0.1 to approximate the solution, and compare 
it with the actual values of y. 

d. Use the answers generated in part (c) and piecewise cubic Hermite interpolation to ap
proximate y at the following values, and compare them to the actual values of y. 

i. y(1.04) ii. y(1.55) iii. y(1.97) 

6. Given the initial-value problem 

y' = .!.. - y - y2, 1 <t ~ 2, y(l) = -1, 
t 2 t 

with exact solution yet) = -1ft: 

a. 

b. 

c. 

d. 

Use Taylor's method of order two with h = 0.05 to approximate the solution, and com
pare it with the actual values of y. 

Use the answers generated in part (a) and linear interpolation to approximate the follow
ing values of y, and compare them to the actual values. 

i. y(1.052) ii. y(1.555) ... m. y(1.978) 

Use Taylor's method of order four with h = 0.05 to approximate the solution, and com
pare it with the actual values of y. 

Use the answers generated in part (c) and piecewise cubic Hermite interpolation to ap
proximate the following values of y, and compare them to the actual values. 

i. y(1.052) ii. y(1.555) iii. y(1.978) 

7. A projectile of mass m = 0.11 kg shot vertically upward with initial velocity v(O) = 8 mls is 
slowed due to the force of gravity, Fg = -mg, and due to air resistance, Fr = -kvlvl, where 
g = 9.8 m1s2 and k = 0.002 kglm. The differential equation for the velocity v is given by 

mv' = -mg - kvlvl. 

a. Find the velocity after 0.1, 0.2, ... , 1.0 s. 

b. To the nearest tenth of a second, determine when the projectile reaches its maximum 
height and begins falling. 

5.4 Runge-Kutta Methods 

Tlreorem S.13 

The Taylor methods outlined in the previous section have the desirable property of high
order local truncation error, but the disadvantage of requiring the computation and evalua
tion of the derivatives of f(t, y). This is a complicated and time-consuming procedure for 
most problems, so the Taylor methods are seldom used in practice. 

Runge-Kutta methods have the high-order local truncation error of the Taylor meth
ods while eliminating the need to compute and evaluate the derivatives of f(t, y). Before 
presenting the ideas behind their derivation, we need to state Taylor's Theorem in two vari
ables. The proof of this result can be found in any standard book on advanced calculus 
(see, for example, [Fu, p. 331]). 

Suppose that f (t, y) and all its partial derivatives of order less than or equal to n + I are 
continuous on D = { (t, y) I a < t < b, c < y ::: d}, and let (to, Yo) E D. For every 
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(t, y) E D, there exists; between t and to and /-L between y and Yo with 

where 

and 

I(t, y) = Pn(t, y) + Rn(t, y), 

Pn(t, y) = I(to, Yo) + af af 
(t - to) ot (to, Yo) + (y - Yo) oy (to, Yo) 

(t - to)2 021 a21 
+ 2 ot2 (to, Yo) + (t - to)(Y - Yo) atay (to, Yo) 

+ (y - YO)2 a
21 (t ) + ... 

2 oy2 0, Yo 

1 n n 
+ ,I: . n. '-1> J J=v 

273 

• 

The function Pn(t, y) is called the nth Thylor polynomial in two variables for the 
function 1 about (to, Yo), and Rn (t, y) is the remainder term associated with Pn (t, y). 

Figure 5.4 on page 274 shows the graph of the function 

(t - 2)2 (y _ 3)2 
1 (t, y) = exp - 4 - 4 cos(2t + y - 7) 

together with the second Taylor polynomial of 1 about (2, 3), the polynomial in two vari
ables 

9 2 3 2 
P2(t,y)=1-4(t-2) -2(t-2)(y-3)- 4(y-3). 

The differentiation required to determine this polynomial would be tedious to do by hand. 
Fortunately, there is a Maple procedure to do the work for us. First we need to initiate the 
multiple variable Taylor polynomial procedure by entering the command 

>readlib(mtaylor); 

which produces the response 

procO . .. end proc 

The Taylor polynomial we need in this example is found by issuing the command 

>mtaylor(exp(-(t-2)~2/4-(y-3)~2/4)*cos(2*t+y-7), [t=2,y=3],3); 
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The final parameter in this command indicates that we want the second multivariate 
Taylor polynomial, that is, the quadratic polynomial. If this parameter is 2, we get the linear 
polynomial, and if it is I, we get the constant polynomial. When this parameter is omitted, 
it defaults to 6 and gives the fifth Taylor polynomial. 

The response from this Maple command is the polynomial 

9 2 3 2 
1- 4"(t - 2) - 2(t - 2)(y - 3) - 4 (y - 3) . • 

ftt,y) = exp { - (t - 2)2/4 - (y - W/4} cos (2t + Y - 7) 

f(t, y) 

y 

P2(t, y) = 1 - t(1 - 2)2 - 2(1 - 2)(y - 3) - f(y - 3)2 

The first step in deriving a Runge-Kutta method is to detennine values for ai, ai, and 
f31 with the property that al f (t + ai, Y + (31) approximates 

h 
T(2)(t, y) = f(t. y) + 2 f'(t. y), 

with error no greater than O(h 2), the local truncation error for the Taylor method of order 
two. Since 

, df af af, , 
f (t, y) = dt (t, y) = at (t, y) + ay (t, y) . y (t) and y (t) = f(t, y), 

this implies 

h af h af 
T(2)(t, y) = f(t, y) + 2 at (t, y) + 2 8y (t, y) . f(t, y). (5.18) 
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Expanding I (t + al. Y + fh) in its Taylor polynomial of degree one about (t, y) gives 

where 

al 
aJ!(t + aI, Y + fh) = aJ!(t, y) + alaI at (t, y) 

al 
+ ad31 ay (t, y) +al . RI(t +al, y + (3d, 

for some ~ between t and t + al and /1- between y and y + 131' 

(5.19) 

(5.20) 

Matching the coefficients of I and its derivatives in Eqs. (5.18) and (5.19) gives the 
three equations 

I (t, y): al = 1; 

and 

al 
at (t,y): 

al 
at(t,y): 

The parameters ai, ai, and 131 are uniquely deteIIIlined to be 

h 
and (31 = 2 I(t, y); 

so 

T(2)(t, y) = I 

and from Eq. (5.20), 

h h 
Rl t+ 2'Y+ 2/(t,y) 

h2 a2 I h2 a2 I 
8 at2 (~, /1-) + 4' I(t, y) ata/~' /1-) 

h2 
2 a2 I 

+ 8 U (t, y» ay2 (~, /1-). 

If all the second-order partial derivatives of f are bounded, then 

is O(h2), the order of the local truncation error of Taylor method of order two. As a con
sequence, using the new procedure in place of the Taylor method of order two might add 
error, but it does not increase the order of the error. 

The difference-equation method resulting from replacing T(2) (t, y) in Taylor's method 
of order two by I(t + (h/2), y + (h/2)f(t, y» is a specific Runge-Kutta method known 
as the Midpoint method. 
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Midpoint Method: 

Wo = a, 

h h 
ti + 2' Wi + 2 1 (ti, Wi) , for each i = 0, I, . . . , N - 1. 

Since only three parameters are present in al/(t + ai, Y + f31) and all are needed in 
the match of r(Z), we need a more complicated form to satisfy the conditions required for 
any of the higher-order Taylor methods. 

The most appropriate four-parameter fOlIn for approximating 

h hZ 

T(3)(t, y) = I(t, y) + 2/,(t, y) + 6" I"(t, y) 

• 
IS 

at/(t, y) + azf(t + az, y + lhl(t, y»; (5.21) 

and even with this, there is insufficient flexibility to match the telIn 

hZ al Z 
6" ay (t, y) I(t, y), 

resulting from the expansion of (hz /6) f" (t, y). Consequently, the best that can be obtained 
from using (5.21) are methods with O(hz) local truncation error. The fact that (5.21) has 
four parameters, however, gives a flexibility in their choice, so a number of 0 (hz) methods 
can be derived. One of the most important is the Modified Euler method, which corresponds 
to choosing al = az = ! and az = OZ = h and has the following difference-equation form. 

Modified Euler Method: 

Wo = a, 

h 
Wi+! = Wi + 2[/(ti' Wi) + l(ti+l, Wi + hl(ti, Wi»], 

for each i = 0, 1, 2, ... , N - 1. 

The other important O(hz) method is Heun's method, which corresponds to al = !, a2 = 
~,and az = 02 = ~h, and has the following difference-equation forIll. 

Heun's Method: 

Wo = a, 

h 2 2 
Wi+1 = Wi + 4 [/(ti, Wi) + 3/(ti + 3 h , Wi + 3hl(ti' Wi»], 

for each i = 0, 1,2, ... , N - 1. 

Both are classified as Runge-Kutta methods of order two, the order of their local truncation 
error. 
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I I y(ti) 

0.0 0.5000000 
0.2 0.8292986 
0.4 1.2140877 
0.6 1.6489406 
0.8 2.1272295 
1.0 2.6408591 
1.2 3.1799415 
1.4 3.7324000 
1.6 4.2834838 
1.8 4.8151763 
2.0 5.3054720 
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Suppose we apply the Runge-Kutta methods of order two to our usual example, 

I 2 1 y=y-t+, o <t ~ 2, yeO) = 0.5, 

with N = 10, h = 0.2, Ii = 0.2i, and Wo = 0.5 in each case. The difference equations 
produced from the various formulas are 

Midpoint method: Wi+l = 1.22wi - 0.0088i2 - 0.008i + 0.218: 

Modified Euler method: Wi+l = 1.22wi - 0.OO88i2 - 0.008i + 0.216; 

Heun's method: Wi+1 = 1.22wi - 0.OO88i2 - 0.008i + 0.2173, 

for each i = 0, 1, ... ,9. Table 5.5 lists the results of these calculations. For this problem, 
the Midpoint method is superior, followed by Heun's method. _ 

Midpoint Modified Euler Heun's 
Method Error Method Error Method Error 

• 
0.5000000 0 0.5000000 0 0.5000000 0 
0.8280000 0.0012986 0.8260000 0.0032986 0.8273333 0.0019653 
1.21l36OO 0.0027277 1.2069200 0.0071677 1.2098800 0.0042077 
1.6446592 0.0042814 1.6372424 0.0116982 1.6421869 0.0067537 
2.1212842 0.0059453 2.1102357 0.0169938 2.1176014 0.0096281 
2.6331668 0.0076923 2.6176876 0.0231715 2.6280070 0.0128521 
3.1704634 0.0094781 3.1495789 0.0303627 3.1635019 0.0164396 
3.7211654 0.0112346 3.6936862 0.0387138 3.7120057 0.0203944 
4.2706218 0.0128620 4.2350972 0.0483866 4.2587802 0.0247035 
4.8009586 0.0142177 4.7556185 0.0595577 4.7858452 0.0293310 
5.2903695 0.0151025 5.2330546 0.0724173 5.2712645 0.0342074 

Although r(3)(t, y) can be approximated with error O(h3) by an expression of the 
fOlm 

f(t + aI, Y + od(t + a2, Y + ozl(t, y))), 

involving four parameters, the algebra involved in the determination of ai, 01, a2, and 02 is 
quite involved and will not be presented. In fact, the Runge-Kutta method of order three re
sulting from this expression is not generally used. The most common Runge-Kutta method 
in use is of order four and, in difference-equation forlll, is given by the following. 

Runge-Kutta Order Four: 

Wo = a, 

kl =hf(ti,wi), 

h 1 
k2 = hf ti + 2' Wi + ikl , 
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h 1 
t- + - W· + -k2 

I 2' I 2 ' 

k4 = hfUH1, Wi + k3), 

1 
Wi+l = Wi + 6 (k1 + 2k2 + 2k3 + k4 ), 

for each i = 0, 1, ... , N - 1. This method has local truncation error 0 (h4), provided 
the solution yet) has five continuous derivatives. The reason for introducing the notation 
k1 , k2, k3 , k4 into the method is to eliminate the need for successive nesting in the second 
variable of f(t, y) (see Exercise 17). Algorithm 5.2 implements the Runge-Kutta method 
of order four. 

Runge-Kutla (Order Four) 

To approximate the solution of the initial-value problem 

/=f(t,y), a<t<b, y(a)=a, 

at (N + 1) equally spaced numbers in the interval [a, b]: 

INPUT endpoints a, b; integer N; initial condition a. 

OUTPUT approximation W to y at the (N + 1) values of t. 

Step 7 Set h = (b - a)IN; 
t = a; 
W =a; 

OUTPUT (t, w). 

Step 2 For i = 1,2, ... , N do Steps 3-5. 

Step 3 Set KJ = hf(t, w); 
K2 = hf(t + h12, W + KI/2); 
K3 = hf(t + h12, W + Kzl2); 
K4 = hf(t + h, W + K3)' 

Step 4 Set W = W + (KJ + 2K2 + 2K3 + K4)/6; (Compute Wi.) 

t = a + ih. (Compute ti.) 

Step 5 OUTPUT (t, w). 

Step 6 STOP. • 

Using the Runge-Kutta method of order four to obtain approximations to the solution of 
the initial-value problem 

y'=y-t2 +1, OSt<2, y(O) =0.5, 

with h = 0.2, N = 10, and t; = 0.2i gives the results and errors listed in Table 5.6. • 
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Table 5.7 

EXAMPLE 4 
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Runge-Kutta 
Exact Order Four Error 

ti Yi = y(ti) Wi IYi - w;l 

0.0 0.5000000 0.5000000 0 
0.2 0.8292986 0.8292933 0.0000053 
0.4 1.2140877 1.2140762 0.0000114 
0.6 1.6489406 1.6489220 0.0000186 
0.8 2.1272295 2.1272027 0.0000269 
1.0 2.6408591 2.6408227 0.0000364 
1.2 3.1799415 3.1798942 0.0000474 
1.4 3.7324000 3.7323401 0.0000599 
1.6 4.2834838 4.2834095 0.0000743 
1.8 4.8151763 4.8150857 0.0000906 
2.0 5.3054720 5.3053630 0.0001089 

The main computational effort in applying the Runge-Kutta methods is the evaluation 
of f. In the second-order methods, the local truncation error is O(h 2

), and the cost is two 
functional evaluations per step. The Runge-Kutta method of order four requires 4 evalua
tions per step, and the local truncation error is O(h4 ). Butcher (see [But] for a summary) 
has established the relationship between the number of evaluations per step and the order 
of the local truncation error shown in Table 5.7. This table indicates why the methods of or
der less than five with smaller step size are used in preference to the higher-order methods 
using a larger step size. 

Evaluations per step 

Best possible local 
truncation error 

2 3 4 5<n<7 8<n<9 10 < n - - - -

One measure of comparing the lower-order Runge-Kutta methods is described as fol
lows: 

The Runge-Kutta method of order four requires four evaluations per step, so it should 
give more accurate answers than Euler's method with one-fourth the step size if it is 
to be superior. Similarly, if the Runge-Kutta method of order four is to be superior to 
the second-order Runge-Kutta methods, it should give more accuracy with step size 
h than a second-order method with step size ~h, because the fourth-order method 
requires twice as many evaluations per step. 

An illustration of the superiority of the Runge-Kutta fourth-order method by this mea
sure is shown in the following example. 

For the problem 

y'=y-t2 +1, 0<t<2, y(O) =0.5, 
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Euler's method with h = 0.025, the Midpoint method with h = 0.05, and the Runge
Kutta fourth-order method with h = 0.1 are compared at the common mesh points of these 
methods 0.1, 0.2, 0.3, 0.4, and 0.5. Each of these techniques requires 20 functional evalu
ations to determine the values listed in Table 5.8 to approximate y(0.5). In this example, 
the fourth-order method is clearly superior. _ 

Modified Runge-Kutta 
Euler Euler Order Four 

ti Exact h = 0.025 h = 0.05 h = 0.1 

0.0 0.5000000 0.5000000 0.5000000 0.5000000 
0.1 0.6574145 0.6554982 0.6573085 0.6574144 
0.2 0.8292986 0.8253385 0.8290778 0.8292983 
0.3 1.0150706 1.0089334 1.0147254 1.0150701 
0.4 1.2140877 1.2056345 1.2136079 1.2140869 
0.5 1.4256394 1.4147264 1.4250141 1.4256384 

E X ERe I S ESE T 5.4 

1. Use the Modified Euler method to approximate the solutions to each of the following initial
value problems, and compare the results to the actual values. 

a. y' = te31 - 2y, 0 < t < I, yeO) = 0, with h = 0.5; actual solution yet) = 
!te31 _ l.. e31 + l..e-2t 
5 25 25 . 

b. y' = l+U-y)2, 2 < t :s 3, y(2) = I, with h = 0.5; actual solution yet) = t+ l~" 

c. y' = l+y/t, 1:s t:S 2, y(1) = 2, withh = 0.25; actualsolutiony(t) = tlnt+2t. 

d. y' = cos2t + sin3t, 0 < t :s I, yeO) = 1, with h = 0.25; actual solution 
yet) = ; sin 2t - t cos 3t + j. 

2. Repeat Exercise 1 using Heun's method. 

3. Repeat Exercise 1 using the Midpoint method. 

4. Use the Modified Euler method to approximate the solutions to each of the following initial
value problems, and compare the results to the actual values. 

a. y' = y/t - (y/t)2, 1 < t :s 2, y(1) = I, with h = 0.1; actual solution yet) = 
t/(1 + lnt). 

b. y' = 1 + y/t + (y/t)2, 1:s t < 3, y(l) = 0, with h = 0.2; actual solution 
yet) = t tan(ln t). 

c. y' = -(y + 1)(y + 3), 0 < t :s 2, yeO) = -2, with h = 0.2; actual solution 
yet) = -3 + 2(1 + e-2t )-I. 

d. y' = -5y + 5t2 + 2/, 0 < 1 :s 1, yeO) = ~, with h = 0.1; actual solution 
y(t) = t 2 + ie-51. 

S. Use the results of Exercise 4 and linear interpolation to approximate values of yet), and com
pare the results to the actual values. 

a. y(1.25) and y(1.93) b. y(2.1) and y(2.75) 

c. y(1.3) and y(1.93) d. y(0.54) and y(0.94) 
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6. Repeat Exercise 4 using Heun' s method. 

7. Repeat Exercise 5 using the results of Exercise 6. 

8. Repeat Exercise 4 using the Midpoint method. 

9. Repeat Exercise 5 using the results of Exercise 8. 

10. Repeat Exercise 1 using the Runge-Kutta method of order four. 

11. Repeat Exercise 4 using the Runge-Kutta method of order four. 

12. Use the results of Exercise 11 and Cubic Hennite interpolation to approximate values of y (t), 
and compare the approximations to the actual values. 

8. y(l.25) and y(1.93) h. y(2.1) and y(2.75) 

c. y(l.3) and y(1.93) d. y(0.54) and y(0.94) 

13. Show that the Midpoint method, the Modified Euler method, and Heun's method give the same 
approximations to the initial-value problem 

y' = - y + t + 1, 0 :'S t < 1, y (0) = 1, 

for any choice of h. Why is this true? 

14. Water flows from an inverted conical tank with circular orifice at the rate 

dx 2 ~ Jx = -0.6Jrr ..;2g ()' 
dt A x 

where r is the radius of the orifice, x is the height of the liquid level from the vertex of the 
cone, and A(x) is the area of the cross section of the tank x units above the orifice. Suppose 
r = 0.1 ft, g = 32.1 ftls2, and the tank has an initial water level of 8 ft and initial volume of 
512(n/3) ft3. 

B. Compute the water level after 10 min with h = 20 s. 

b. Detennine, to within 1 min, when the tank will be empty. 

15. The irreversible chemical reaction in which two molecules of solid potassium dichromate 
(K2Cr207), two molecules of water (H20), and three atoms of solid sulfur (S) combine to yield 
three molecules of the gas sulfur dioxide (SOz), four molecules of solid potassium hydroxide 
(KOH), and two molecules of solid chromic oxide (Cr203) can be represented symbolically 
by the stoichiometric equation: 

If nl molecules of K2 Cr2 0 7 , n2 molecules of H20, and n3 molecules of S are originally avail
able, the following differential equation describes the amount x(t) of KOH after time t: 

dx =k 
dt 

2 x 
n2 --

2 

2 3 

, 

where k is the velocity constant of the reaction. If k = 6.22 X 10-19 , nl = nz = 2 x 103 , and 
n3 = 3 x 103, how many units of potassium hydroxide will have been formed after 0.2 s? 

16. Show that the difference method 

Wo = Ci, 

for each i = 0, 1, ... ,N - 1, cannot have local truncation error 0 (h 3
) for any choice of 

constants ai, a2, Ci2, and 82. 



282 C HAP T E R 5 • Initial-Value Problems for Ordinary Differential Equations 

17. The Runge-Kutta method of order four can be written in the form 

Wo = ct, 

h h 
Wi+l = Wi + 6 f(ti, Wi) + 3 f(ti + Ci1h, Wi + 81hf(ti, Wi» 

h 
+ 3 f(ti + Ci2h, Wi + 82hf(ti + Y2h, Wi + Y3hf(ti, W;)) 

h 
+ 6 f(ti + ct3 h , Wi + 83hf(ti + Y4h , Wi + Y5 hf(ti + Y6 h , Wi + Y7 hf(ti, Wi»». 

Find the values of the constants 

5.5 Error Control and the Runge-Kutta-Fehlberg Method 

The appropriate use of varying step size was seen in Section 4.6 to produce computation
ally efficient integral approximating methods. In itself, this might not be sufficient to favor 
these methods due to the increased complication of applying them. However, they have 
another feature that makes them worthwhile. They incorporate in the step-size procedure 
an estimate of the truncation error that does not require the approximation of the higher 
derivatives of the function. These methods are called adaptive because they adapt the num
ber and position of the nodes used in the approximation to ensure that the truncation error 
is kept within a specified bound. 

There is a close connection between the problem of approximating the value of a 
definite integral and that of approximating the solution to an initial-value problem. It is 
not surprising, then, that there are adaptive methods for approximating the solutions to 
initial-value problems and that these methods are not only efficient, but also incorporate 
the control of error. 

An ideal difference-equation method 

for approximating the solution, y(t), to the initial-value problem 

y'=/(t,y), a<t<b, y(a)=a, 

would have the property that, given a tolerance e > 0, the minimal number of mesh points 
would be used to ensure that the global error, !y(ti) - w;j, would not exceed e for any 
i = 0, 1, ... ,N. Having a minimal number of mesh points and also controlling the global 
error of a difference method is, not surprisingly, inconsistent with the points being equally 
spaced in the interval. In this section we examine techniques used to control the error of 
a difference-equation method in an efficient manner by the appropriate choice of mesh 
points. 

Although we cannot generally determine the global error of a method, we will see 
in Section 5.10 that there is a close connection between the local truncation error and the 

• 
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global error. By using methods of differing order we can predict the local truncation error 
and, using this prediction, choose a step size that will keep it and the global error in check. 

To illustrate the technique, suppose that we have two approximation techniques. The 
first is an nth-order method obtained from an nth-order Taylor method of the fOlln 

y(ti+l) = yeti) + htP(ti, y(tJ, h) + O(hn+1
), 

producing approximations 

Wo =ct 

Wi+l = Wi + h</J(ti , Wi, h), for i > 0, 

with local truncation error '[HI (h) = O(hn). In general, the method is generated by ap
plying a Runge-Kutta modification to the Taylor method, but the specific derivation is 
unimportant. 

The second method is similar but one order higher; it comes from an (n + l)st-order 
Taylor method of the form 

- n+2 y(ti+l) = yeti) + htP(ti, yeti), h) + O(h ), 

producing approximations 

-Wo =ct 

-
Wi+l = Wi + h¢(ti, Wi, h), for i > 0, 

with local truncation error Ti+l (h) = O(hn+1). 

We first make the assumption that Wi ~ yet;) ~ Wi and choose a fixed step size h to 
generate the approximations Wi+1 and Wi+1 to y(ti+1). Then 

In a similar manner, 

and, as a consequence, 

Li+1 (h) = y(tHl)h- yeti) - ¢(ti, yeti), h) 

_ y(ti+l) - Wi _ ,1..«(. . h) 
- h 'f' " W" 

1 

y(tHl) - [Wi + h¢(ti' Wi, h)] 

h 

Ti+l (h) = h (y(ti+l) - Wi+l) 

= ~ [(y(ti+d - Wi+l) + (Wi+l - Wi+l)] 

1 
= Ti+1 (h) + h(Wi+l - Wi+l). 
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But <i+1 (h) is O(hn
) and f i+ 1 (h) is O(hn+1

), so the significant portion of <i+1 (h) must 
come from 

This gives us an easily computed approximation for the local truncation error of the 0 (hn) 

method: 

The object, however, is not simply to estimate the local truncation error but to adjust 
the step size to keep it within a specified bound. To do this we now assume that since 
Ti+1 (h) is O(hn), a number K, independent of h, exists with 

Then the local truncation error produced by applying the nth-order method with a new step 
size qh can be estimated using the original approximations wHI and Wi+l: 

n 

Ti+1 (qh) ~ K(qh)n = qn(Khn) ~ qn Ti+1 (h) ~ ~(U\+I - Wi+I)' 

To bound T;+I (qh) bye, we choose q so that 

n 

~ IWi+1 - Wi+11 ~ ITHI (qh)1 < £; 

that is, so that 

eh I/n 

q< • 

One popular technique that uses this inequality for error control is the Runge·Kutta. 
Fehlberg method. (See [Fe].) This technique uses a Runge-Kutta method with local trun
cation error of order five, 

to estimate the local error in a Runge-Kutta method of order four given by 

. _ . 25 k 1408 k 2197 k - ~k 
W,+I - W, + 216 1 + 2565 3 + 4104 4 5 5, 

where 

kl = hl(ti, Wi), 

h 1 
k2 = hi t- + - W· + -kl 

I 4' I 4 ' 

t 
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l2h 1932 k 7200 k 7296 
ti + 13' Wi + 2197 1 - 2197 2 + 21913 , 

ks = hi 
439 3680 845 

ti + h, Wi + 2l6kl - 8k2 + 513 k3 - 41Ol4 , 

h 8 3544 1859 11 
t- + - W· - kl + 2k2 - k3 + k4 - k5. 
, 2' '27 2565 4104 40 

An advantage to this method is that only six evaluations of I are required per step. Arbi
trary Runge-Kutta methods of orders four and five used together require (see Table 5.7 in 
Section 5.4) at least four evaluations of I for the fourth-order method and an additional 
six for the fifth-order method, for a total of at least ten functional evaluations. 

In the error-control theory, an initial value of h at the ith step was used to find the 
first values of Wi+1 and Wi+t. which led to the determination of q for that step, and then 
the calculations were repeated. This procedure requires twice the number of functional 
evaluations per step as without the error control. In practice, the value of q to be used 
is chosen somewhat differently in order to make the increased functional-evaluation cost 
worthwhile. The value of q detennined at the ith step is used for two purposes: 

1. To reject, if necessary, the initial choice of h at the ith step and repeat the calcu
lations using q h; and 

2. To predict an appropriate initial choice of h for the (i + l)st step. 

Because of the penalty in terlIlS of functional evaluations that must be paid if the steps 
are repeated, q tends to be chosen conservatively. In fact, for the Runge-Kutta-Fehlberg 
method with n = 4, the usual choice is 

sh 1/4 
• 

1/4 sh 
q= = 0.84 • 

In Algorithm 5.3 for the Runge-Kutta-Fehlberg method, Step 9 is added to eliminate 
large modifications in step size. This is done to avoid spending too much time with small 
step sizes in regions with irregularities in the derivatives of y and to avoid large step sizes, 
which can result in skipping sensitive regions between the steps. In some instances the 
step-size increase procedure is omitted completely from the algorithm, and the step-size 
decrease procedure is modified to be incorporated only when needed to bring the error 
under control. 

Runge-Kutta-Fehlberg 

To approximate the solution of the initial-value problem 

y' = l(t, y), a < t :::s b, yea) = a, 

with local truncation error within a given tolerance: 
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INPUT endpoints a, b; initial condition a; tolerance TaL; maximum step size hmax; 
minimum step size hmin. 

OUTPUT t, w, h where W approximates y(t) and the step size h was used, or a message 

that the minimum step size was exceeded. 

Step 1 Set t = a; 
W =a' , 
h = hmax; 
FLAG = 1; 

OUTPUT (t, w). 

Step 2 While (FLAG = 1) do Steps 3-11. 

Step 3 Set KI = hi (t, w); 

K2 = hi (t + !h, w + kKI); 

K3 = hi (t + ~h, w + 12KI + fi K2); 

K4 = hi (t + ~h, W + ~~~~KI - K2 + m~K3); 
K5 = hi (t + h, W + mKI - 8K2 + 3561830 K3 -1~K4); 

K6 = hi (t + ih, W - 2~KI + 2K2 - ~~~K3 + !~g:K4 - ;¥oK5)' 

Step 4 Set R = ! 13!oKI - K3 - K4 + -toK5 + 525K61. 

(Note: R = k IWi+1 - Wi+ll·) 

Step 5 If R :::; TaL then do Steps 6 and 7. 

Step 6 Set t = t + h; (Approximation accepted.) 

25 K 1408K 2197K 1 K 
W = W + 216 I + 2565 3 + 4104 4 - 5 5· 

Step 7 OUTPUT (t, w, h). 

Step 8 Set 8 = 0.84(TOL/ R)I/4. 

Step 9 If 8 :::; 0.1 then set h = O.lh 
else if 8 ::: 4 then set h = 4h 

else set h = 8h. (Calculate new h.) 

Step 10 If h > hmax then set h = hmax. 

Step 11 If t > b then set FLAG = 0 
else if t + h > b then set h = b - t 

else if h < hmin then 
set FLAG = 0; 

Step 12 (The procedure is complete.) 
STOP. 

OUTPUT ('minimum h exceeded'). 
(Procedure completed unsuccessfully.) 

• 
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EXAMPLE 1 Algorithm 5.3 will be used to approximate the solution to the initial-value problem 

lable 5.9 

ti 

0. 
0..2500000. 
0..4865522 
0.7293332 
0.9793332 
1.2293332 
1.4793332 
1.7293332 
1.9793332 
2.0.0.00000 

y'=y-t2 +1, 0<t~2, y(O) =0.5, 

which has solution y(t) = (t + 1)2 - 0.5er • The input consists of a tolerance TOL = 10-5, 
a maximum step size hmax = 0.25, and a minimum step size hmin = 0.01. The results 
are shown in Table 5.9. The last two columns in Table 5.9 show the results of the fifth-order 
method. For small values of t, the error is less than the error in the fourth-order method, 
but the error exceeds that of the fourth-order method when t increases. _ 

RKF-4 RKF-5 
Yi = y(ti) hi Ri IYi - w;! - Iy, - w;! Wi Wi 

0..5 0..5 0..5 
0..920.4873 0..9204886 0..2500000 6.2 x 10-6 1.3 X 10-6 0..9204870. 2.424 x 10-7 

1.3964884 1.3964910 0..2365522 4.5 x 10-6 2.6 X 10-6 1.396490.0. 1.510 x 10-6 

1.9537446 1.9537488 0..2427810 4.3 x 10-6 4.2 X 10-6 1.9537477 3.136 x 10-6 

2.5864198 2.5864260. 0..2500000 3.8 x 10-6 6.2 X 10-6 2.5864251 5.242 x 10-6 

3.260.4520. 3.260460.5 0..2500000 2.4 x 10-6 8.5 X 10-6 3.260.4599 7.895 x 10-6 

3.9520.844 3.9520.955 0..2500000 7 x 10-7 1.11 X 10-5 3.9520.954 1.096 x 10-5 

4.630.8127 4.630.8268 0..2500000 1.5 x 10-6 1.41 X 10-5 4.630.8272 1.446 x 10.-5 

5.2574687 5.2574861 0..2500000 4.3 x 10-6 1.73 X 10-5 5.2574871 1.839 x 10-5 

5.30.54720. 5.30.54896 0..0.206668 1.77 x 10-5 5.30.54896 1.768 x 10-5 

An implementation of the Runge-Kutta-Fehlberg method is available in Maple using 
the dsolve command with the numeric option. Consider the initial-value problem of Ex
ample 1. The command 

>g: =dsolve ({D(y) (t)=y(t)-t*t+l,y(O)=O.5},y(t),numeric); 

returns the procedure 

, g := proc(rkf45..x) ... end 

We can evaluate y as shown by example, using 

>g(2.0); 

which gives 

[t = 2.0, y(t) = 5.305471958400194] 

E X ERe I S ESE T 5.5 
1. Use the Runge-Kutta-Fehlberg method with tolerance TOL = 10-4, hmax = 0.25, and 

hmin = 0..0.5 to approximate the solutions to the following initial-value problems. Compare 
the results to the actual values. 
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a. y' = y/t - (y/t)2, 0 < t ~ I, yeO) = 0; actual solution y(t) = ~te31 - fse 31 + 
I -21 

25 e . 
b. y' = 1 + (t - y)2, 2 < t < 3, y(2) = 1; actual solution y(t) = t + I/O - t). 

c. y' = 1+ y/t, 1 ~ t ~ 2, y(l) = 2; actual solution yet) = tint + 2t. 

d. y' = cos2t + sin3t, 0 ~ t ~ 1, yeO) = 1; actual solution yet) = ; sin2t -
I 3 + 4 3COS t 3' 

2. Use the Runge-Kutta Fehlberg Algorithmwith tolerance TOL = 10-4 to approximate the 
solution to the following initial-value problems. 

a. y' = (y/t)2 + y/t, 1 < t < 1.2, y(l) = 1, with hmax = 0.05 and hmin = 0.02. 

b. y' = sin t + e-', 0 < t < I, yeO) = 0, with hmax = 0.25 and hmin = 0.02. 

c. y' = l/t(y2 + y), I ~ t ~ 3, y(l) =-2, with hmax = 0.5 and hmin = 0.02. 

d. y' = t2, 0 ~ t < 2, yeO) = 0, with hmax = 0.5 and hmin = 0.02. 

3. Use the Runge-Kutta-Fehlberg method with tolerance TOL = 10-6, hmax = 0.5, and hmin = 
0.05 to approximate the solutions to the following initial-value problems. Compare the results 
to the actual values. 

a. y' = y/t - (y/t)2, I < t < 4, y(l) = 1; actual solution y(t) = t/(1 + lnt). 

b. y' = 1 + y/t + (y/t)2, 1 ~ t < 3, y(l) = 0; actual solution yet) = ttan(lnt). 

c. y' = -(y + 1)(y + 3), 0 ~ t ~ 3, yeO) = -2; actual solution y(t) = -3 + 2(1 + 
-21)-1 e . 

d. y' = (t + 2t3)y3 - ty, 0 ~ t ~ 2, yeO) = t; actual solution yet) = (3 + 2t2 + 
6e,2) -1/2. 

4. The Runge-Kutta-Verner method is based on the formulas 

13 2375 5 12 3 
Wj+1 = Wj + 160kl + 5984 k3 + 16 k4 + Bsk5 + 44 k6 and 

- . _ w, 2-k 875 k 2\ 264 k 125 k 43 k 
W,+l - 1 + 40 I + 2244 3 + 7i 4 + 1955 5 + 11592 7 + 616 g, 

where 

kl = hf(tj, Wj), 

k2 =hf 
h 1 

tj + 6' WI + 6 k I , 

4h 4 16 
t- + - W· + -kl + -k2 , 

I 15' I 75 75 

2h 5 8 5 
t· + - W + -kl - -k2 + -k3 

I 3' I 6 3 2 ' 

ks =hf 
5h 165 55 425 85 

t· + - W - kl + -k2 - k3 + -k4 
I 6' I 64 6 64 96 ' 

12 4015 11 88 
tj + h, Wi + skI - 8k2 + 612 k3 - 3ijk4 + 255k5 , 

h 8263 124 643 81 k 2484 
tj + 15' Wi - 15000 kJ + 75 k2 - 680 k3 - 250 4 + 10625 k5 , 

kg =hf 
3501 k 300

k 
297275

k 
319 k 24068

k 
3850 

ti + h, Wi + 1720 I - 43 2 + 52632 3 - 2322 4 + 84065 5 + 26703 k7 . 
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The sixth-order method Wi+1 is used to estimate the error in the fifth-order method Wi+l. 

Construct an algorithm similar to the Runge-Kutta-Fehlberg Algorithm, and repeat Exercise 3 
using this new method. 

S. In the theory of the spread of contagious disease (see [Bal] or [Ba2l), a relatively elementary 
differential equation can be used to predict the number of infective individuals in the popula
tion at any time, provided appropriate simplification assumptions are made. In particular, let 
us assume that all individuals in a fixed population have an equally likely chance of being 
infected and once infected remain in that state. Suppose x(t) denotes the number of suscepti
ble individuals at time t and yet) denotes the number of infectives. It is reasonable to assume 
that the rate at which the number of infectives changes is proportional to the product of x(t) 
and yet) since the rate depends on both the number of infectives and the number of suscep
tibles present at that time. If the population is large enough to assume that x(t) and yet) are 
continuous variables, the problem can be expressed 

y'(t) = kx(t)y(t), 

where k is a constant and x(t) + yet) = rn, the total popUlation. This equation can be rewritten 
involving only yet) as 

y' (t) = k(rn - y(t»y(t). 

a. Assuming that m = 100,000, yeO) = 1000, k = 2 X 10-6 , and that time is measured in 
days, find an approximation to the number of infective individuals at the end of 30 days. 

b. The differential equation in part (a) is called a Bernoulli equation and it can be trans
formed into a linear differential equation in u (t) = (y (t » -I. Use this technique to find 
the exact solution to the equation, under the same assumptions as in part (a), and compare 
the true value of yet) to the approximation given there. What is limHOO yet) ? Does this 
agree with your intuition? 

6. In the previous exercise, all infected individuals remained in the population to spread the 
disease. A more realistic proposal is to introduce a third variable z(t) to represent the number 
of individuals who are removed from the affected population at a given time t by isolation, 
recovery and consequent immunity, or death. This quite naturally complicates the problem, 
but it can be shown (see [Ba2D that an approximate solution can be given in the form 

x(t) = x(0)e-Ckl/k2)ZCt) and yet) = m - x(t) - z(t), 

where kl is the infective rate, k2 is the removal rate, and z(t) is determined from the differential 
equation 

l(t) = k2 (m - z(t) - x(0)e-(k 1/k2 )z(t») . 

The authors are not aware of any technique for solving this problem directly, so a numerical 
procedure must be applied. Find an approximation to z(30), y(30), and x(30), assuming that 
m = 100,000, x(O) = 99,000, kl = 2 X 10-6 , and k2 = 10-4 . 

5.6 Multistep Methods 

The methods discussed to this point in the chapter are called one-step methods because 
the approximation for the mesh point ti+l involves information from only one of the previ
ous mesh points, ti. Although these methods might use functional evaluation infoIIIlation 
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at points between ti and ti + I, they do not retain that infolluation for direct use in future ap
proximations. All the information used by these methods is obtained within the subinterval 
over which the solution is being approximated. J 

Since the approximate solution is available at each of the mesh points to, tl, ... , ti 

before the approximation at ti+1 is obtained, and because the error IWj - y(tj)1 tends 
to increase with j, it seems reasonable to develop methods that use these more accurate 
previous data when approximating the solution at ti + I. 

Methods using the approximation at more than one previous mesh point to detellnine 
the approximation at the next point are called multistep methods. The precise definition of 
these methods follows, together with the definition of the two types of multistep methods. 

Definition 5.14 An m-step multistep method for solving the initial-value problem 

EXAMPLE 1 

y'=!(t,y), a<t<b, y(a)=cx, (5.22) 

has a difference equation for finding the approximation Wi+1 at the mesh point tHI repre
sented by the following equation, where m is an integer greater than 1: 

+h[bm!(ti+l, Wi+l) +bm-I/(ti, Wi) 

+ ... + bo!Cti+l-m, WHI-m)], 

(5.23) 

for i = m - I,m, ... ,N - 1, where h = (b - a)jN, the aO,al, ... ,am-l and 
bo, b l , ... , bm are constants, and the starting values 

. .. , Wm-I = CXm-1 

are specified. • 
When bm = 0 the method is called explicit, or open, since Eq. (5.23) then gives Wi+l 

explicitly in terms of previously deteImined values. When bm f= 0 the method is called 
implicit, or closed, since Wi+1 occurs on both sides of Eq. (5.23) and is specified only 
implicitly. 

The equations 

(5.24) 

h 
WHI = Wi + 24 [55!(ti, Wi) - 59!(ti-l, Wi-I) + 37 !(ti-2, Wi-2) - 9!(ti-3, Wi-3)], 

for each i = 3,4, ... , N - 1, define an explicit four-step method known as the fourth
order Adams-Bashforth technique. The equations 

(5.25) 
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for each i = 2, 3, ... , N - 1, define an implicit three-step method known as the fourth
order Adams-Moulton technique. _ 

The starting values in either (5.24) or (5.25) must be specified, generally by assuming 
Wo = a and generating the remaining values by either a Runge-Kutta method or some 
other one-step technique. 

To apply an implicit method such as (5.25) directly, we must solve the implicit equa
tion for Wi+l. It is not clear that this can be done in general or that a unique solution for 
Wi+1 will always be obtained. 

To begin the derivation of a multistep method, note that the solution to the initial-value 
problem (5.22), if integrated over the interval [ti, ti+t1, has the property that 

Consequently, 

II 

y'(t)dt= 
II 

f(t, y(t» dt. 

f(t, yet»~ dt. 
II 

(5.26) 

Since we cannot integrate f(t, yet»~ without knowing yet), the solution to the prob
lem, we instead integrate an interpolating polynomial P (t) to f (t, Y (t» that is determined 
by some of the previously obtained data points (to, wo), (tl, WI), ... , (ti' w;). When we 
assume, in addition, that y(ti) ~ Wi, Eq. (5.26) becomes 

II 

pet) dt. (5.27) 

Although any fOlm of the interpolating polynomial can be used for the derivation, it is most 
convenient to use the Newton backward-difference formula. 

To derive an Adams-Bashforth explicit m-step technique, we fOIm the backward
difference polynomial Pm-I(t) through (ti, f(ti, yeti))), (ti-I, f(ti-I, y(ti-1»), .. · , 
(ti+l-m, f(ti+l-m, y(ti+l-m))). Since Pm-I(t) is an interpolatory polynomial of degree 
m - 1, some number ~i in (ti+1-m, ti) exists with 

Introducing the variable substitution t = ti + s h, with dt = h ds into P m-l (t) and the error 
tenn implies that 

f(t, y(t» dt = 
Ii 

+ 
Ii 

li+1 f(m)(~i' Y(~i» 
-----(t - ti)(t - ti-I)'" (t - ti+1-m) dt 

m! 
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m-I 

= L '11k f(ti, y(ti»h(-ll 
k=O a 

1 -s 
ds 

k 

1 hm+1 

+ , m. 
S(S + 1)··· (s + m - l)f(m)(~i' Y(~i» ds. 

a 

The integrals (_1)k fo' (~S) ds for various values of k are easily evaluated and are listed in 
Table 5.l0. For example, when k = 3, 

1 -s 

3 
ds =-

1 (-s)(-s - 1)(-s - 2) 
...:....-=--:.....----'-...:....-----'- d s 

a 1·2·3 a 

I 1 

(S3 + 3s2 + 2s) ds = -
6 a 

1 S4 1 1 9 3 
_ +s3 +S2 - = - - -- • 

6 4 a 6 4 8 

k 0 1 2 3 4 5 

(-ll fol (~S) ds 1 1 5 3 251 95 - - - -2 12 a 720 288 

As a consequence, 

t· I 

f(t, yet»~ dt = h 
I 5 2 

f(ti, y(ti» + 2'11 f(ti, y(ti» + 12 V f(ti, y(ti» + ... 

hm+1 1 
+ , s(s + 1)··· (s + m - l)f(m)(~i' Y(~i» ds. (5.28) 

m. a 

Since s (s + 1) ... (s + m - 1) does not change sign on [0, 1], the Weighted Mean Value 
Theorem for Integrals can be used to deduce that for some number J.Li, where ti+l-m < 
J.Li < ti+" the error term in Eq. (5.28) becomes 

1 

s(s + 1)··· (s + m - 1)f(m)(~i' Y(~i» ds 
a 

1 

m! 
s(s + 1) ... (s + m - 1) ds -

o 

or 

1 -s 
ds. (5.29) 

a m 

Since y(tHI) - yet;) = J/i+1 f(t, yet)) dt, Eq. (5.26) can be written as 
I 
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I -s 
ds. 

o m 

293 

(5.30) 

To derive the three-step Adams-Bashforth technique, consider Eq. (5.30) with m = 3: 

15 2 
!(t;, y(t;» + 2 'V !(t;, yet;»~ + 12'V !(t;, yeti»~ 

1 
!(t;, yet;»~ + 2 [f(t;, y(t;» - !(t;-I, y(ti-I»] 

5 
+ 12[f(t;, y(ti» - 2!(t;_I, y(tH» + !(t;-2, y(t;-2»] 

h 
= yeti) + 12 [23!(t;, yeti»~ - 16!(t;_I, y(ti-I» + 5!(ti-2, y(ti-2»]. 

The three-step Adams-Bashforth method is, consequently, 

Wo = a, WI = ai, W2 = a2, 

h 
Wi+1 = Wi + 12 [23!(t;, Wi) - 16!(t;_I, wi-d] + 5!(t;_2, Wi-2)], 

for i = 2, 3, ... , N - 1. • 
Multistep methods can also be derived by using Taylor series. An example of the pro

cedure involved is considered in Exercise 10. A derivation using a Lagrange interpolating 
polynomial is discussed in Exercise 9. 

The local truncation error for multistep methods is defined analogously to that of one
step methods. As in the case of one-step methods, the local truncation error provides a 
measure of how the solution to the differential equation fails to solve the difference equa
tion. 

Definition 5.15 If y(t) is the solution to the initial-value problem 
• 

y' = !(t, y), a < t < b, yea) = a, 

and 

+ h[bm!(ti+l, W;+I) + bm-J!(t;, Wi) + ... + bo!(ti+l-m, W;+I-m)] 

is the (i + 1)8t step in a multistep m~thod, the local truncation enor at this step is 

. (h) _ y(ti+I) - am-Iy(ti) - ... - aoy(ti+l-m) 
~+I - h 

- [bm!(ti+l, y(ti+I» + ... + bO!(ti+l-m, y(ti+l-m))], 

for each i = m - 1, m, ... , N - 1. 

(5.31) 

• 
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To detennine the local truncation error for the three-step Adams-Bashforth method derived 
in Example 2, consider the form of the error given in Eq. (5.29) and the appropriate entry 
in Table 5.10: 

I -s 

o 3 

Using the fact that /(3) (I-Li, Y (I-Li» = y<4) (I-Li) and the difference equation derived in Ex
ample 2, we have 

y(t,+I) - yeti) 1 
Ti+1 (h) = h - 12 [23 /(ti, y(ti» - 16/(li_l, y(li-I» + 5 / (ti-2, y(ti-2»] 

1 3h4 3h3 

- h 8 /(3) (I-L" y(l-Li)) = 8 y(4) (I-Li), for some I-Li E (ti-2, li+l). • 

Some of the explicit multistep methods together with their required starting values and 
local truncation errors are as follows. The derivation of these techniques is similar to the 
procedure in Examples 2 and 3. 

Adams-Bashforth Two-Step Explicit Method: 

Wo = a, WI = ai, 

h 
WHI = W, + 2 [3/(ti, Wi) - /(ti-I, wi-d], (5.32) 

where i = 1, 2, ... , N - 1. The local truncation error is Ti+1 (h) = f2 yl/l (I-Li )h2, for some 
I-Li E (ti-I, ti+I). 

Adams-Bashforth Explicit Method: 

h 
W,+I = Wi + 12[23/(ti, Wi) - 16/(ti-l, Wi-I) + 5/(ti-2, Wi-2)], (5.33) 

where i = 2, 3, ... ,N - 1. The local truncation error is Ti+l(h) = ~y<4)(l-Li)h3, for some 
I-Li E (ti-2, IHI). 

Adams-Bashforth Four-Step Explicit Method: 

(5.34) 
h . 

W,+I = Wi + 24 [55/(li, Wi) - 59/(ti-J. Wi-I) + 37/(ti-2, Wi-2) - 9/(ti-3, Wi-3)], 

where i = 3,4, ... , N -1. The local truncation error is THI (h) = y<5)(l-Li)h4, for some 
I-Li E (ti-3, t,+I)' 
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Adams-Bashforth Five-Step Explicit Method: 

h 
Wi+1 = Wi + no [l901f(ti , Wi) - 2774f(ti-\, wi-d (5.35) 

+ 2616fUi-2, Wi-2) - 1274f(ti-3, Wi-3) + 25If(li-4, W,-4)J, 

where i = 4, 5, ... ,N -1. The local truncation error is ii+l(h) = iis y(6) (lti)h 5, for some 
Iti E (ti-4, ti+I). 

Implicit methods are derived by using (ti+l, f(ti+l, y(ti+I») as an additional interpo
lation node in the approximation of the integral 

f(t, y(t» dt. 
Ii 

Some of the more common implicit methods are as follows. 

Adams-Moulton Two-Step Implicit Method: 

wo=a, wI=al, 

h 
Wi+1 = Wi + 12 [5f{ti+l, Wi+l) + 8f(ti, Wi) - f(ti-I, Wi-I)], (5.36) 

where i = 1,2, ... ,N - 1. The local truncation error is ii+l(h) = _-f4yi4)(lti}h3, for 
some Iti E (ti-I, ti+d. 

Adams-Moulton Three-Step Implicit Method: 

(5.37) 

h 
Wi+1 = Wi + 24 [9f(ti+l, Wi+l) + 19/(ti, Wi) - 5/(ti-l, Wi-I) + /(ti-2, Wi-2)], 

where i = 2,3, ... ,N - 1. The local truncation error is ii+l (h) = -Noyi5)(It;)h4, for 
some Iti E (ti-2, ti+l). 

Adams-Moulton Four-Step Implicit Method: 

h 
Wi+l = Wi + 720 [251 f(ti+1 , Wi+!) + 646/(ti, Wi) (5.38) 

- 264f(ti-l, Wi-I) + 106/(ti-2, Wi-2) - 19f(ti-3, Wi-3)], 

wherei = 3,4, ... ,N-I. Thelocaltruncationerrorisii+l(h) = _1~oy(6)(lti)h5,for 
some Iti E (ti-3, li+I). 

It is interesting to compare an m-step Adams-Bashforth explicit method to an (m -1)
step Adams-Moulton implicit method. Both involve m evaluations of f per step, and both 
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have the terms y(m+l)(J1.i)hm in their local truncation errors. In general, the coefficients of 
the telms involving f in the local truncation error are smaller for the implicit methods than 
for the explicit methods. This leads to greater stability and smaller roundoff errors for the 
implicit methods. 

Consider the initial-value problem 

y'=y-t2 +1, 0<t<2, y(O) =0.5, 

and the approximations given by the explicit Adams-Bashforth four-step method and the 
implicit Adams-Moulton three-step method, both using h = 0.2. 

The Adams-Bashforth method has the difference equation 

for i = 3,4, '" ,9. When simplified using 1(t, y) = y - t 2 + 1, h = 0.2, and ti = 0.2i, 
it becomes 

1 
Wi+1 = 24 [35wi - 1l.8wi-1 + 7.4wi-2 - 1. 8Wi-3 - 0.192i2 - 0.192i + 4.736]. 

The Adams-Moulton method has the difference equation 

for i = 2, 3, ... ,9. This reduces to 

I 
Wi+1 = [1.8Wi+ 1 + 27.8wi - Wi -I + 0.2Wi -2 - 0.192i2 - 0.192i + 4.736]. 

24 

To use this method explicitly, we solve for WHb which gives 

1 
Wi+! = [27.8wi - Wi-l + 0.2Wi-2 - 0.192i2 - 0.192i + 4.736], 

22.2 

for i = 2, 3, ... , 9. 
The results in Table 5.l1 were obtained using the exact values from yet) = (t + 1)2_ 

0.5et for a, ai, a2, and a3 in the explicit Adams-Bashforth case and for a, ai, and a2 in 
the implicit Adams-Moulton case. _ 

In Example 4 the implicit Adams-Moulton method gave better results than the ex
plicit Adams-Bashforth method of the same order. Although this is generally the case, the 
implicit methods have the inherent weakness of first having to convert the method alge
braically to an explicit representation for Wi+ I. This procedure is not always possible, as 
can be seen by considering the elementary initial-value problem 

y' = eY , 0 :s: t :s: 0.25, yeO) = 1. 
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Adams- Adams-
Bashforth Moulton 

(-, Exact Wi Error Wi Error 

0.0 0.5000000 
0.2 0.8292986 
0.4 1.2140877 
0.6 1.6489406 1.6489341 0.0000065 
0.8 2.1272295 2.1273124 0.0000828 2.1272136 0.0000160 
1.0 2.6408591 2.6410810 0.0002219 2.6408298 0.0000293 
l.2 3.1799415 3.1803480 0.0004065 3.1798937 0.0000478 
1.4 3.7324000 3.7330601 0.0006601 3.7323270 0.0000731 
l.6 . 4.2834838 4.2844931 0.0010093 4.2833767 0.0001071 
l.8 4.8151763 4.8166575 0.0014812 4.8150236 0.0001527 
2.0 5.3054720 5.3075838 0.0021119 5.3052587 0.0002132 

Since I (t, y) = eY , the three-step Adams-Moulton method has 

as its difference equation, and this equation cannot be solved explicitly for Wi+l. 

We could use Newton's method or the secant method to aproximate Wi+I, but this 
complicates the procedure considerably. In practice, implicit multistep methods are not 
used as described above. Rather, they are used to improve approximations obtained by 
explicit methods. The combination of an explicit and implicit technique is called a 
predictor-corrector method. The explicit method predicts an approximation, and the 
implicit method corrects this prediction. 

Consider the following fourth-order method for solving an initial-value problem. The 
first step is to calculate the starting values Wo, WI. Wz, and W3 for the four-step explicit 
Adams-Bashforth method. To do this, we use a fourth-order one-step method, the Runge
Kutta method of order four. The next step is to calculate an approximation, wiO), to y(t4) 
using the explicit Adams-Bashforth method as predictor: 

~) h . 
w4 = W3 + 24 [551(t3, W3) - 591(tz, wz) + 37/(tJ, wI> - 9/(10, wo)]. 

This approximation is improved by inserting W iO) in the right side of the three-step implicit 
Adams-Moulton method and using that method as a corrector. This gives 

(1) h (0) 
w4 = W3 + 24 [91(t4, w4 ) + 191(t3, W3) - 51(t2, W2) + 1(t1, w])]. 

The only new function evaluation required in this procedure is 1(t4, wiO) in the corrector 
equation; all the other values of 1 have been calculated for earlier approximations. 

The value w~l) is then used as the approximation to y(t4), and the technique of using 
the Adams-Bashforth method as a predictor and the Adams-Moulton method as a corrector 
is repeated to find w~O) and w~l), the initial and final approximations to y(t5), etc. 
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Improved approximations to y(ti+l) could be obtained by iterating the Adams
Moulton fOlmula 

(HI) h 9 (k) I wi +1 = Wi + 24 [ l(ti+l, wi +l ) + 191(ti, Wi) - 5 (ti-I, wi-d + l(ti-2, Wi-2)]· 

However, (wi!; I)} converges to the approximation given by the implicit formula rather 
than to the solution y(ti+I), and it is usually more efficient to use a reduction in the step 
size if improved accuracy is needed. 

Algorithm 5.4 is based on the fourth-order Adams-Bashforth method as predictor and 
one iteration of the Adams-Moulton method as corrector, with the starting values obtained 
from the fourth-order Runge-Kutta method. 

Adams Fourth-Order Predidor-Con-edor 

To approximate the solution of the initial-value problem 

l=f(t,y), a<t<b, y(a)=a. 

at (N + 1) equally spaced numbers in the interval [a. b]: 

INPUT endpoints a, b; integer N; initial condition a. 

OUTPUT approximation W to y at the (N + 1) values of t. 

Step 7 Set h = (b - a)/N; 
to = a; 
Wo = a; 

OUTPUT (to, wo)· 

Step 2 For i = 1,2,3, do Steps 3-5. 
(Compute starting values using Runge-Kutta method.) 

Step 3 Set KI = hf(ti-J, Wi-I); 
K2 = hf(ti-J + h/2, Wi-l + KJ/2); 
K3 = hl(ti-I + h/2, Wi-l + Kz/2); 

K4 = h/(ti-I + h, Wi-I + K3). 

Step 4 Set Wi = Wi-I + (KI + 2K2 + 2K3 + K 4)/6; 
ti = a + ih. 

Step 5 OUTPUT (ti. Wi). 

Step 6 For i = 4, ... , N do Steps 7-10. 

Step 7 Set t = a + ih; 
W = W3 + h[55f(t3, W3) - 59 f(t2, W2) + 37 I(tl, WI) 

- 9/(to, wo)1/24; (Predict Wi.) 
W = W3 + h[9f(t, w) + 19f(t3, W3) - 5/(t2, W2) 

+ f(tl, wdl/24. (Correct Wi.) 

Step 8 OUTPUT (t, w). 

-, 
. 

r 
, 
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Step 9 For j = 0, I, 2 
settj = tj+l; (Prepare for next iteration.) 

Wj = Wj+l. 

Step 70 Set t3 = t; 

W3 = W. 

Step 11 STOP. 

Table 5.12 lists the results obtained by using Algorithm 5.4 for the initial-value problem 

y'=y_t2 +1, 0<t::;2, y(O) =0.5, 

• 

with N = 10. The results here are more accurate than those in Example 4, which used only 
the corrector (that is, the implicit Adams-Moulton method), but this is not always the case . 

• 
Error 

ti Yi = yeti) W· , IYi - w;I 

0.0 0.5000000 0.5000000 0 
0.2 0.8292986 0.8292933 0.0000053 
0.4 1.2140877 1.2140762 0.0000114 
0.6 1.6489406 1.6489220 0.0000186 
0.8 2.1272295 2.1272056 0.0000239 
1.0 2.6408591 2.6408286 0.0000305 
1.2 3.1799415 3.1799026 0.0000389 
1.4 3.7324000 3.7323505 0.0000495 
1.6 4.2834838 4.2834208 0.0000630 

1.8 4.8151763 4.8150964 0.0000799 
2.0 5.3054720 5.3053707 0.0001013 

Other multistep methods can be derived using integration of interpolating polynomials 
over intervals of the form [tj, ti+Il, for j < i-I, to obtain an approximation to yCtHI)' 

When an interpolating polynomial is integrated over [ti-3, ti+Il, the result is the explicit 
Milne's method: 

which has local truncation error !~h4y(5)(~i)' for some ~i E (ti-3, ti+I). 

This method is occasionally used as a predictor for the implicit Simpson's method, 

h 
Wi+1 = Wi-I + 3 [f(ti+1 , wi+d + 4f(ti, Wi) + f(ti-I, Wi-I)], 

which has local truncation error _(h4/90)y(5)(~i)' for some ~i E (ti-I, ti+I), and is ob
tained by integrating an interpolating polynomial over [ti-I, ti+11. 
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The local truncation error involved with a predictor-corrector method of the Milne
Simpson type is generally smaller than that of the Adams-Bashforth-Moulton method. But 
the technique has limited use because of roundoff error problems, which do not occur with 
the Adams procedure. Elaboration on this difficulty is given in Section 5.10. 

E X ERe I S ESE T 5.6 

1. Use all the Adams-Bashforth methods to approximate the solutions to the following initial
value problems. In each case use exact starting values, and compare the results to the actual 
values. 

a. y' = te31 
- 2y, 0 < t < 1, yeO) = 0, with h = 0.2; actual solution y(t) = 

!te31 _ .I.e31 + .I.e- 2t 
5 25 25 . 

b. y' = 1+(t-y)2, 2 <t::::: 3, y(2) = 1, withh =0.2; actualsolutiony(t) = t+ 1
1
,. 

c. y' = 1 + y/t, 1 < t < 2, y(l) = 2, with h = 0.2; actual solution y(t) = tin t +2t. 

d. y' = cos 2t + sin 3t, 0 < t < 1, yeO) = 1, with h = 0.2; actual solution 

yet) = ! sin2t - ~ cos3t + l' 
2. Use all the Adams-Moulton methods to approximate the solutions to the Exercises I(a), l(c), 

and led). In each case use exact starting values, and explicitly solve for Wi+!. Compare the 
results to the actual values. 

3. Use each of the Adams-Bashforth methods to approximate the solutions to the following 
initial-value problems. In each case use starting values obtained from the Runge-Kutta method 
of order four. Compare the results to the actual values. 

a. y' = y /t -(y /t)2, 1 < t ::::: 2, y(l) = 1, with h = 0.1; actual solution yet) = 1:lnl' 

b. y' = 1 + y/t + (y/t)2, 1::::: t < 3, y(l) = 0, with h = 0.2; actual solution 
yet) = t tan(ln t). 

c. y' = -(y + l)(y + 3), 0 < t ::::: 2, yeO) = -2, with h = 0.1; actual solution 
yet) = -3 + 2/0 + e-2t

). 

d. y' = -5y + 5t2 + 2t, 0::::: t < 1, yeO) = 1/3, with h = 0.1; actual solution 

yet) = t2 + te- 51
• 

4. Use Algorithm 5.4 to approximate the solutions to the initial-value problems in Exercise 1. 

5. Use Algorithm 5.4 to approximate the solutions to the initial-value problems in Exercise 3. 

6. Change Algorithm 5.4 so that the corrector can be iterated for a given number p iterations. 
Repeat Exercise 5 with p = 2, 3, and 4 iterations. Which choice of p gives the best answer 
for each initial-value problem? 

7. The initial-value problem 

y' = eY , 0 < t < 0.20, yeO) = 1 

has solution 

yet) = 1 -lnO - et) . 
. 

Applying the three-step Adams-Moulton method to this problem is equivalent to finding the 
fixed point Wi+! of 
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a. With h = 0.01, obtain Wi+1 by functional iteration for i = 2, ... ,19 using exact starting 
values wo, WI, and W2. At each step use Wi to initially approximate Wi+l. 

b. Will Newton's method speed the convergence over functional iteration? 

8. Use the Milne-Simpson Predictor-Corrector method to approximate the solutions to the initial
value problems in Exercise 3. 

9. a. Derive Eq. (S.32) by using the Lagrange form of the interpolating polynomial. 

b. Derive Eq. (S.34) by using Newton's backward-difference form ofth~ interpolating poly
nomial. 

10. Derive Eq. (S.33) by the following method. Set 

y(ti+l) = yeti) + ahf(ti, yeti)~ + bhf(ti-I, y(ti-I» + chf(ti-2' y(ti-2». 

Expand y(ti+d, f(t;-2, y(ti-2», and f(ti-I, y(ti-l» in Taylor series about (Ii, y(t;) , and 
equate the coefficients of h, h2 and h3 to obtain a, b, and c. 

11. Derive Eq. (S.36) and its local truncation error by using an appropriate form of an interpolating 
polynomial. 

12. Derive Simpson's method by applying Simpson's rule to the integral 

f(t, yet»~ dt. 

13. Derive Milne's method by applying the open Newton-Cotes formula (4.29) to the integral 

14. Verify the entries in Table S.lO. 

5.7 Variable Step-Size Multistep Methods 

The Runge-Kutta-Fehlberg method is used for error control because at each step it pro

vides, at little additional cost, two approximations that can be compared and related to 
the local error. Predictor-corrector techniques always generate two approximations at each 
step, so they are natural candidates for error-control adaptation. 

To demonstrate the error-control procedure, we will construct a variable step-size 
predictor-corrector method using the four-step explicit Adams-Bashforth method as pre
dictor and the three-step implicit Adams-Moulton method as corrector. 

The Adams-Bashforth four-step method comes from the relation 

h 
y(ti+l) = yeti) + 24 [55/(ti, y(t;» - 59/(ti-l, y(ti-I» 

251 (5) A 5 + 37/(ti-2, y(ti-2» - 9/(ti-3, y(ti-3))] + no Y (f-ti)h, 

for some {li E (ti-3, ti+d. The assumption that the approximations wo, WI, ... , Wi are all 
exact implies that the Adams-Bashforth truncation error is 

(5.39) 
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A similar analysis of the Adams-Moulton three-step method, which comes from 

h 
y(ti+r) = YCti) + 24 [9jCtHI, y(tHI» + 19/(ti, yeti»~ - 5/(ti-l, y(ti-I» 

19 (5) - 4 + 1 (ti -2, Y (ti -2))] - 720 y (f.Li)h, 

for some iii E (ti-2, ti+1), leads to the local truncation error 

(5.40) 

To proceed further, we must make the assumption that for small values of h, 

The effectiveness of the error-control technique depends directly on this assumption. 
If we subtract Eq. (5.40) from Eq. (5.39), we have 

so 

(5) - ~ 8 (0) 
y (f.Li) '" 3h5 (Wi+1 - Wi+1)· (5.41) 

Using this result to eliminate the term involving h4y(5)(iii) from (5.40) gives the ap
proximation to the Adams-Moulton local truncation error 

Suppose we now reconsider (5.40) with a new step size qh generating new approxi
mations wi~1 and Wi+l. The object is to choose q so that the local truncation error given in 
(5.40) is bounded by a prescribed tolerance c. If we assume that the value y<5) (f.L) in (5.40) 
associated with qh is also approximated using (5.41), then 

Iy(ti + qh) - Wi+11 

qh 
--

and we need to choose q so that 

That is, we choose q so that 

270 he 
q< 

19 IWi+1 - Wi~11 
::::::2 

he 
1/4 1/4 

• 
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A number of approximation assumptions have been made in this d~velopment, so in 
practice q is chosen conservatively, usually as 

q = 1.5 
hs 

(0) I IWi+! - Wi+1 

1/4 

• 

A change in step size for a multistep method is more costly in tenllS of function evalu
ations than for a one-step method, since new, equally-spaced starting values must be com
puted. As a consequence, it is common practice to ignore the step-size change whenever 
the local truncation error is between e / 10 and e, that is, when 

(0) 
e < Ir. (h)1 _ ly(ti+l) - Wi+11 ~ 191 Wi+1 - wi+11 
10 .+1 - h 270h < e. 

In addition, q is given an upper bound to ensure that a single unusually accurate approx
imation does not result in too large a step size. Algorithm 5.5 incorporates this safeguard 
with an upper bound of 4. 

Remember that since the multistep methods require equal step sizes for the starting 
values, any change in step size necessitates recalculating new starting values at that point. 
In Algorithm 5.5 this is done by calling a Runge-Kutta subalgorithm (Algorithm 5.2). 

Adams Variable Step-Size Predictor-Corrector 

To approximate the solution of the initial-value problem 

y'=j(t,y), a<t<b, y(a)=a 

with local truncation error within a given tolerance: 

INPUT endpoints a, b; initial condition a; tolerance TOL; maximum step size hmax; 
minimum step size hmin. 

OUTPUT i, ti, Wi, h where at the ith step Wi approximates y(ti) and the step size h was 
used, or a message that the minimum step size was exceeded. 

Step 1 Set up a subalgorithrn for the Runge-Kutta fourth-order method to be called 
RK4(h, Vo, Xo, VI, XI, V2, X2, V3,X3) that accepts as input a step sizeh and 
starting values Vo ~ Y (xo) and returns {(x j, V j) I j = I, 2, 3} defined by the 
following: 

for j = 1,2,3 
set KI = hj(xj_l, Vj_I); 

K2 = hj(xj_1 + h/2, Vj_1 + Kd2) 
K3 = hj(xj_1 + h/2, Vj_1 + K2/2) 
K4 = hj(xj_1 + h, Vj_1 + K 3) 
Vj = Vj_1 + (KI + 2K2 + 2K3 + K 4)/6; 
Xj = Xo + jh. 

Step 2 Set to = a; 
Wo = a; 
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h = hmax; 
FLAG = 1; (FLAG will be used to exit the loop in Step 4.) 
LAST = 0; (LAST will indicate when the last value is calculated.) 

OUTPUT (to, wo)· 

Step 3 Call RK4(h, wo, to, WI, tl. W2, t2, W3. t3); 
Set NFLAG = 1; (Indicates computation from R K 4.) 

i = 4; 
t = t3 + h. 

Step 4 While (FLAG = 1) do Steps 5-20. 

Step 5 
h 

Set W P = Wi-I + 24 [55/(ti-!, Wi-!) - 59/(ti-2, Wi-2) 

+ 37/(ti-3, Wi-3) - 9/(ti-4, Wi-4)]; (Predict Wi.) 

h 
WC = Wi-! + 24 [9/(t, W P) + 19/(ti_l, Wi-I) 

- 5/(ti-2, Wi-2) + /(ti-3, Wi-3)]; (Correct Wi.) 

a = 191WC - W PI/(270h). 

Step 6 If a :::: TOL then do Steps 7-16 (Result accepted.) 
else do Steps 17-19. (Result rejected.) 

Step 7 Set Wi = WC; (Result accepted.) 

ti = t. 

Step 8 If NFLAG = 1 then for j = i - 3, i - 2, i-I, i 
OUTPUT (j, tj, Wj, h); 
(Previous results also accepted.) 

else OUTPUT (i, ti, Wi, h). 
(Previous results already accepted.) 

Step 9 If LAST = 1 then set FLAG = 0 (Next step is 20.) 
else do Steps 10-16. 

Step 10 Set i = i + 1; 
NFLAG = O. 

Step 11 If a :::: 0.1 TOL or ti-I + h > b then do Steps 12-16. 
(Increase h if it is more accurate than required or decrease h to 

include b as a mesh point.) 

Step 12 Set q = (TOL/(2a»1/4. 

Step 13 If q > 4 then set h = 4h 
else set h = qh. 

Step 14 If h > hmax then set h = hmax. 

Step 15 If ti-I + 4h > b then 
set h = (b - ti-d/4; 

LAST = 1. 
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Step 16 Call RK4(h, Wi-I, ti-I, Wi, ti, Wi+l, ti+l, Wi+2. ti+2); 

Set NFLAG = 1; 
i = i + 3. (True branch completed. Next step is 20.) 

Step 17 Set q = (TOLj(2a» 1/4. (False branch from Step 6: Result rejected.) 

Step 18 lfq < 0.1 then set h = O.lh 
else set h = qh. 

Step 19 If h < hmin then set FLAG = 0; 
OUTPUT ('hmin exceeded') 

else 
if NFIAG = 1 then set i = i - 3; 
(Previous results also rejected.) 
Can RK4(h, Wi-I, ti-I, Wi, ti, Wi+I, ti+l, Wi+2. ti+2); 

set i = i + 3; 
NFIAG = 1. 

Step 20 Sett = ti-I + h. 

Step 21 STOP. • 
Table 5.13 lists the results obtained using Algorithm 5.5 to find approximations to the 
solution of the initial-value problem 

I 2 1 y=y-t+, o :s t < 2, yeO) = 0.5, 

Ii y(ti) Wi hi (Ji Iy(t,) - wjl 

0 0.5 0.5 
0.1257017 0.7002323 0.7002318 0.1257017 4.051 x 10-6 0.0000005 
0.2514033 0.9230960 0.9230949 0.1257017 4.051 x 10-6 0.0000011 
0.3771050 1.1673894 1.1673877 0.1257017 4.051 x 10-6 0.0000017 
0.5028066 1.4317502 1.4317480 0.1257017 4.051 x 10-6 0.0000022 
0.6285083 1.7146334 1.7146306 0.1257017 4.610 x 10-6 0.0000028 
0.7542100 2.0142869 2.0142834 0.1257017 5.210 x 10-6 0.0000035 
0.8799116 2.3287244 2.3287200 0.l257017 5.913 x 10-6 0.0000043 
1.0056133 2.6556930 2.6556877 0.1257017 6.706 x 10-6 0.0000054 
1.1313149 2.9926385 2.9926319 0.1257017 7.604 x 10-6 0.0000066 
1.2570166 3.3366642 3.3366562 0.1257017 8.622 x 10-6 0.0000080 
1.3827183 3.6844857 3.6844761 0.l257017 9.777 x 10-6 0.0000097 

.1.4857283 3.9697541 3.9697433 0.1030100 7.029 x 10-6 0.0000108 
1.5887383 4.2527830 4.2527711 0.1030100 7.029 x 10 .. 6 0.0000120 
1.6917483 4.5310269 4.5310137 0.1030100 7.029 x 10-6 0.0000133 
1.7947583 4.8016639 4.8016488 0.1030100 7.029 x 10-6 0.0000151 
1.8977683 5.0615660 5.0615488 0.1030100 7.760 x 10-6 0.0000172 
1.9233262 5.1239941 5.1239764 0.0255579 3.918 x 10-8 0.0000177 
1.9488841 5.1854932 5.1854751 0.0255579 3.918 x lO-R 0.0000181 
1.9744421 5.2460056 5.2459870 0.0255579 3.918 x 10-8 0.0000186 
2.0000000 5.3054720 5.3054529 0.0255579 3.918 x 10-8 0.0000191 
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which has solution y(t) = (t + 1)2 - 0.5et • Included in the input is the tolerance TOL = 
10-5 , maximum step size hmax = 0.25, and minimum step size hmin = 0.01. • 

E X ERe I S ESE T 5.7 

1. 

2. 

3. 

4. 

5. 

Use the Adams Variable Step-Size Predictor-Corrector Algorithm with tolerance TOL = 10-4 , 

hmax = 0.25, and hmin = 0.025 to approximate the solutions to the given initial-value 
problems. Compare the results to the actual values. 

a. y' = te31 -2y, 0:::: t :::: 1, yeO) = 0; actual solution yet) = ~te31 - 21se31 + ise-2t. 

b. y' = 1 + (t - y)2, 2 < t < 3, y(2) = 1; actual solution yet) = t + 1/(1 - t). 

c. y' = 1 + y/t, 1 <t < 2, y(l) = 2; actual solution yet) = tint + 2t. 

d. y' = cos2t+sin3t, 0 <t< 1, yeO) = 1; actual solution yet) = ~ sin 2t -
1 3 4 
3 cos t + 3' 

Use the Adams Variable Step-Size Predictor-Corrector Algorithm with TOL = 10-4 to ap
proximate the solutions to the following initial-value problems: 

a. y' = (y/t)2 + y/t, 1 < t < 1.2, y(1) = 1, with hmax = 0.05 and hmin = 0.01. 

b. y' = sin t + e-t
, 0 < t < 1, yeO) = 0, with hmax = 0.2 and hmin = 0.01. 

c. y' = (1/t)(y2 + y), 1 < t :::: 3, y(1) = -2, with hmax = 0.4 and hmin = 0.01. 

d. y' = -ty + 4t/y, 0 < t < 1, y(O) = 1, with hmax = 0.2 and hmin = 0.01. 

Use the Adams Variable Step-Size Predictor-Corrector Algorithm with tolerance TOL = 10-6 , 

hmax = 0.5, and hmin = 0.02 to approximate the solutions to the given initial-value prob
lems. Compare the results to the actual values. 

B. y' = y/t - (y/t)2, 1:::: t :::: 4, y(1) = 1; actual solution y(t) = t/(1 + Int). 

b. y' = 1 + y/t + (y/t)2, 1 <t:::: 3, y(l) = 0; actual solution yet) = t tan (In t). 

c. y' = -(y + 1)(y + 3), 0 < t < 3, yeO) = -2; actual solution y(t) = -3 + 2(1 + 
-21)-1 e . 

d. y' = (t + 2t3)y3 - ty, 0:::: t < 2, yeO) = t; actual solution yet) = (3 + 2t2 + 
6e12) -1/2. 

Construct an Adams Variable Step-Size Predictor-Corrector Algorithm based on the Adams
Bashforth five-step method and the Adams-Moulton four-step method. Repeat Exercise 3 us
ing this new method. 

An electrical circuit consists of a capacitor of constant capacitance C = 1.1 farads in series 
with a resistor of constant resistance Ro = 2.1 ohms. A voltage 8 (t) = 110 sin t is applied at 
time t = O. When the resistor heats up, the resistance becomes a function of the current i, 

R(t) = Ro + ki, where k = 0.9, 

and the differential equation for i (I) becomes 

2k 
1+ -i 

Ro 

Find i (2), assuming that i (0) = o. 

di 1 1 de - + i = . 
dt RoC RoC dt 

· • 

-• 
r 
· 

> 
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5.8 Extrapolation Methods 

Extrapolation was used in Section 4.5 for the approximation of definite integrals, where 
we found that by correctly averaging relatively inaccurate trapezoidal approximations we 
could produce new approximations that are exceedingly accurate. In this section we will 
apply extrapolation to increase the accuracy of approximations to the solution of initial
value problems. As we have previously seen, the original approximations must have an 
error expansion of a specific form for the procedure to be successful. 

To apply extrapolation to solve initial-value problems, we use a technique based on 
the Midpoint method: 

WHI = Wi-I +2hj(ti, Wi), fori > 1. (5.42) 

This technique requires two starting values since both Wo and WI are needed before the 
first midpoint approximation, W2, can be determined. As usual, one is the initial condition 
for Wo = yea) = a. To detellnine the second starting value, WI, we apply Euler's method. 
Subsequent approximations are obtained from (5.42). After a series of approximations of 
this type are generated ending at a value t, an endpoint correction is perf 011 ned that involves 
the final two midpoint approximations. This produces an approximation W (t , h) to y (t) that 
has the form 

00 

yet) = w(t, h) + L okh
2k

, (5.43) 
k=1 

where the Ok are constants related to the derivatives of the solution y(t). The important 
point is that the lh do not depend on the step size h. The details of this procedure can be 
found in the paper by Gragg [GrJ. 

To illustrate the extrapolation technique for solving 

y'(t) = Jet, y), a < t < b, yea) = a, 

let us assume that we have a fixed step size h and that we wish to approximate y(tl) -
yea + h). 

For the first extrapolation step we let ho = hj2 and use Euler's method with Wo = a 
to approximate yea + ho) = yea + hj2) as 

WI = Wo + hoj(a, wo). 

We then apply the Midpoint method with ti-I = a and ti = a + ho = a + hj2 to produce 
a first approximation to yea + h) = yea + 2ho), 

W2 = Wo + 2hoj(a + ho, WI). 

The endpoint correction is applied to obtain the final approximation to yea + h) for the 
step size ho. This results in the O(h5) approximation to y(tl) 

We save the approximation YI.l and discard the intermediate results WI and W2. 
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To obtain the next approximation, Y2,1, to y(tl), we let hI = h/4 and use Euler's 
method with Wo = ex to obtain an approximation to yea + hd = yea + h/4) that we will 
call WI: 

WI = Wo + hI/(a, wo)· 

Next we produce approximations W2 to yea + 2hl ) = yea + h/2) and W3 to yea + 
3h l ) = yea + 3h/4) given by 

Wz = Wo + 2hI/(a + hJ, wd and W3 = Wt + 2hI/(a + 2h t , W2)· 

Then we produce the approximation W4 to yea + 4h l ) = y(tl) given by 

W4 = Wz + 2ht/(a + 3h l , W3)· 

The endpoint correction is now applied to W3 and W4 to produce the improved O(hi) 
approximation to y(tt), 

I 
Y2,] = 2 [W4 + W3 + hd(a + 4ht , W4)]. 

Because of the form of the error given in (5.43), the two approximations to yea + h) 
have the property that 

yea + h) = Y],] + ~\ 
2 

and 

y(a+h)=yz,]+~\ 
4 

We can eliminate the O(hz) portion of this truncation error by averaging these two fOlmu
las appropriately. Specifically, if we subtract the first formula from 4 times the second and 
divide the result by 3, we have 

1 h4 
yea + h) = Yz,] + 3'(Y2.1 - Y\,I) - 8264 + .... 

So the approximation 

1 
Y2,2 = Y2,1 + 3'(Y2.1 - Yl.1) 

has error of order O(h4
). 

Continuing in this manner, we next let h2 = h/6 and apply Euler's method once 
followed by the Midpoint method five times. Then we use the endpoint correction to de
tennine the h2 approximation, Y3,1, to yea + h). This approximation can be averaged with 
Y2,\ to produce a second O(h4) approximation that we denote Y3,2. Then Y3.Z and Y2,2 are 
averaged to eliminate the 0 (h4) error· terms and produce an approximation with error of 
order O(h6). Higher-order formulas are generated by continuing the process. 

The only significant difference between the extrapolation performed here and that used 
for Romberg integration in Section 4.5 results from the way the subdivisions are chosen. In 
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Romberg integration there is a convenient fOImula for representing the Composite Trape
zoidal rule approximations that uses consecutive divisions of the step size by the integers 
1, 2, 4, 8, 16, 32, 64, . .. This procedure pelmits the averaging process to proceed 'in an 
easily followed manner. 

We do not have a means for easily producing refined approximations for initial-value 
problems, so the divisions for the extrapolation technique are chosen to minimize the num
ber of required function evaluations. The averaging procedure arising from this choice of 
subdivision, shown in Table 5.14, is not as elementary, but, other than that, the process is 
the same as that used for Romberg integration. 

hi = wet, ho) 

Y3,1 = wet, h z) 

hZ 

Yz,z = Y2,1 + h2 ~ hZ (YZ,I - Yl,l) 
o I 

h2 

Y3,2 = Y3,1 + h2 ~ h2 (Y3,1 - YZ,I) 
I Z 

Algorithm 5.6 uses the extrapolation technique with the sequence of integers 

qo = 2, ql = 4, q2 = 6, q3 = 8, q4 = 12, qs = 16, q6 = 24, and q7 = 32. 

A basic step size h is selected, and the method progresses by using hi = hjqi, for each 
, 

i = 0, . . . , 7, to approximate y (t + h). The error is controlled by requiring that the approx-
imations YI,I, Y2,2, ... be computed untillYi,i - Yi-I,i-II is less than a given tolerance. If 
the tolerance is not achieved by i = 8, then h is reduced, and the process is reapplied. Min
imum and maximum values of h, hmin, and hmax, respectively, are specified to ensure 
control of the method. If Yi.i is found to be acceptable, then WI is set to Yi,i and computa
tions begin again to determine W2, which will approximate y(t2) = yea + 2h). The process 
is repeated until the approximation WN to y(b) is determined. 

Extrapolation 

To approximate the solution of the initial-value problem 

y'=f(t,y), a<t<b, y(a)=a, 

with local truncation error within a given tolerance: 

INPUT endpoints a, b; initial condition a; tolerance TOL; maximum step size hmax; 
minimum step size hmin. 

OUTPUT T, W, h where W approximates y(t) and step size h was used, or a message 
that minimum step size was exceeded. 

Step 1 Initialize the array N K = (2,4,6,8,12, 16,24,32). 

Step 2 Set TO = a; 
WO =a; 
h = hmax; 
FLAG = 1. (FLAG is used to exit the loop in Step 4.) 
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Step 3 For i = 1, 2, ... , 7 
for j = 1, ... , i 

set Qi,j = (NKi+l/NKY· (Note: Qi,j = h7/h~+I') 

Step 4 While (FLAG = 1) do Steps 5-20. 

Step 5 Set k = 1; ,-
NFLAG = O. (When desired accuracy is achieved, NFLAG is 

setto 1.) 

Step 6 While (k < 8 and NFLAG = 0) do Steps 7-14. 

Step 7 Set HK = h/NKk; 
T = TO; 
W2 = WO; 
W3 = W2 + H K . J(T, W2); (Euler'sfirst step.) 

T=TO+HK. 

Step 8 For j = 1, ... , N Kk - 1 
set WI = W2; 

W2 = W3; 
W3 = WI + 2H K . J(T, W2); (Midpoint method.) 
T=TO+(j+1).HK. 

Step 9 Set Yk = [W3 + W2 + H K . J(T, W3)]j2. 
(End-point correction to compute Yk, I') 

Step 10 If k ~ 2 then do Steps 11-13. 
(Note: Yk-I == Yk-I,I, Yk-2 == Yk-2,2, ... , YI == Yk-I,k-I since only 
the previous row oJthe table is saved.) 

Step 11 Set j = k; 
v = YI. (Save Yk-I ,k-I .) 

Step 12 While (j ::: 2) do 

Yj - Yj-l . 
set Yj-I = Yj + Q 1 ' 

k-I,j-I -

(Extrapolation to compute Yj-l = Yk,k-j+2') 

h]_IYi - hiYi-1 
Note: Yj-l = h2 _ h2 . 

j-I k 

j=j-1. 

Step 13 If IYI - vi ::: TOL then set NFLAG = 1. 
(YI is accepted as the new w.) 

Step 14 Set k = k + 1. 

Step 15 Setk = k - 1. 

Step 16 If NFLAG = 0 then do Steps 17 and 18 (Result rejected.) 
else do Steps 19 and 20. (Result accepted.) 
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Thble 5.15 

Yu =0.9187011719 
hI = 0.9200379848 
hI = 0.9202873689 
Y4.1 = 0.9203747896 
YS.I = 0.9204372763 

Thble 5.16 
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Step 17 Set h = hj2. (New value/or W rejected, decrease h.) 

Step 18 If h < hmin then 
OUTPUT ('hmin exceeded'); 
Set FLAG = O. 

311 

(True branch completed, next step is back to Step 4.) 

Step 19 Set W 0 = YI; (New value for w accepted.) 
TO = TO +h; 

OUTPUT (TO, WO, h). 

Step 20 If TO;:: b then set FLAG = 0 
(Procedure completed successfully.) 

Step 21 STOP. 

else if TO + h > b then set h = b - TO 
(Tenninate at t = b.) 
else if (k < 3 and h < 0.5(hmax) then set h = 2h. 
(Increase step size if possible.) 

Consider the initial-value problem 

y' = y - t 2 + 1, 0 < t < 2, yeO) = 0.5, 

• 

which has the solution y(t) = (t+ 1)2-0.5et
. The Extrapolation Algorithm will be applied 

to this problem with h = 0.25, TOL = 10-10, hmax = 0.25, and hmin = 0.01. Table 
5.15 is obtained in the computation of WI. • 

The computations stopped with WI = Y5,5 because IY5,5 - Y4,41 < 10-10 and YS.5 is 
accepted as the approximation to yeti) = y(0.25). The complete set of approximations 
accurate to the places listed is given in Table 5.16. 

Y2,2 = 0.9204835892 
Y3,2 = 0.9204868761 
Y4,2 = 0.9204871876 
YS,2 = 0.9204872656 

ti Yi = yeti) 

0.25 0.9204872917 
0.50 1.4256393646 
0.75 2.0039999917 
1.00 2.6408590858 
1.25 3.3173285213 
1.50 4.0091554648 
1.75 4.6851986620 
2.00 5.3054719505 

Y3,3 = 0.9204872870 
Y4,3 = 0.9204872914 
YS,3 = 0.9204872916 

Wi 

0.9204872917 
1.4256393646 
2.0039999917 
2.6408590858 
3.3173285212 
4.0091554648 
4.6851986619 
5.3054719505 

Y4,4 = 0.9204872917 
YS,4 = 0.9204872917 

hi k 

0.25 5 
0.25 5 
0.25 5 
0.25 5 
0.25 4 
0.25 3 
0.25 3 
0.25 3 

YS,5 = 0.9204872917 
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The proof that the method presented in Algorithm 5.6 converges involves results from 

summability theory; it can be found in the original paper of Gragg [Gr]. A number of other 
extrapolation procedures are available, some of which use the variable step-size techniques. 

For additional procedures based on the extrapolation process, see the Bulirsch and Stoer 
papers [BS 1], [BS2], [BS3] or the text by Stetter [Stet]. The methods used by Bulirsch and 

Stoer involve interpolation with rational functions instead of the polynomial interpolation 
used in the Gragg procedure. 

E X ERe I S ESE T 5.8 
1. Use the Extrapolation Algorithm with tolerance TOL = 10-4

, hmax = 0.25, and hmin = 
0.05 to approximate the solutions to the following initial-value problems. Compare the results 
to the actual values. 

a. y' = te31 
- 2y, 0 < t < I, yeO) = 0; actual solution yet) = ~ te3t 

- 2~ e3t + 2~ e-2t . 

b. y' = 1+ (t - y)2, 2 < t < 3, y(2) = 1; actual solution yet) = t + 1/(1 - t). 

c. y'= l+y/t, 1 <t <2, y(I)=2; actualsolutiony(t)=tlnt+2t. 

d. y' = cos2t + sin3t, 0 < t < 1, yeO) = 1; actual solution yet) = ~ sin2t-
13 4 
3COS t+ 3 • 

2. Use the Extrapolation Algorithm with TOL = 10-4 to approximate the solutions to the follow
ing initial-value problems: 

a. y' = (y/t)2 + y/t, 1 < t < 1.2, y(l) = 1, with hmax = 0.05 and hmin = 0.02. 

b. y' = sin t + e-t , 0 < t < 1, yeO) = 0, with hmax = 0.25 and hmin = 0.02. 

c. y' = (l/t)(y2 + y), 1 < t < 3, yO) = -2, with hmax = 0.5 and hmin = 0.02. 

d. y' = -ty + 4t /y, 0 < t < 1, yeO) = 1, with hmax = 0.25 and hmin = 0.02. 

3. Use the Extrapolation Algorithm with tolerance TOL = 10-6
, hmax = 0.5, and hmin = 0.05 

to approximate the solutions to the following initial-value problems. Compare the results to 
the actual values. 

a. y' = y/t - (y/t)2, 1 <t < 4, y(l) = 1; actual solution yet) = t/(1 + Int). 

b. y' = 1 + y/t + (y/t)2, 1 <t< 3, y(l) = 0; actual solution yet) = ttan(lnt). 

c. y' = -(y + 1)(y + 3), 0 < t < 3, yeO) = -2; actual solution yet) = -3 + 2(1 + 
-21)-1 e . 

d. y' = (t + 2t3)y3 - ty, 0 < t :::: 2, yeO) = !; actual solution yet) = (3 + 2t2 + 
6e,2) -1/2. 

4. Let pet) be the number of individuals in a population at time t, measured in years. If the 
average birth rate b is constant and the average death rate d is proportional to the size of 
the population (due to overcrowding), then the growth rate of the population is given by the 
logistic equation 

dP(t) = bP(t) _ k[p(t)]2, 
dt 

where d = kP(t). Suppose P(O) = 50,976, b = 2.9 X 10-2
, and k = 1.4 X 10-7

. Find the 
population after 5 years. 
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5.9 Higher-Order Equations and Systems 
of Differential Equations 

313 

This section contains an introduction to the numerical solution of higher-order initial-value 
problems. The techniques discussed are limited to those that transform a higher-order equa
tion into a system of first-order differential equations. Before discussing the transformation 
procedure, some remarks are needed concerning systems that involve first-order differen
tial equations. 

An mth-order system of first-order initial-value problems has the form 

dUl 
- = fl(t, Ul, Uz,···, um), 
dt 

dU2 
---=. = f2 (t, U 1, U z, ... , U m), 
dt 

dUm 

dt 

• 
• 
• 

for a ::::: t < b, with the initial conditions 

(5.44) 

(5.45) 

The object is to find m functions Ul, U2, ... , Um that satisfy each of the differential equa
tions together with all the initial conditions. 

To discuss existence and uniqueness of solutions to systems of equations, we need to 
extend the definition of the Lipschitz condition to functions of several variables. 

Definition 5.16 The function f(t, Yl, ... , Ym), defined on the set 

D = { (t, Ul, ... , um) I a < t < b, -00 < Ui < 00, for each i = 1,2, ... , m} 

is said to satisfy a Lipschitz condition on D in the variables U 1, Uz, ... , Urn if a constant 
L > 0 exists with 

m 

If (t, U 1, . . . , U m) - f (t , Z 1, . . . , Zm) I < L L I U j - Z j I , 
j=1 

for all (t, U1, ... , Um) and (t, Zl, ... , Zm) in D. 

(5.46) 

• 
By using the Mean Value Theorem, it can be shown that if f and its first partial deriva

tives are continuous on D and if 

af(t, U1,··· , um) 
<L a - , 

Ui 

for each i = 1, 2, ... , m and all (t, U 1, ... , um) in D, then f satisfies a Lipschitz condition 
on D with Lipschitz constant L (see [BiR, p. 141]). A basic existence and uniqueness 
theorem follows. Its proof can be found in (BiR, pp. 152-154]. 
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Suppose 

D = l (t, UI, Uz, ... ,urn) I a < t < b, -00 < Ui < 00, for each i = 1,2, .. , ,m}, 

and let fi(t, UI, .,. ,Urn), for each i = 1,2, ... ,m, be continuous on D and satisfy a 
Lipschitz condition there. The system of first-order differential equations (5.44), subject to 
the initial conditions (5.45), has a unique solution UI (t), ... ,Um (t), for a < t < b. • 

Methods to solve systems of first-order differential equations are generalizations of 
the methods for a single first-order equation presented earlier in this chapter. For example, 
the classical Runge-Kutta method of order four given by 

Wo = a, 

kl =hl(tj,Wi), 

h 1 
t· + - w- + -kl 

I 2' I 2 ' k2 = hi 

h 1 
t- + - w- + -kz 

I 2' I 2 ' 

and 

1 
Wj+l = Wi + 6(k l + 2k2 + 2k3 + k4 ), for each i = 0,1, ... , N - 1, 

used to solve the first-order initial-value problem 

y' = f(t, y), a::: t :::: b, yea) = a, 

is generalized as follows. 
Let an integer N > ° be chosen and set h = (b - a)j N. Partition the interval [a, b] 

into N subintervals with the mesh points 

t) = a + j h , for each j = 0, 1, ... , N. 

Use the notation Wi), for each j = 0, 1, ... , N and i = 1, 2, ... ,m, to denote an 
approximation to Uj (tj). That is, Wij approximates the ith solution Uj (t) of (5.44) at the 
jth mesh point tj. For the initial conditions, set (see Figure 5.5) 

WI,O = ai, wz,o = az, ... , wm,o = am· (5.47) 

Suppose that the values WI,}, WZ,j, ..• ,Wm,j have been computed. We obtain W1.j+I, 

W2,j+l, ... , Wm,j+l by first calculating 

kI,i = hI; (t), WI,}, W2,j, ... , Wm,j), for each i = 1,2, ... , m; (5.48) 

k2.i = hI; (5.49) 
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Y Y Y 

WI1 • W23 uz(t) Wm3 
W12 W22 Wm2 
W13 • 

" u1(a) = ct1 
UI (t) W21 li/m1 • 

" u2(a) = ct2 

for each i = 1, 2, ... ,m; 

for each i = 1, 2, ... ,m; 

k4.i = hfi(tj + h, WI,j + k 3.1, W2,j + k3,2,"" Wm,j + k 3.m), 

for each i = 1,2, .. , ,m; and then 

1 
W· '+1 = W·· + -(k l · +2k2 · +2k3 +k4 ·) I,) I,} 6 ,I ,I ,I ,I , 
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um(t) 

(5.50) 

(5.51) 

(5.52) 

for each i = 1, 2, ... , m. Note that all the values kl,l' k l ,2, ... , kl,m must be computed be
fore any of the terms of the fonn k2,i can be detenuined. In general, each k/, I , k/, 2, ... , k/,m 

must be computed before any of the expressions k/+ 1,i' Algorithm 5.7 implements the 
Runge-Kutta fourth-order method for systems of initial-value problems. 

Runge-Kutta Method for Systems of Differential Equations 

To approximate the solution of the mth-order system of first-order initial-value problems 

U~=h(t,UI,U2, ... ,Um), a<t<b, with uj(a)=ctj, 

for j = 1,2, ... ,m at (N + 1) equally spaced numbers in the interval [a, b]: 

INPUT endpoints a, b; number of equations m; integer N; initial conditions aI, ... , am. 

OUTPUT approximations W j to U j (t) at the (N + 1) values of t. 

Step 1 Set h = (b - a)/ N; 
t = a. 

Step 2 For j = 1, 2, ... , m set W j = a j. 

Step 3 OUTPUT (t, WI, W2, ... , wm). 

Step 4 For i = 1, 2, ... , N do steps 5-11. 
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Figure 5.6 
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Step 5 For j = 1, 2, ... , m set 
k l . j = h/j (t, WI, W2, ... , wm). 

Step 6 For j = 1,2, ... ,m set 

k2,j = hf;(t + ~, WI + ~kl,l, W2 + ~kI,2"'" Wm + ikl,m). 

Step 7 For j = I, 2, ' .. , m set 

k3,j = h/j(t + ~,WI + !k2,I, W2 + !k2,2, ... , Wm + !k2,m). 

Step 8 For j = 1, 2, . , . , m set 
k4,j = h/j(t + h, WI + k3,1, W2 + k3,2, ... , Wm + k3,m). 

Step 9 For j = I, 2, . , . , m set 
Wj = Wj + (kl,j + 2k2,j + 2k3•j + k4,j)/6. 

Step 10 Set t = a + ih. 

Step 11 OUTPUT (t, WI, W2, ... , wm). 

Step 12 STOP. • 

Kirchhoff's Law states that the sum of all instantaneous voltage changes around a closed 
circuit is zero. This law implies that the current I (t) in a closed circuit containing a re
sistance of R ohms, a capacitance of C farads, an inductance of L henries, and a voltage 
source of E(t) volts satisfies the equation 

1 
LIf(t) + RI(t) + C I(t) dt = E(t). 

The currents h (t) and lz(t) in the left and right loops, respectively, of the circuit shown in 
Figure 5.6 are the solutions to the system of equations 

211 (t) + 6[/1 (t) - lz(t)] + 21{ (t) = 12, 

1 

0.5 
lz(t) dt + 4lz(t) + 6[I2(t) - II (t)] = O. 

20 0.5 F 

12V - 60 40 

2H 
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Suppose that the switch in the circuit is closed at time t = O. Then h (0) = 0 and 
lz (0) = O. Solve for I{ (t) in the first equation, differentiate the second equation, and 
substitute for I{ (t) to get 

I{ = /J(t, II, /z) = -4h + 3/2 + 6, h(O) = 0, 

I~ = h(t, II, /z) = 0.61{ - 0.2/2 = -2.4/1 + 1.6/z + 3.6, 12(0) = o. 

The exact solution to this system is 

h (t) = -3.375e-2t + 1.875e-OAt + 1.5, 

lz(t) = -2.25e-Zt + 2.25e-OAt
• 

We will apply the Runge-Kutta method of order four to this system with h = 0.1. 
Since WI,O = h (0) = 0 and W2,0 = /z(0) = 0, 

kl,l = h/J (to, WI,O, W2,0) = 0.1 /J (0,0,0) = 0.1[-4(0) + 3(0) + 6] = 0.6, 

k],2 = hh (to, WI,O, W2,0) = 0.1 h (0,0, 0) = 0.1 [-2.4(0) + 1.6(0) + 3.6] = 0.36, 

1 1 1 
to + 2 h, WI,O + Zkl,l, W2,0 + 2kl,2 = 0.1 II (0.05,0.3,0.18) 

= O.l[ -4(0.3) + 3(0.18) + 6J = 0.534, 

1 1 1 
k2,z = hh to + 2 h, WI,O + :ikl,l, Wz,O + 2k1,2 = 0.1 h(0.05, 0.3, 0.18) 

= 0.1[-2.4(0.3) + 1.6(0.18) + 3.6] = 0.3168. 

Generating the remaining entries in a similar manner produces 

and 

k3,1 = (0.1)/1(0.05,0.267,0.1584) = 0.54072, 

k3,2 = (0.1)fz(0.05, 0.267, 0.1584) = 0.321264, 

k4,1 = (O.l)/J (0.1,0.54072,0.321264) = 0.4800912, 

k4,2 = (O.l)fz(O.l, 0.54072, 0.321264) = 0.28162944. 

As a consequence, 

1 
h(O.l) ~ WI,I = Wl,O + 6 (k1,1 +2kz,1 +2k3,1 +k4,1) 

= 0 + ~ [0.6 + 2(0.534) + 2(0.54072) + 0.4800912] = 0.5382552 

and 

I 
/z(0.1) ~ W2,1 = wz,o + 6 (kl,2 + 2k2,2 + 2k3,2 + k4,2) = 0.3196263. 

The remaining entries in Table 5.17 are generated in a similar manner. • 
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t J WI ' .J Wz ' .J III (tj) - wl,jl Ih(t)-wz,1 J .J 

0.0 0 0 0 0 

0.1 0.5382550 0.3196263 0.8285 x 10-5 0.5803 X 10-5 

0.2 0.9684983 0.5687817 0.1514 x 10-4 0.9596 X 10-5 

0.3 1.310717 0.7607328 0.1907 x 10-4 0.1216 X 10-4 

0.4 1.581263 0.9063208 0.2098 x 10-4 0.1311 X 10-4 

0.5 1.793505 1.014402 0.2193 x 10-4 0.1240 X 10-4 

Maple's command dsolve can be used to solve systems of first-order differential 
equations. The system in Example 1 is defined with 

>sys2:=D(ul) (t)=-4*ul(t)+3*u2(t)+6,D(u2) (t)=-2.4*ul(t) +1.6*u2(t)+3.6; 

and the initial conditions with 

>init2:=ul(O)=O,u2(O)=O; 

The system is solved with the command 

>so12:=dsolve({sys2,init2},{ul(t),u2(t)}); 

to obtain 

sol2 := 
3 27 15 9 9 ul(t) = - - e(-2t) + e(-2/5t) u2(t) = __ e(-2t) + _e(-2/5t) 

2 8 8 ' 4 4 

To isolate the solution in function fOIm, use 

>rl:=rhs(so12[2]); 

3 27 15 r 1 := _ _ e(-2t) + (-2/5t) 
2 8 8 e 

and 

>r2:=rhs(so12[1]); 

which gives a similar response. 
To evaluate u\ (0.5) and u2(0.5), use 

>evalf(subs(t=O.5,rl»;evalf(subs(t=O.5,r2); 

to get 1.793527048 and 1.014415451. 
The command dsol ve will fail if an explicit solution cannot be found. In that case we 

can use the numeric option in dsol ve, which applies the Runge-Kutta-Fehlberg technique. 
For example, 

>g:=dsolve({sys2,init2},{ul(t),u2(t)},numeric); 

returns the procedure 

g := proc(rkf45-x) ... end proc 



EXAMPLE 2 

5.9 Higher-Order Equations and Systems of Differential Equations 319 

To approximate the solutions at t = 0.5, enter 

>g(O.5); 

to obtain 

[t = .5, u2(t) =: 1.01441545470291761, u1(t) =: 1.79352705243766586] 

Many important physical problems for example, electrical circuits and vibrating 
systems involve initial-value problems whose equations have orders higher than one. 
New techniques are not required for solving these problems; by relabeling the variables, 
we can reduce a higher-order differential equation into a system of first-order differen
tial equations and then apply one of the methods we have already discussed. A general 
mth-order initial-value problem 

(m) () f( I (m-l) Y' t = t,y,y, ... ,y , a s: t < b, 

with initial conditions yea) = ai, y'(a) = a2, ... , y<m-l) (a) = am can be converted into 
a system of equations in the form (5.44) and (5.45). 

Let U I (t) = y(t), U2 (t) = y' (t), ... , and Urn (t) = y<m-I) (t). This produces the first
order system 

and 

dUI dy 
dt =: dt = U2, 

dU2 dy' 
dt = dt = U3, 

dUm_1 

dt 

• 
• 
• 

dy<m-2) 
= = Urn, 

dt 

dy(m-I) 
= = y(m) = f(t, y, y', ... , y(m-l)) = f(t, UI, U2, ... , urn), 

dt 

with initial conditions 

uI(a) = yea) = ai, . . . , 

Consider the second-order initial-value problem 

y" - 2y' + 2y = e2t sint, for 0 < t :s 1, with yeO) = -0.4, y' (0) = -0.6. 

Let u\ (t) = yet) and U2(t) = y'(t). This transfonlls the equation into the system 

u; (t) =: U2(t), 

u;(t) =: e2t sin t - 2uI (t) + 2U2(t), 
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with initial conditions 

UI (0) = -0.4, U2(0) = -0.6. 

The Runge-Kutta fourth-order method will be used to approximate the solution to 
this problem using h = 0.1. The initial conditions give Wl,O = -0.4 and W2,O = -0.6. 
Eqs. (5.48) through (5.51) with j = 0 give 

kl,l = h/J (to, Wl,O, W2,O) = hW2,O = -0.06, 

k l ,2 = hh(to, wI,O, W2,O) = h[e2to sin to - 2Wl,O + 2W2,O] = -0.04, 

= h e2(to+O.05) sin (to + 0.05) - 2 

= -0.03247644757, 

1 
W20 + -k2 2 = -0.06162832238, , 2' 

k3,2 = h e2(to+O.05) sin(to + 0.05) - 2 

= -0.03152409237, 

k4,l = h [W2,O + k3,2] = -0.06315240924, 

and 

+2 

+2 

1 
W20 + -k12 , 2' 

k4,2 = h [e2(to+O.l) sin (to + 0.1) - 2( Wl,O + k3,l) + 2( W2,O + k3,2)] = -0.02178637298. 

So 

1 . 
Wl,l = Wl,O + 6(kl,l + 2k2, 1 + 2k3, 1 + k4,d = -0.4617333423 and 

1 
W2,l = W2,O + 6(k1,2 + 2k2,2 + 2k3,2 + k4,2) = -0.6316312421. 

The value Wl,l approximates ul(O.I) = y(O.I) = 0.2e2(o.1)(sinO.l - 2cosO.1), and 
W2,l approximates u2(0.1) = y'(O.I) = 0.2e2(o·1)(4sinO.l - 3cosO.l). 

The set of values WI,j and W2,j, for j = 0, 1, ... , 10, obtained using the Runge-Kutta 
method of order four, are presented in Table 5.18 and are compared to the actual values of 
UI (t) = 0.2e21 (sin t - 2 cos t) and U2(t) = u; (t) = 0.2e2t (4 sin t - 3 cos t). _ 
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Dible 5.18 

t J 

0.0 
0,1 
0,2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

y(tj) = UI(tj) WI . ,J y'(t j ) = U2(tj) W2 . ,J Iy(tj) - WI,j I Iy'(tj) - W2,jl 
, 

-0.40000000 -0.40000000 -6.0000000 -0,60000000 0 0 
-0.46173297 -0.46173334 -0.6316304 -0,63163124 3,7 x 10-7 7,75 X 10-7 

-0.52555905 -0.52555988 -0.6401478 -0.64014895 8,3 x 10-7 1.01 X 10-6 

-0.58860005 -0.58860144 -0.6136630 -0.61366381 1.39 x 10-6 8.34 X 10-7 

-0.64661028 -0.64661231 -0.5365821 -0.53658203 2.03 x 10-6 1.79 X 10-7 

-0.69356395 -0.69356666 -0.3887395 -0.38873810 2.71 x 10-6 5.96 X 10-7 

-0.72114849 -0.72115190 -0.1443834 -0.14438087 3.41 x 10-6 7.75 X 10-7 

-0.71814890 -0.71815295 0.2289917 0.22899702 4.05 x 10-6 2.03 X 10-6 

-0.66970677 -0.66971133 0.7719815 0.77199180 4.56 x 10-6 5.30 X 10-6 

-0.55643814 -0.55644290 1.534764 0.15347815 4.76 x 10-6 9.54 X 10-6 

-0.35339436 -0.35339886 2.578741 0.25787663 4.50 x 10-6 1.34 X 10-5 

We can also use dsolve from Maple on higher-order equations. Note that the nth 
derivative y(n)(t) is specified by (otOtOn) (y) (t). To define the differential equation in 

. Example 2, use 

and to specify the initial conditions use 

>init2:=y(0)=-0.4,0(y)(0)=-0.6; 

The solution is obtained by the command 

>so12:=dsolve({def2,init2},y(t)); 

to obtain 

so12 '= y(t) = _~e(2t) cos(t) + ~e(2t) sin(t) 
. 5 5 

We isolate the solution in function form using 

>g:=rhs(so12); 

To obtain y(l.O) = g(1.0), enter 

>evalf(subs(t=1.0,g)); 

which gives the result -.3533943558. 
Runge-Kutta-Fehlberg is also available for higher-order equations via the dsolve 

command with the numeric option. We enter the command 

>g: =dsolve ({def2,init2},y(t) ,numeric); 

with the Maple response 

g := proc(rkf45..x) ... end proc 
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We can approximate y(l.O) using the command 

>gC1.0); 

to give 

a 
t = 1.0, yet) = -.353394346807534676, - yet) = 2.57874665940482072 at 

The other one-step methods can be extended to systems in a similar way. When 
error control methods like the Runge-Kutta-Fehlberg method are extended, each com
ponent of the numerical solution (Wlj' W2j, ... , Wmj) must be examined for accuracy. 
If any of the components fail to be sufficiently accurate, the entire numerical solution 
(Wlj, W2j, ... , Wmj) must be recomputed. 

The multistep methods and predictor-corrector techniques can also be extended to 
systems. Again, if error control is used, each component must be accurate. The extension 
of the extrapolation technique to systems can also be done, but the notation becomes quite 
involved. If this topic is of interest, see [HNW 1]. 

Convergence theorems and error estimates for systems are similar to those considered 
in Section 5.10 for the single equations, except that the bounds are given in terms of vector 
nOIlns, a topic considered in Chapter 7. (A good reference for these theorems is [Ge 1, 
pp. 45-72].) 

E X ERe I S ESE T 5.9 

1. Use the Runge-Kutta method for systems to approximate the solutions of the following sys
tems of first-order differential equations, and compare the results to the actual solutions. 

a. u; = 3u] + 2U2 - (2tZ + l)ez" 0 <t < 1, u]CO) = 1; 
u~ = 4u] + Uz + (rl + 2t - 4)e2

' , 0 < t < 1, U2 (0) = 1; 
h = 0.2; actualsolutionsu](t) = te5'-~e-'+ez, and uz(t) = ;e5'+;e-r+tZe2t 

b. u;=-4u]-2uz+cost+4sint, 0<t<2, u](O) =0; 
u; = 3u] + Uz - 3sint, 0 ~ t < 2, uz(O) = -I; 
h =0.1; actual solutions u](t) =2e-'-2e-z'+sint and U2(t) = -3e-'+2e-z,. 

c. U;=U2, 0<t<2, u](O)=I; 
u;=-u]-2et +l, 0<t~2, Uz(O) =0; 
u;=-ul-e'+l, 0<t<2, U3(0) = I; 
h =0.5; actualsolutionsu]{t) =cost+sint-e'+I, uz(t) = -sint+cust-e'. 

and U3(t) = - sinl + cos t. 

d. u;=UZ-U3+t, O<t<1, u](O)=I; 
u; = 3tZ, 0 < t < 1, U2 (0) = 1; 
u; = Uz + e-', 0 < t :::: I, U3 (0) = -1; 
h = 0.1; actual solutions u\ (t) = -0.05t 5 + 0.25t4 + t + 2 - e-r, U2(t) = (3 + 1. 
and U3{t) = 0.25t4 + t - e-r. 

2. Use the Runge-Kutta for Systems Algorithm to approximate the solutions of the following 
higher-order differential equations, and compare the results to the actual solutions. 

a. y" - 2y' + y = te' - t, 0:::: t < 1, yeO) = /(0) = 0, with h = 0.1; actual 
solution yet) = ~t3el - te' + 2et - t - 2. 
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b. t 2y" - 2ty' + 2y = t 3 lnt, 1 < t < 2, y(l) = 1, y'(l) = 0, with h = 0.1; 
actual solution yet) = ; t + ~ t 3 In t - ~ t 3. 

c. y"' + 2y" - y' - 2y = e', 0 < t < 3, yeO) = 1, y'(O) = 2, y"(O) = 0, with 
h = 0.2; actual solution yet) = ~~e' + !e-' - ~e-2t + !te'. 

d. t 3y fff - t 2 y" + 3ty' - 4y = 5t3 1nt + 9t3 , 1 < t < 2, y(l) = 0, y'(l) = 
1, y"(I) = 3, with h = 0.1; actual solution yet) = _t2 + t cos (In t) + t sin(lnt) + 
t 3 In t. 

3. Change the Adams Fourth-Order Predictor-Corrector Algorithm to obtain approximate solu-
tions to systems of first-order equations. 

4. Repeat Exercise 1 using the algorithm developed in Exercise 3. 

5. Repeat Exercise 2 using the algorithm developed in Exercise 3. 

6. Suppose the swinging pendulum described in the lead example of this chapter is 2 ft long and 
that g = 32.17 ftls2. With h = 0.1 s, compare the angle 8 obtained for the following two 
initial-value problems: 

d 28 g 
a. + - sine = 0 

dt 2 L ' 

7f 
B(O) = 6' 8'(0) = 0, 

d 28 g 
b. dt 2 + L B = 0, 

at t = 0, 1, and 2 s. 

7f 
B(O) = -, 

6 
e'(O) = 0, 

7. The study of mathematical models for predicting the population dynamics of competing 
species has its origin in independent works published in the early part of this century by 
A. J. Lotka and V. Volterra. Consider the problem of predicting the population of two spel:ies, 
one of which is a predator, whose population at time t is X2(t), feeding on the other, which 
is the prey, whose population is Xl (t). We will assume that the prey always has an adequate 
food supply and that its birth rate at any time is proportional to the number of prey alive at 
that time; that is, birth rate (prey) is klXI (t). The death rate of the prey depends on both the 
number of prey and predators alive at that time. For simplicity, we assume death rate (prey) 
= k2Xl (t)X2(t). The birth rate of the predator, on the other hand, depends on its food supply, 
Xl (t), as well as on the number of predators available for reproduction purposes. For this 
reason, we assume that the birth rate (predator) is k3Xl (t)X2(t). The death rate of the predator 
will be taken as simply proportional to the number of predators alive at the time; that is, death 
rate (predator) = k4X2(t). 

Since x; (t) and x~ (t) represent the change in the prey and predator popUlations, respec
tively; with respect to time, the problem is expressed by the system of nonlinear differential 
equations 

Solve this system for 0 < t < 4, assuming that the initial population of the prey is 1000 
and of the predators is 500 and that the constants are kl = 3, k2 = 0.002, k3 = 0.0006, and 
k4 = 0.5. Sketch a graph of the solutions to this problem, plotting both populations with time, 
and describe the physical phenomena represented. Is there a stable solution to this population 
model? If so, for what values Xl and X2 is the solution stable? 

8. In Exercise 7 we considered the problem of predicting the population in a predator-prey model. 
Another problem of this type is concerned with two species competing for the same food 
supply. If the numbers of species alive at time t are denoted by Xl (t) and X2(t), it is often 
assumed that, although the birth rate of each of the species is simply proportional to the number 
of species alive at that time, the death rate of each species depends on the population of both 
species. We will assume that the population of a particular pair of species is described by the 
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equations 

dXI (t) 
dt = XI (t)[4 - O.0003xI (t) - O.OOO4xz(t)] 

and 

dxz(t) 
dt = xz(t)[2 - O.0002xI (t) - O.OOOlxz(t»). 

If it is known that the initial population of each species is 10,000, find the solution to this 
system for 0 ~ t ~ 4. Is there a stable solution to this population model? If so, for what values 
of x I and Xz is the solution stable? 

5.1 0 Stability 

A number of methods have been presented in this chapter for approximating the solution 
to an initial-value problem. Although numerous other techniques are available, we have 
chosen the methods described here because they generally satisfied three criteria: 

1. Their development is clear enough so that you can understand how and why they 
work. 

2. One or more of the methods will give satisfactory results for most of the problems 
that are encountered by students in science and engineering. 

3. Most of the more advanced and complex techniques are based on one or a combi
nation of the procedures described here. 

In this section, we discuss why these methods give satisfactory results when some 
similar methods do not. Before we begin this discussion, we need to present two definitions 
concerned with the convergence of one-step difference-equation methods to the solution of 
the differential equation as the step size decreases. 

DefInition 5.1B A one-step difference-equation method with local truncation error Li (h) at the ith step is 
said to be consistent with the differential equation it approximates if 

lim max l't'i(h)1 = O. 
h-40 l<i<N • 

Note that this definition is a local definition since, for each of the values 't'i (h), we 
are assuming that the approximation Wi-I and the exact solution y(ti-I) are the same. A 
more realistic means of analyzing the effects of making h small is to determine the global 
effect of the method. This is the maximum error of the method over the entire range of the 
approximation, assuming only that the method gives the exact result at the initial value. 

DefInition 5.19 A one-step difference-equation method is said to be convergent with respect to the differ
ential equation it approximates if 
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5.10 Stability 

lim max IWi - y(ti)1 = 0, 
h ..... O J<i<N 

3ZS 

where Yi = yeti) denotes the exact value of the solution of the differential equation and Wi 
is the approximation obtained from the difference method at the ith step. _ 

Examining Inequality (5.10) of Section 5.2 in the error-bound fOlmula for Euler's 
method, it can be said that under the hypotheses of Theorem 5.9, 

Mh 
max IWi - y(ti)1 ~ leL(b-a) - 11. 

J<i<N 2L 

So Euler's method is convergent with respect to a differential equation satisfying the con
ditions of this definition, and the rate of convergence is 0 (h). 

A one-step method is consistent precisely when the difference equation for the method 
approaches the differential equation when the step size goes to zero; that is, the local trun
cation error approaches zero as the step size approaches zero. The definition of convergence 
has a similar connotation. A method is convergent precisely when the solution to the dif
ference equation approaches the solution to the differential equation as the step size goes 
to zero. 

The other error-bound type of problem that exists when using difference methods to 
approximate solutions to differential equations is a consequence of not using exact results. 
In practice, neithet the initial conditions nor the arithmetic that is subsequently perfOlmed 
is represented exactly because of the roundoff error associated with finite-digit arithmetic. 
In Section 5.2 we saw that this consideration can lead to difficulties even for the convergent 
Euler's method. To analyze this situation, at least partially, we will try to determine which 
methods are stable, in the sense that small changes or perturbations in the initial conditions 
produce correspondingly small changes in the subsequent approximations; that is, a stable 
method is one whose results depend continuously on the initial data. 

Since the concept of stability of a one-step difference equation is somewhat analogous 
to the condition of a differential equation being well-posed, it is not surprising that the 
Lipschitz condition appears here, as it did in the corresponding theorem for differential 
equations, Theorem 5.6. 

Part (i) of the following theorem concerns the stability of a one-step method. The 
proof of this result is not difficult and is considered in Exercise 1. Part (ii) of Theorem 
5.20 concerns sufficient conditions for a consistent method to be convergent. Part (iii) 
justifies the remark made in Section 5.5 about controlling the global error of a method by 
controlling its local truncation error and implies that when the local truncation error has 
the rate of convergence O(hn ), the global error will have the same rate of convergence. 
The proofs of parts (ii) and (iii) are more difficult than that of part (i), and can be found 
within the material presented in [Gel, pp. 57-58]. 

Suppose the initial-value problem 

y' = f(t, y), a < t S b, yea) = ex, 

is approximated by a one-step difference method in the form 

Wo = ex, 

Wi+J = Wi + h¢(ti' Wi, h). 
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Suppose also that a number ho > 0 exists and that <p (t, w, h) is continuous and satisfies a 
Lipschitz condition in the variable w with Lipschitz constant L on the set 

D = { (t, w, h) I a S t S b, -00 < w < 00,0 S h < ho}. 

Then 

(i) The method is stable; 

(ii) The difference method is convergent if and only if it is consistent, which is 
equivalent to 

<P(t,y,O)=J(t,y), fora1lastSb; 

(iii) If a function r exists and, for each i = 1, 2, ... , N, the local truncation error 
0i (h) satisfies IOj (h) I < r (h) whenever 0 < h S ho, then 

Iy(ti) - wd S r~) eL(t;-a). • 
Consider the Modified Euler method given by 

Wo = a, 

h 
Wi+l = Wi +"2 [J(ti, Wi) + J(ti+l, Wi +hJ(ti, Wi))], fori = 0,1, ... , N-1. 

• 

We will verify that this method satisfies the hypothesis of Theorem 5.20. For this method, 

1 1 
<PCt, W, h) = 2" J(t, w) + 2 JCt + h, w + hJ(t, w». 

If J satisfies a Lipschitz condition on {(t, w) I a S t S b, -00 < w < oo} in the 
variable w with constant L, then, since 

·11 
<P(t, w, h) - <PU, w, h) = 2 J(t, w) + 2" J(t + h, w + hJ(t, w)) 

1 1 
- 2" J(t, w) - 2 J(t + h, w + hJ(t, w)), 

the Lipschitz condition on J leads to 

1 1 
1<P(t, w, h) - <P(t, w, h)1 < 2"Llw - wi + 2"L Iw + hf(t. w) - w - hf(t. w)1 

I 
< Llw - wi + 2 L Ihf(t, w) - hf(t, w)1 

I 
< Llw - wi + 2hL21w - wi 

_ L+~hL2 Iw-wl. 
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Therefore, ¢ satisfies a Lipschitz condition in W on the set 

{(t, w, h) I a S t S b, -00 < W < 00,0 < h < ho }, 

for any ho > 0 with constant 

1 
L' = L + 2hoL2. 

Finally, if / is continuous on { (t, w) I a S t < b, -00 < W < oo}, then ¢ is 
continuous on 

{(t, w, h) I a S t S b, -00 < W < 00,0 < h < ho}; 

so Theorem 5.20 implies that the Modified Euler method is stable. Letting h = 0, we have 

1 1 
¢(t, w, 0) = 2/(t, w) + 2 f (t + 0, W + O· f(t, w)) = f(t, w), 

so the consistency condition expressed in Theorem 5.20, part (ii), holds. Thus, the method 
is convergent. Moreover, we have seen that for this method the local truncation error is 
o (h 2), so the convergence of the Modified Euler method is also 0 (h 2). • 

For multistep methods, the problems involved with consistency, convergence, and sta
bility are compounded because of the number of approximations involved at each step. 
In the one-step methods, the approximation Wi+1 depends directly only on the previous 
approximation Wi, whereas the multistep methods use at least two of the previous approx
imations, and the usual methods that are employed involve more. 

The general multistep method for approximating the solution to the initial-value prob
lem 

y'=f(t,y), aSt<b, y(a)=a, (5.53) 

can be written in the form 

Wo = a, WI = ai, ... , Wm-I = am-I, 

Wi+l = am-l Wi + am-2Wi-l + ... + aOWi+l-m + hF(ti, h, Wi+l, Wi, . " , Wi+l-m), 

(5.54) 

for each i = m - 1, m, .. , , N - 1, where ao, ai, ... , Gm+l are constants and, as usual, 
h = (b - a)/ Nand ti = a + ih. 

The local truncation error for a multistep method expressed in this fOlln is 

y(tHl) - am-ly(ti) - .. , - aoy(ti+l-m) 
THI(h) = h 

- F(ti, h, y(ti+l), y(ti),.·. ,y(ti+l-m», 

for each i = m - 1, m, ... , N - 1. As in the one-step methods, the local truncation 
error measures how the solution y to the differential equation fails to satisfy the difference 
equation. 



328 C HAP T E R 5 • Initial-Value Problems jor Ordinary Differential Equations 

For the four-step Adams-Bashforth method, we have seen that 

251 
<HI (h) = no yC5)(/-ti)h4, for some /-ti E (ti-3, ti+I), 

whereas the three-step Adams-Moulton method has 

19 
~,o+l(h) = -noy(5)(II,o)h4, ""or some II E (t t ) • "" l' ""i i-2, j+1 , 

provided, of course, that y E C 5 [a, b]. 
Throughout the analysis, two assumptions will be made concerning the function F: 

1. If f == 0 (that is, if the differential equation is homogeneous), then F == 0 also. 

2. F satisfies a Lipschitz condition with respect to {w j }, in the sense that a constant 
L exists and, for every pair of sequences {v j }f 0 and {v j }f 0 and for i = m - 1, 
m, ... , N - 1, we have 

m 

IF(tj, h, Vi+I,··. , Vi+l-m)-F(ti, h, VHI,'" ,Vi+l-m)1 < L L IVj+l-j-Vi+l-j!. 
j=O 

• 
The explicit Adams-Bashforth and implicit Adams-Moulton methods satisfy both of 

these conditions, provided f satisfies a Lipschitz condition. (See Exercise 2.) 
The concept of convergence for multistep methods is the same as that for one-step 

methods; a multistep method is convergent if the solution to the difference equation ap
proaches the solution to the differential equation as the step size approaches zero. This 
means that limh~omaxo<i<N I Wi - y(ti)1 = O. 

For consistency, however, a slightly different situation occurs. Again, we want a multi
step method to be consistent provided that the difference equation approaches the differen
tial equation as the step size approaches zero; that is, the local truncation error approaches 
zero at each step as the step size approaches zero. The additional condition occurs because 
of the number of starting values required for multistep methods. Since usually only the first 
starting value, Wo = a, is exact, we need to require that the errors in all the starting values 
{ai} approach zero as the step size approaches zero. So, both 

lim Iri(h)1 = 0, for all i = m, m + 1, ... , N and 
h~O 

lim !aj - yeti)! = 0, for all i = 1,2, ... , m - 1, 
h~O 

(5.55) 

(5.56) 

must be true for a multistep method in the fonn (5.54) to be consistent. Note that (5.56) im
plies that a multistep method will not be consistent unless the one-step method generating 
the starting values is also consistent. 

The following theorem for multistep methods is similar to Theorem 5.20, part (iii), 
and gives a relationship between the local truncation error and global error of a multistep 
method. It provides the theoretical justification for attempting to control global error by 
controlling local truncation error. The proof of a slightly more general form of this theorem 
can be found in [IK, pp. 387-388]. 
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Suppose the initial-value problem 

y' = f(t, y), a::: t < b, yea) = a, 

is approximated by an explicit Adams predictor-corrector method with an m-step Adams
Bashforth predictor equation 

Wi+1 = Wi + h[bm-J!(ti, Wi) + ... + bof(ti+l-m, Wi+l-m)], 

with local truncation error ri+1 (h), and an (m - I)-step implicit Adams-Moulton corrector 
equation 

Wi+1 = Wi + h [hm-J!(ti, Wi+I) + bm-d(ti, Wi) + ... + hof (ti+2-m, Wi+2-m) ] ' 

with local truncation error Ti+1 (h). In addition, suppose that f(t, y) and fy (t, y) are con
tinuous on D = {(t, y) 1 a < t ::: band -00 < y< oo} and that fy is bounded. Then the 
local truncation error ai+ 1 (h) of the predictor-corrector method is 

_ - af 
ai+1 (h) = ri+1 (h) + ri+lbm- I ay (tHI, (}i+I), 

where (}i+1 is a number between zero and hri+1 (h). 
Moreover, there exist constants kl and k2 such that 

1 ( )1 () k (h) ek2 (li-a ) , Wi - Y ti ::: max W j - Y tj + la 
O:"j<m-I 

• 
Before discussing connections between consistency, convergence, and stability for 

multistep methods, we need to consider in more detail the difference equation for a multi
step method. In doing so, we will discover the reason for choosing the Adams methods as 
our standard multistep methods. 

Associated with the difference equation (5.54) given at the beginning of this discus-
• 

S10n, 

Wo = a, WI = ai, ... , Wm-I = am-\. 

is a polynomial, called the characteristic polynomial of the method, given by 

peA) = Am - am_IAm- 1 - am_2Am-2 - ... - alA - ao. (5.57) 

The stability of a multistep method with respect to roundoff error is dictated the by 
magnitudes of the zeros of the characteristic polynomial. To see this, consider applying the 
standard multistep method (5.54) to the trivial initial-value problem 

y' = 0, yea) = a, where a i= O. (5.58) 

This problem has exact solution yet) == a. By examining Eqs. (5.26) and (5.27) in Section 
5.6, we can see that any multistep method will, in theory, produce the exact solution Wn = 
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a for all n. The only deviation from the exact solution is due to the roundoff error of the 
method. 

The right side of the differential equation in (5.58) has f (t, y) = 0, so by assumption 
0), we have F(ti, h, Wi+I, Wi+2, '" ,Wi+I-m) = 0 in the difference equation (5.54). As a 
consequence, the standard fmmof the difference equation becomes 

(5.59) 

Suppose A is one of the zeros of the characteristic polynomial associated with (5.54). 
Then Wn = An for each n is a solution to (5.59) since 

,i+\ ,i ,i-\ ,i+l-m ,i+l-m[,m ,m-\ J 0 A - am_IA - a m _2A - ... - aDA = A A - am_IA - ... - aD = . 
In fact, if AI, A2, ... ,Am are distinct zeros of the characteristic polynomial for (5.54), it 
can be shown that every solution to (5.59) can be expressed in the form 

m 

Wn = LCiA7, 
i=1 

for some unique collection of constants CI, C2, ... ,Cm • 

Since the exact solution to (5.58) is y(t) = a, the choice Wn 

solution to (5.59). Using this fact in (5.59) gives 

(5.60) 

a, for all n, is a 

0= a - aam_1 - aam -2 - ... - aao = a[l - am-I - am-2 - ... - aD]· 

This implies that A = 1 is one of the zeros of the characteristic polynomial (5.57). We will 
assume that in the representation (5.60) this solution is described by Al = 1 and CI = a, 
so all solutions to (5.59) are expressed as 

m 

Wn = a + LCjA7. 
;=2 

(5.61) 

If all the calculations were exact, all the constants C2, C3, ... ,Cm would be zero. In practice, 
the constants C2, C3, ... ,Cm are not zero due to roundoff error. In fact, the roundoff error 
grows exponentially unless lAd :5 1 for each of the roots A2, A3, " . , Am. The smaller the 
magnitude of these roots, the more stable the method with respect to the growth of roundoff 
error. 

In deriving (5.61), we made the simplifying assumption that the zeros of the char
acteristic polynomial are distinct. The situation is similar when multiple zeros occur. For 
example, if Ak = Ak+1 = ... = Ak+p for some k and p, it simply requires replacing the 
sum 

in (5.61) with 

ckA~ + ck+lnA~-l + Ck+2n(n - l)A~-2 + ... + ck+p[n(n -1) ... (n - p + l)JA~-P. 
(5.62) 

(See [He2, pp. 119-145].) Although the fonnofthe solution is modified, the roundoff error 
if IAkl > 1 still grows exponentially. 

, 
r --

• 

r 



5.10 Stability 331 

Although we have considered only the special case of approximating initial-value 
problems of the form (5.58), the stability characteristics for this equation deteuuine the 
stability for the situation when f (t, y) is not identically zero. This is because the solu
tion to the homogeneous equation (5.58) is embedded in the solution to any equation. The 
following definitions are motivated by this discussion. 

Definition 5.22 Let)'1, A2, ... , Am denote the (not necessarily distinct) roots of the characteristic equation 

peA) = Am - am_lAm- 1 - ... - alA - ao = 0 

Definition 5.23 

Theorem 5.24 

EXAMPLE 2 

associated with the multistep difference method 

Wo = a, WI = aI, . .. , 

and 

If I Ai I :::: I, for each i = I, 2, . . . , m, and all roots with absolute value I are simple roots, 
then the difference method is said to satisfy the root condition. _ 

(i) Methods that satisfy the root condition and have A = 1 as the only root of the 
characteristic equation of magnitude one are called strongly stable. 

(ii) Methods that satisfy the root condition and have more than one distinct root 
with magnitude one are called weakly stable. 

(iii) Methods that do not satisfy the root condition are called unstable. _ 

Consistency and convergence of a multistep method are closely related to the roundoff 
stability of the method. The next theorem details these connections. For the proof of this 
result and the theory on which it is based, see [IK, pp. 410 417]. 

A multistep method of the fOlIl1 

Wo = a, WI = aI, . . . , Wm-I = Cim-I, 

where 

Wi+! = am-I Wi + a m-2wi-1 + ... + aOWi+I-m + hF(ti, h, Wi+l, Wi, ... , Wi+l-m) 

is stable if and only if it satisfies the root condition. Moreover, if the difference method 
is consistent with the differential equation, then the method is stable if and only if it is 
convergent. -

We have seen that the fourth-order Adams-Bashforth method can be expressed as 

Wi+l = Wi + hF(t" h, Wi+l, Wi,." , Wi-3), 

where 
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h 
FCti, h, Wi+l, Wi, ... ,Wi-3) = 24'[55/(ti ' Wi) - 59/(ti_l, wi-d 

+ 37/(ti-2, Wi-2) - 9/(ti-3, Wi-3)]; 

so m = 4, aD = 0, al = 0, a2 = 0, and a3 = 1. 
The characteristic equation for this Adams-Bashforth method is, consequently, 

0= peA) = A4 - A3 = A\A - 1), 

which has roots Al = 1, A2 = 0, A3 = 0, and A4 = 0. It satisfies the root condition and is 
strongly stable. 

The Adams-Moulton method has a similar characteristic polynomial, peA) = A3 - A 2, 

with zeros Al = 1, A2 = 0, and A3 = 0, and is also strongly stable. _ 

The explicit multistep method given by 

4h 
Wi+1 = Wi-3 + 3 [2/(ti' Wi) - /(ti-I, Wi-I) +2/Cti-2, Wi-2)] 

was introduced in Section 5.6 as the fourth-order Milne's method. Since the characteristic 
equation for this method, 0 = P (A) = A 4 - 1, has four roots with magnitude one: Al = 1, 
A2 = -1, A3 = i, and A4 = -i, the method satisfies the root condition, but it is only 
weakly stable. 

Consider the initial-value problem 

y'=-6y+6, O<t::;l, y(O) =2, 

which has the exact solution yet) = 1 + e-6t . For comparison purposes, the strongly stable 
fourth-order Adams-Bashforth method and the weakly stable Milne's method are used to 
approximate the solution to this problem with h = 0.1, with exact values for the starting 
values. The results in Table 5.19 show the effects of a weakly stable method versus a 
strongly stable method for this problem . 

• 

Adams-Bashforth Milne's 
Exact Method Error Method Error 

ti y(ti) Wi IYi - w;I Wi IYi - wil 

0.10000000 1.5488116 1.5488116 
0.20000000 1.3011942 1.3011942 
0.30000000 1.1652989 1.1652989 
0.40000000 1.0907180 1.0996236 8.906 x 10-3 1.0983785 7.661 x 10-3 

0.50000000 1.0497871 1.0513350 1.548 x 10-3 1.0417344 8.053 x 10-3 

0.60000000 1.0273237 1.0425614 1.524 x 10-2 1.0486438 2.132 x 10-2 

0.70000000 1.0149956 1.0047990 1.020 x 10-2 0.9634506 5.154 x 10-2 

0.80000000 1.0082297 1.0359090 2.768 x 10-2 1.1289977 1.208 x 10- 1 

0.90000000 1.0045166 0.9657936 3.872 x 10-2 0.7282684 2.762 x 10- 1 

1.00000000 1.0024788 1.0709304 6.845 x 10-2 1.6450917 6.426 x 10- 1 

The reason for choosing the Adams-Bashforth-Moulton as our standard fourth-order 
predictor-corrector technique in Section 5.6 over the Milne-Simpson method of the same 
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order is that both the Adams-Bashforth and Adams-Moulton methods are strongly stable. 
They are more likely to give accurate approximations to a wider class of problems than 
is the predictor-corrector based on the Milne and Simpson techniques, both of which are 
weakly stable. _ 

E X ERe I 5 ESE T 5.10 

1. To prove Theorem 5.20, part (i), show that the hypotheses imply that there exists a constant 
K > 0 such that 

IUj - v;l < Kluo - vol, for each 1 <i < N, 

whenever (ud~ I and {v;}~ I satisfy the difference equation Wi+1 = Wi + h</>(tr, Wi, h). 

2. For the Adams-Bashforth and Adams-Moulton methods of order four, 

a. Show that if f = 0, then 

F(tj, h, Wi+I, ... ,Wi+I-",) = o. 

b. Show that if f satisfies a Lipschitz condition with constant L, then a constant C exists 
with 

m 

IF(tj, h, Wi+I, ... ,Wj+l-m) - F(tj, h, Vi+I,··· , Vi+l-m)1 :::: C L IWj+l-j - vj+l_jl. 
j=O 

3. Use the results of Exercise 17 in Section 5.4 to show that the Runge-Kutta method of order 
four is consistent. 

4. Consider the differential equation 

y' = f(t, y), a < t < b, yea) = a. 

a. Show that 

'( .) = -3y(tj) + 4y(tj+l) - y(ti+2) + h2 
111(10) 

Y t, 2h 3 Y ,>1, 

for some 1;, where tj < I;j < tj +2. 

b. Part (a) suggests the difference method 

Wi+2 ~ 4wj+1 - 3wj - 2hfCti' Wi), for i = 0, 1, ... , N - 2. 

Use this method to solve 

y' = 1 - y, 0 < t < 1, yeO) = 0, 

with h = 0.1. Use the starting values Wo = 0 and WI = y(tl) = 1 - e-o.J • 

c. Repeat part (b) with h = 0.01 and WI = 1 - e-o.ol . 

d. Analyze this method for consistency, stability, and convergence. 
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5. Given the multistep method 

3 1 
Wi+1 = - 2 Wi + 3Wi_1 - 2 Wi-2 + 3hf(ti , Wi), for i = 2, ... ,N - I, 

with starting values wo, WI, Wz: 
3_ Find the local truncation error. 

b. Comment on consistency, stability, and convergence. 

6. Obtain an approximate solution to the differential equation 

y' = -y, 0 < t < 10, yeO) = 1 

using Milne's method with h = 0.1 and then h = 0.01, with starting values Wo = 1 and 
WI = e-h in both cases. How does decreasing h from h = 0.1 to h = 0.01 affect the number 
of correct digits in the approximate solutions at t = 1 and t = 1O? 

7. Investigate stability for the difference method 

Wi+1 = - 4Wi + 5Wi-I + 2h[f(ti, Wi) + 2hjCti-I, Wi-I)], 

for i = I, 2, ... ,N - I, with starting values wo, WI. 

S. Consider the problem y' = 0, 0 :::: t < 10, yeO) = 0, which has the solution y == O. If the 
difference method of Exercise 4 is applied to the problem, then 

Wi+I = 4Wi - 3Wi-I, for j = 1,2, ... , N - 1. 

Wo = 0, and WI = ll!1' 

Suppose WI = ll!I = e, where e is a small rounding error. Compute Wi exactly for i 
2, 3, . .. ,6 to find how the error e is propagated. 

5.11 Stiff Differential Equations 

All the methods for approximating the solution to initial-value problems have error terms 
that involve a higher derivative of the solution of the equation. If the derivative can be 
reasonably bounded, then the method will have a predictable error bound that can be used 
to estimate the accuracy of the approximation. Even if the derivative grows as the steps 
increase, the error can be kept in relative control, provided that the solution also grows in 
magnitude. Problems frequently arise, however, when the magnitude of the derivative in
creases but the solution does not. In this situation, the error can grow so large that it dom
inates the calculations. Initial-value problems for which this is likely to occur are called 
stiff equations and are quite common, particularly in the study of vibrations, chemical 
reactions, and electrical circuits. Stiff systems derive their name from the motion of spring 
and mass systems that have large spring constants. 

Stiff differential equations are characterized as those whose exact solution has a terlIl 
of the form e-c/, where c is a large positive constant. This is usually only a part of the 
solution, called the transient solution. The more important portion of the solution is called 
the steady-state solution. The transient portion of a stiff equation will rapidly decay to zero 
as t increases, but since the nth derivative of this term has magnitude cne-c

/, the derivative 
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does not decay as quickly. In fact, since the derivative in the error terlll is evaluated not 
at t, but at a number between zero and t, the derivative terms can increase as t increases
and very rapidly indeed. Fortunately, stiff equations generally can be predicted from the 
physical problem from which the equation is derived and, with care, the error can be kept 
under control. The manner in which this is done is considered in this section. 

The system of initial-value problems 

u~ = 9u\ + 24u2 + 5eost - ~ sint, 

u; = -24u\ - 51u2 - 9cost + ~ sint, 

has the unique solution 

1 
u\(t) = 2e-3t - e-39t + 3 cost, 

2 
U2(0) = 3 

1 
U2(t) = _e-3t + 2e-39t - - cost. 

3 

The transient term e-39t in the solution causes this system to be stiff. Applying Algo
rithm 5.7, the Runge-Kutta Fourth-Order Method for Systems, gives results listed in Table 

, 

5.20. When h = 0.05, stability results and the approximations are accurate. Increasing the 
step size to h = 0.1, however, leads to the disastrous results shown in the table. -

WI (t) WI (t) wz(t) wz(t) 
t u 1 (t) h = 0.05 h = 0.1 U2(t) h = 0.05 h = 0.1 

0.1 1.793061 1.712219 -2.645169 -1.032001 -0.8703152 7.844527 
0.2 1.423901 1.414070 -18.45158 -0.8746809 -0.8550148 38.87631 
0.3 1.131575 1.130523 -87.47221 -0.7249984 -0.7228910 176.4828 
0.4 0.9094086 0.9092763 -934.0722 -0.6082141 -0.6079475 789.3540 
0.5 0.7387877 9.7387506 -1760.016 -0.5156575 -0.5155810 3520.00 
0.6 0.6057094 0.6056833 -7848.550 -0.4404108 -0.4403558 15697.84 
0.7 0.4998603 0.4998361 -34989.63 -0.3774038 -0.3773540 69979.87 
0.8 0.4136714 0.4136490 -155979.4 -0.3229535 -0.3229078 311959.5 
0.9 0.3416143 0.3415939 -695332.0 -0.2744088 -0.2743673 1390664. 
1.0 0.2796748 0.2796568 -3099671. -0.2298877 -0.2298511 6199352. 

Although stiffness is usually associated with systems of differential equations, the 
approximation characteristics of a particular numerical method applied to a stiff system 
can be predicted by examining the error produced when the method is applied to a simple 
test equation, 

y' = ,l..y, yeO) = ex, where,l.. < O. (5.63) 

The solution to this equation is yet) = exeAt, which contains the transient solution eAt. The 
steady-state solution is zero, so the approximation characteristics of a method are easy to 
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determine. (A more complete discussion of the roundoff error associated with stiff systems 
requires examining the test equation when A is a complex number with negative imaginary 
part; see [Gel, p. 222].) 

First consider Euler's method applied to the test equation. Letting h = (b - a)/ Nand 
tj = jh, for j = 0, 1,2, ... , N, Eq. (5.8) implies that 

Wo = a, 

and 

so 

Wj+! = (1 + hA)Hiwo = (1 + H)Hia, for j = 0,1, ... , N - 1. (5.64) 

Since the exact solution is y(t) = aeM
, the absolute error is 

and the accuracy is deteI1Ilined by how well the telm 1 +hA approximates eh"A. When A < 0, 
the exact solution (eh"A)j decays to zero as j increases, but by (5.64), the approximation 
will have this property only if 11 + hAl < 1. This effectively restricts the step size h for 
Euler's method to satisfy h < 2/IAI. 

Suppose now that a roundoff error 80 is introduced in the initial condition for Euler's 
• 

method, 

Wo = a + 80. 

At the jth step the roundoff error is 

• 

8j = (1 + H)' 80. 

Since A < 0, the condition for the control of the growth of roundoff error is the same as the 
condition for controlling the absolute error, 11 + HI < 1, which implies that h < 2/IAI. 

The situation is similar for other one-step methods. In general, a function Q exists 
with the property that the difference method, when applied to the test equation, gives 

Wi+i = Q(H)Wi. (5.65) 

The accuracy of the method depends upon how well Q (hA) approximates ehl.. , and the error 
will grow without bound if IQ(hA)1 > 1. An nth-order Taylor method, for example, will 
have stability with regard to both the growth of roundoff error and absolute error, provided 
h is chosen to satisfy 

1 2 2 1 n n 1 + H + -h A + ... + -h A < 1. 
2 n! 

Exercise 6 examines the specific case when the method is the classical fourth-order Runge
Kutta method, a Taylor method of order four. 
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When a multistep method of the form (5.54) is applied to the test equation, the result 
• 
IS 

Wj+l = am-lWj + ... + aOWj+l-m + h)..,(bmwj+l + bm-1Wj + ... + bOWj+l-m), 

for j = m - I, . .. , N - I, or 

(1 - hAbm)Wj+l - (am-l + hAbm-r)wj - ... - (ao + h)..,bo)wj+l-m = O. 

Associated with this homogeneous difference equation is a characteristic polynomial 

Q(z, hA) = (1 - hAbm)zm - (am-l + hAbm_dzm- 1 
- ••• - (ao + h)"bo). 

This polynomial is similar to the characteristic polynomial (5.57), but it also incorporates 
the test equation. The theory here parallels the stability discussion in Section 5.10. 

Suppose Wo, ... , Wm-l are given, and, for fixed hA, let 131, ... , 13m be the zeros of the 
polynomial Q(z, hAl. If 131, ... ,13m are distinct, then Cl,'" ,Cm exist with 

m 

Wj = LCk(13k)i, for j = 0, ... ,N. (5.66) 
k=l 

If Q(z, hA) has multiple zeros, wi is similarly defined. (See Eq. (5.62) in Section 5.10.) 
If wi is to accurately approximate y(tj) = elhJ.. = (ehJ..)l, then all zeros /h must satisfy 
I 13k I < 1; otherwise, certain choices of a will result in Ck t= 0, and the tenn ck(/h)} will 
not decay to zero. 

The test differential equation 

y' = -30y, 0:::: t :::: 1.5, 
1 

yeO) = -
3 

has exact solution y = ~e-30t. Using h = 0.1 for Euler's Algorithm 5.1, Runge-Kutta 
Fourth-Order Algorithm 5.2, and the Adams Predictor-Corrector Algorithm 5.4, gives the 
results at t = 1.5 in Table 5.21. • 

Exact solution 
Euler's method 
Runge-Kutta method 
Predictor-corrector method 

9.54173 X 10-21 

-1.09225 x lQ4 
3.95730 x 101 

8.03840 x lOS 

The inaccuracies in Example 2 are due to the fact that I Q (hJ...) I > 1 for Euler's method 
and the Runge-Kutta method and that Q(z, hA) has zeros with modulus exceeding 1 for 
the predictor-corrector method. To apply these methods to this problem, the step size must 
be reduced. The following definition is used to describe the amount of step-size reduction 
that is required. 

Definition 5.25 The regionR of absolute stability for a one-step method is R = {hA Eel I Q(hA) I < I}, 
and for a multistep method, it is R = { hA Eel l13k I < 1, for all zeros 13k of Q (z, hA) } . 

• 
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Equations (5.65) and (5.66) imply that a method can be applied effectively to a stiff 
equation only if h)... is in the region of absolute stability of the method, which for a given 
problem places a restriction on the size of h. Even though the exponential term in the exact 
solution decays quickly to zero, 'Ah must remain within the region of absolute stability 
throughout the interval of t values for the approximation to decay to zero and the growth of 
error to be under control. This means that, although h could normally be increased because 
of truncation error considerations, the absolute stability criterion forces h to remain small. 
Variable step-size methods are especially vulnerable to this problem since an examination 
of the local truncation error might indicate that the step size could increase, which could 
inadvertently result in 'Ah being outside the region of absolute stability. 

Since the region of absolute stability of a method is generally the critical factor in 
producing accurate approximations for stiff systems, numerical methods are sought with 
as large a region of absolute stability as possible. A numerical method is said to be A -stable 
if its region R of absolute stability contains the entire left half-plane. 

The Implicit Trapezoidal method, given by 

Wo = a, (5.67) 

h 
Wj+! = Wj + 2" [J(tj+l, wj+d + f(lj, Wj)] , 0 <j < N - I, 

is an A-stable method (see Exercise 9) and is the only A-stable multistep method. Although 
the Trapezoidal method does not give accurate approximations for large step sizes, its error 
will not grow exponentially. 

The techniques commonly used for stiff systems are implicit multistep methods. Gen
erally, Wi+1 is obtained by solving a nonlinear equation or nonlinear system iteratively, 
often by Newton's method. Consider, for example, the Implicit Trapezoidal method 

Having computed Ij, 1j+1, and Wj, we need to detennine Wj+h the solution to 

(5.68) 

To approximate this solution, select wj~l' usually as Wj, and generate Wj11 by applying 
Newton's method to (5.68), 

F( (k-I» 
(k) (k-J) W j+1 

W j+1 = W j+1 - F'( (k-I» 
w j +1 

(k-I) h [/( ) I( (k-I»] 
(k-l) w j + 1 - Wj - "2 Ii, Wj + tj+I, Wj+1 

= Wj+1 - h (k-I) 
1 - "2 fyCtj+l, Wj+l ) 

until I Wnl - wj~rIl) I is sufficiently small. This is the procedure that is used in Algorithm 
5.8. Normally only three or four iterations per step are required. 

The Secant method can be used as an alternative to Newton's method in Eq. (5.68), but 
then two distinct initial approximations to W j+l are required. To employ the Secant method, 
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the usual practice is to let wj~l = Wj and obtain wj~1 from some explicit multistep 
method. When a system of stiff equations is involved, a generalization is required for either 
Newton's or the Secant method. These topics are considered in Chapter 10. 

Trapezoidal with Newton Iteration 

To approximate the solution of the initial-value problem 

y' = f(t, y), fora ~ t ~ b, withy(a) = a 

at (N + 1) equally spaced numbers in the interval [a, b]: 

INPUT endpoints a, b; integer N; initial condition a; tolerance TOL; maximum number 
of iterations M at anyone step. 

OUTPUT approximation w to y at the (N + 1) values of t or a message of failure. 

Step 1 Seth = (b-a)/N; 
t = a; 
w = a; 

OUTPUT (t, w). 

Step 2 For i = 1,2, ... , N do Steps 3-7. 

Step3 Setkl=w+~f(t,w); 
Wo = k1; 
j = 1; 
FLAG = O. 

Step 4 While FLAG = 0 do Steps 5-6. 

h 

StepS 
Wo - '2 f(t + h, wo) - kJ 

Set w = Wo - h . 
1 - 2 fy(t + h, wo) 

Step 6 If Iw - wol < TOL then set FLAG = 1 
else set j = j + 1; 

Wo = w; 
if j > M then 

Step 7 Set t = a + ih; 
OUTPUT (t. w). 

Step 8 STOP. 

OUTPUT ('The maximum number of 
iterations exceeded'); 

STOP. 

• 
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The stiff initial-value problem 

y' = 5eSt (y - t)2 + 1, 0 <t'::: 1, y(O) =-1 

has solution y (t) = t - e-St • To show the effects of stiffness, the Implicit Trapezoidal 
method and the Runge-Kutta fourth-order method are applied both with N = 4, giving 
h = 0.25, and with N = 5, giving h = 0.20. The Trapezoidal method perfOlms well in 
both cases using M = 10 and TOL = 10-6, as does Runge-Kutta with h = 0.2. However, 
h = 0.25 is outside the region of absolute stability of the Runge-Kutta method, which is 
evident from the results in Table 5.22. • 

Runge-Kutta Method Trapezoidal Method 

h = 0.2 h = 0.2 
f. I W· I Iy(ti) - Wi I Wi Iy(ti) - Wi I 

0.0 -1.0000000 0 -1.0000000 0 
0.2 -0.1488521 1.9027 x 10-2 -0.1414969 2.6383 x 10-2 

0.4 0.2684884 3.8237 x 10-3 0.2748614 1.0197 x 10-2 

0.6 0.5519927 1.7798 x 10-3 0.5539828 3.7700 x 10-3 

0.8 0.7822857 6.0131 x 10-4 0.7830720 1.3876 x 10-3 

1.0 0.9934905 2.2845 x 10-4 0.9937726 5.1050 x 10-4 

h = 0.25 h = 0.25 
ti Wi Iy(ti) - w;I Wi Iy(ti) - w;I 

0.0 -1.0000000 0 -1.0000000 0 
0.25 0.4014315 4.37936 x 10-1 0.0054557 4.1961 x 10-2 

0.5 3.4374753 3.01956 x 100 0.4267572 8.8422 x 10-3 

0.75 1.44639 x 1023 1.44639 X 1023 0.7291528 2.6706 x 10-3 

1.0 Overflow 0.9940199 7.5790 x 10-4 

We have presented here only a small amount of what the reader frequently encounter
ing stiff differential equations should know. For further details, consult [Ge2], [Lam], or 
[SGe]. 

E X ERe I S ESE T 5.11 

1. Solve the following stiff initial-value problems using Euler's method, and compare the results 
with the actual solution. 

a. y' = -9y, 0 < t < I, y(O) = e, with h = 0.1; actual solution y(t) = el -
9t

• 

b. y' = -20(y - t2 ) + 2t, 0 < t < 1, y(O) = ~, with h = 0.1; actual solution 
y(t) = t 2 + ; e-20t

. 

c. y' = -20y + 20 sin t + cos t, 0 ...:: t < 2, y(O) = 1, with h = 0.25; actual solution 
y(t) = sin t + e-20,. 
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d. y' = 5: - SOy, 0 < t < 1, yeO) = ../2, with h = 0.1; actual solution yet) 

(l + e- lOOt )I/2. 

2. Repeat Exercise 1 using the Runge-Kutta fourth-order method. 

3. Repeat Exercise 1 using the Adams fourth-order predictor-corrector method. 

4. Repeat Exercise 1 using the Trapezoidal Algorithm. Use TOL = 10-). 

5. Solve the following stiff initial-value problem using the Runge-Kutta fourth-order method with 
(a) h = 0.1 and (b) h = 0.025. 

, 2 2 
u l = 32uI + 66u2 + 3 t + 3' 0 < t < 0.5, 

I 
u (0) = _. 

I 3 ' 

, 1 1 
u2 = -66uI - 133u2 - 3 t - 3' 0 < t < 0.5, 

Compare the results to the actual solution, 

2 2 -t 1 -lOOt 
UI (t) = -t + -e --e 

3 3 3 
1 1 -t 2 -1001 and U2(t) = --t - -e + -e . 
3 3 3 

6. Show that the fourth-order Runge-Kutta method, 

kl = hf(t;, Wi)' 

k2 = hf(t; + h/2, Wi + kt/2), 

k3 = hf(t, + h/2, Wi + k2/2). 

k4 = hf(ti + h, Wi + k3), 

1 
Wi+1 = Wi + 6 (k l + 2k2 + 2k3 + k4 ), 

when applied to the differential equation y' = Ay, can be written in the form 

7. Discuss consistency, stability, and convergence for the Implicit Trapezoidal method 

h 
Wi+1 = Wi + 2 [fCti-tl, Wi+l) + fCti, Wi)], fori = O. I, ... ,N - 1. 

with Wo = a applied to the differential equation 

y'=f(t,y), a<t::;b, y(a)=a. 

8. The Backward Euler one-step method is defined by 

Wi+1 = Wi + hfCti+l, Wi+I), for i = 0, ... ,N - 1. 

a. Show that Q(h)") = 1/(1 - hA) for the Backward Euler method. 

b. Apply the Backward Euler method to the differential equations given in Exercise 1. Use 
Newton's method to solve for Wi+l. 

9. a. Show that the Implicit Trapezoidal method (5.67) is A-stable. 

b. Show that the Backward Euler method described in Exercise 8 is A -stable. 
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5.12 Survey of Methods and Software 

In this chapter we have considered methods to approximate the solutions to initial-value 
problems for ordinary differential equations. We began with a discussion of the most ele
mentary numerical technique, Euler's method. This procedure is not sufficiently accurate to 
be of use in applications, but it illustrates the general behavior of the more powerful tech
niques, without the accompanying algebraic difficulties. The Taylor methods were then 
considered as generalizations of Euler's method. They were found to be accurate but cum
bersome because of the need to deteImine extensive partial derivatives of the defining func
tion of the differential equation. The Runge-Kutta formulas simplified the Taylor methods, 
while not significantly increasing the error. To this point we had considered only one-step 
methods, techniques that use only data at the most recently computed point. 

Multistep methods are discussed in Section 5.6, where Explicit methods of Adams
Bashforth type and implicit methods of Adams-Moulton type were considered. These cul
minate in predictor-corrector methods, which use an explicit method, such as an Adams
Bashforth, to predict the solution and then apply a corresponding implicit method, like an 
Adams-Moulton, to correct the approximation. 

Section 5.9 illustrated how these techniques can be used to solve higher-order initial
value problems and systems of initial-value problems. 

The more accurate adaptive methods are based on the relatively uncomplicated one
step and multistep techniques. In particular, we saw in Section 5.5 that the Runge-Kutta
Fehlberg method is a one-step procedure that seeks to select mesh spacing to keep the 
local error of the approximation under control. The Variable Step-Size Predictor-Corrector 
method presented in Section 5.7 is based on the four-step Adams-Bashforth method and 
three-step Adams-Moulton method. It also changes the step size to keep the local error 
within a given tolerance. The Extrapolation method discussed in Section 5.8 is based on a 
modification of the Midpoint method and incorporates extrapolation to maintain a desired 
accuracy of approximation. 

The final topic in the chapter concerned the difficulty that is inherent in the approxima
tion of the solution to a stiff equation, a differential equation whose exact solution contains 
a portion of the form e-At , where A. is a positive constant. Special caution must be taken 
with problems of this type, or the results can be overwhelmed by roundoff error. 

Methods of the Runge-Kutta-Fehlberg type are generally sufficient for nonstiff prob
lems when moderate accuracy is required. The extrapolation procedures are recommended 
for nons tiff problems where high accuracy is required. Extensions of the Implicit Trape
zoidal method to variable-order and variable step-size implicit Adams-type methods are 
used for stiff initial-value problems. 

The IMSL Library includes two subroutines for approximating the solutions of initial
value problems. Each of the methods solves a system of m first-order equations in m vari
ables. The equations are of the fOIIll 

du; 
- = fi (t, u 1, U 2, . . . ,U m), for i = I, 2, . . . , m, 
dt 

where Uj (to) is given for each i. The variable step-size subroutine IVPRK is based on the 
Runge-Kutta-Verner fifth- and sixth-order methods described in Exercise 4 of Section 5.5. 
A subroutine of Adams type to be used for stiff equations is due to C. William Gear and 
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is given by IVPAG. This method uses implicit multistep methods of order up to 12 and 
backward differentiation formulas of order up to 5. 

The Runge-Kutta-type procedures contained in the NAG Library are called D02BGF, 
D02BHF, D02PCF, and D02PDE D02BGF and D02BHF are based on the Merson fOlln 
of the Runge-Kutta method. A variable-order and variable step-size Adams method is con
tained in the procedure D02CJE Variable-order, variable step-size backward-difference 
methods for stiff systems are contained in the procedure D02EJF. Other routines incorpo
rate the same methods but iterate until a component of the solution attains a given value or 
until a function of the solution is zero. 

The netlib Library includes several subroutines for approximating the solutions of 
initial-value problems in the package ODE, located at http://www.netlib.org/ode. The sub
routine dverk.f is based on the Runge-Kutta-Verner fifth- and sixth-order methods. The 
subroutine rkf45.f is based on the Runge-Kutta-Fehlberg fourtb- and fifth-order methods as 
described on pages 284-285 of Section 5.5. For stiff ordinary differential equation initial
value problems, the subroutine epsode.f based on variable coefficient backward differenti
ation formula can be used. 

Many books specialize in the numerical solution of initial-value problems. Two clas
sics are by Henrici [Hel] and Gear [Gel]. Other books that survey the field are by Botha 
and Pinder [BP], Ortega and Poole COP], Golub and Ortega [GO], Shampine [Sh], and Dor
mand [Do]. Two books by Hairer, N6rsett, and Warner provide comprehensive discussions 
on nons tiff [HNWI] and stiff [HNW2] problems. The book by Burrage [Bur] describes 
parallel and sequential methods. 

• 
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or So vin 
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Krchhoff'S laws of electrical circuits state that both the net flow of cur

rent through each junction and the net voltage drop around each closed 

loop of a circuit are zero. Suppose that a potential of V volts is applied 

between the points A and G in the circuit and that i h i2, i3, i4, and is repre

sent current flow as shown in the diagram. Using G as a reference point, 

Kirchhoff's laws imply that the currents satisfy the following system of 

linear equations: 

A 20 

V volts -

G 3D 

5i1 + 5i2 = V, 

i3 - i4 - is = 0, 

2i4 - 3is = 0, 

il - i2 - i3 = 0, 

5i2 - 7i3 - 2i4 = 0. 

B 30 

50 

F 40 

c 
20 

20 D 

E 

The solution of systems of this type will be considered in this chapter. 

This application is discussed in Exercise 23 of Section 6.6 • 

• 
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Linear systems of equations are associated with many problems in engineering and 
science, as well as with applications of mathematics to the social sciences and the quanti
tative study of business and economic problems. 

In this chapter, direct techniques are considered to solve the linear system 

E I : all XI + a12XZ + ... + alnXn = hi, 

E 2 : aZlxl + azzxz + ... + aZnXn = hz, 
• (6.1) 
• 
• 

for XI, .•. ,Xn , given the constants aij, for each i, j = 1,2, ... ,n, and hi, for each i 
1, 2, ... ,n. Direct techniques are methods that give an answer in a fixed number of steps, 
subject only to roundoff errors. In the presentation we shall also introduce some elementary 
notions from the subject of linear algebra. 

Methods of approximating the solution to linear systems by iterative methods are dis
cussed in Chapter 7. 

6.1 Linear Systems of Equations 

EXAMPLE 1 

We use three operations to simplify the linear system given in (6.1): 

1. Equation Ei can be multiplied by any nonzero constant A with the resulting equa
tion used in place of E i . This operation is denoted (AEi ) ~ (Ei). 

2. Equation Ej can be multiplied by any constant A and added to equation Ei with 
the resulting equation used in place of Ei . This operation is denoted (E, + A E j) ~ 
(Ei ). 

3. Equations Ei and E) can be transposed in order. This operation is denoted (Ei) B

(E)). 

By a sequence of these operations, a linear system can be transformed to a more easily 
solved linear system that has the same solutions. The sequence of operations is illustrated 
in the next example. 

The four equations 

EI : XI + X2 + 3X4 = 4, 

Ez : 2xI + Xz - X3 + X4 = 1, 
(6.2) 

E3 : 3xI - X3 +2X4 = -3, Xz -

E4 : -XI + 2X2 + 3X3 - X4 = 4, 
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will be solved for x), X2, X3, and X4. We first use equation EI to eliminate the unknown 
XI from E 2, E 3, and E4 by performing (E2 - 2EI) --+ (E2), (E3 - 3EI) --+ (E3). and 
(E4 + E I) --+ (E4). The resulting system is 

EI : XI + X2 + 3X4 = 4, 

E2 : - X2 - X3 - 5x4 = -7 , 

E3 : -4X2 - X3 -7X4 = -15, 

E4 : 3X2 + 3X3 + 2X4 = 8, 

where, for simplicity, the new equations are again labeled EI , E2 , £3, and £4. 
In the new system, E2 is used to eliminate X2 from E3 and E4 by performing (E3 -

4E2) --+ (E3) and (E4 + 3E2) --+ (E4), resulting in 

EI : Xl +X2 + 3X4 = 4, 

E2 : -X2 - X3 - 5X4 = -7 , 
(6.3) 

E3 : 3X3 + 13x4 = 13, 

E4 : - 13x4 = -13. 

The system of equations (6.3) is now in triangular (or reduced) form and can be 
solved for the unknowns by a backward·substitution process. Since E4 implies X4 = I, 
we can solve E3 for X3 to give 

Continuing, E2 gives 

X2 = - ( -7 + 5x4 + X3) = - ( -7 + 5 + 0) = 2, 

and EI gives 

Xl = 4 - 3X4 - X2 = 4 - 3 - 2 = -1. 

The solution to (6.3), and consequently to (6.2), is therefore, Xl = -1, X2 = 2, X3 = 0, 
andx4 = 1. \ • 

When performing the calculations of Example 1, we did not need to write out the full 
equations at each step or to carry the variables x), X2, X3, and X4 through the calculations, 
since they always remained in the same column. The only variation from system to system 
occurred in the coefficients of the unknowns and in the values on the right side of the 
equations. For this reason, a linear system is often replaced by a matrix, which contains 
all the information about the system that is necessary to determine its solution, but in a 
compact form. 

An n x m (n by m) matrix is a rectangular array of elements with n rows and m columns 
in which not only is the value of an element important, but also its position in the array . 

• 
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The notation for an n x m matrix will be a capital letter such as A for the matrix and 
lowercase letters with double subscripts, such as aij, to refer to the entry at the intersection 
of the ith row and jth column; that is, 

The matrix 

A= 
2 
3 

-1 
1 

7 
o 

is a 2 x 3 matrix with all = 2, a12 = -1, aJ3 = 7, a2l = 3, a22 = 1, and a23 = O. • 

The 1 x n matrix 

is called an n-dimensional row vector, and an n x 1 matrix 

is called an n-dimensional column vector. Usually the unnecessary subscripts are omitted 
for vectors, and a boldface lowercase letter is used for notation. Thus, 

Xl 

X2 
X= • 

• 
• 

Xn 

denotes a column vector, and 

Y = [Yl Y2 ... Yn] 

a row vector. 
An n x (n + 1) matrix can be used to represent the linear system 

• • 
• • 
• • 
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by first constructing 

all a12 • • • aln bI 

aZI aZZ • • • am b2 
A= • • • and b= • 

• • • • 
• • • • 

anI anz • • • ann bn 

and then combining these matrices to fOBn the augmented matrix 

• 

hI all au • • • aln • 
• 

aZI a22 aZn 
• bz • • • • 

[A. b] = • 
• • • • • • 

• • • • • 
• • • • • 

• 

anI a n2 • • • ann • bn • 

where the vertical dotted line is used to separate the coefficients of the unknowns from the 
values on the right-hand side of the equations. 

Repeating the operations involved in Example 1 with the matrix notation results in 
first considering the augmented matrix: 

1 1 0 3 • 4 • 
• 

2 1 -1 1 • 1 • 

3 -1 2 
• 

-3 • -1 • 
• 

-1 2 3 -1 • 4 

Performing the operations as described in that example produces the matrices 

1 1 0 3 • 4 1 1 0 3 • 4 • • 
• • 

0 -1 -1 -5 • -7 0 -1 -1 -5 • -7 • and • . 
• 

0 -4 -1 -7 -15 0 0 3 13 13 • 
• • 
• • 

0 3 3 2 • 8 0 0 0 -13 • -13 • • 

The final matrix can now be transformed into its corresponding linear system. and 
solutions for Xl. XZ. x3. and X4. can be obtained. The procedure involved in this process is 
called Gaussian elimination with backward substitution. 

The general Gaussian elimination procedure applied to the linear system 

E I : allXI + a12XZ + ... + alnXn = bI. 

Ez: aZlxI + aZZXZ + ... + aZnXn = h z • 

• 
• 
• 

• 
• 
• 

-
is handled in a similar manner. First form the augmented matrix A: 

• 
all a12 • • • aln • aI,n+I 

• 

aZI aZZ aZn 
• 

a2,n+I • • • - • 

A = [A. b] = • 
• • • • • 

• • • • • 
• • • • • 

• 

anI a n2 • • • ann • an,n+I , 

• 

(6.4) 

(6.5) 
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where A denotes the matrix formed by the coefficients. The entries in the (n + 1)st column 
are the values ofb; that is, ai,n+l = hi for each i = 1,2, ... , n. 

Provided all =1= 0, the operations corresponding to (E) - (a) 1/ all) E d ~ (E j) are 
performed for each j = 2,3, ... , n to eliminate the coefficient of Xl in each of these 
rows. Although the entries in rows 2,3, ... , n are expected to change, for ease of no
tation we again denote the entry in the ith row and the jth column by ail' With this in 
mind, we follow a sequential procedure for i = 2, 3, ... , n - 1 and perform the operation 
(E j - (aji!aii)Ei) ~ (Ej ) for each j = i + 1, i + 2, ... , n, provided ail t= O. This 
eliminates (changes the coefficient to zero) Xi in each row below the ith for all values of 
i = 1, 2, ... ,n - 1. The resulting matrix has the form: 

• 

all al2 • • • aln • al,n+l 
• 

O. a22 a2n 
• 

a2.n+1 • • • - • - • 
A • • • - • • - • • , • • • • • • • • • • • • 

• • • • • • • • 
• • • 

o· :0 • 
• • . . . , • ann • an,n+l • 

where, except in the first row, the values of aij are not expected to agree with those in the -
original matrix A. The matrix A represents a linear system with the same solution set as 
the original system (6.4). Since the new linear system is triangular, 

allxl + alZX2 + ... + alnXn = al,n+l, 

a22x 2 + ... + a2n Xn = a2,n+l, 

• • • 
• • • 

• • • 
• 

• 

backward substitution can be performed. Solving the nth equation for Xn gives 

an ,n+l 
Xn = • 

Solving the (n - 1 )st equation for Xn-l and using Xn yields 

an-l,n+l - an-l,nXn 
Xn-l = 

an-l n-l , 

Continuing this process, we obtain 

ai,n+l - ai,nXn - ai,n-IXn-1 - ... - ai,i+IXi+1 
Xi = 

aii 

for each i = n - 1, n - 2, ... , 2, 1. 

- , 

The Gaussian elimination procedure can be presented more precisely, although more 
intricately, by forming a sequence of augmented matrices .4<1), A (2), ... , A (n), where A (I) 

is the matrix A given in (6.5) and A(k), for each k = 2, 3, ... , n, has entries aij), where: 

(k) 
a·· = I] 

(k-I) 
aij , 

0, 
(k-l) 

(k-l) ai,k-l (k-I) 
ail - (k-I) ak_l,j' 

a k-l k-l , 

when i = 1, 2, ... , k - 1 and j = 1, 2, ... , n + 1. 

when i = k, k + 1, ... , n and j = 1, 2, ... , k - 1, 

when i = k, k + 1, ... , n and j = k, k + 1, . . . ,n + 1. 
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Thus, 

(I) (I) (I) (I) (I) a(l) • (I) 
all a l2 a 13 

• • • al,k_1 alk • • • • 
aI,n+I In • 

• 

(2) (2) (2) (2) (2) • (2) 0, a 22 a 23 
' , , a 2,k_1 a 2k a 2n 

• 

a 2 ,n+1 
' , , 

, • 
• • • • • 
• , • , • • • • • • • • • , • • • • • • • • 

• • 
• • • • • • 

• • • • • • • 
"'a(k-I) A(k) = • (k-I) (k-I) (k-I) • • (6.6) . 

ak_l,k ak_l,n 
• 

ak_l,n+ I • • • • • . k-I k-I • • . , 
• • • • 

• (k) ark) 
• (k) • • 0 • a kk 

• • • ak,n+1 • kn 
• 

• 
• • • • • • , , , 

• • • • , • • 
• • 

• • 

(k) • (k) o . . . . . . . . . . . . . . . . . . . . . 0 ark) a nk 
• • • 

an,n+ I nn 

represents the equivalent linear system for which the variable Xk-I has just been eliminated 
from equations Eb Ek+I, ... , En' 

Th d '11 f 'l'f f h 1 (I) (2) (3) (n-I) (n) . e proce ure WI aJ lone 0 tee ements all ' a22 ' a 33 ' . , . , an_l,n_I' ann IS zero 
because the step 

either cannot be performed (this occurs,if one of ag), , . , , a~n I~~_I is zero), or the backward 

substitution cannot be accomplished (in the case a~~) = 0). The system may still have a 
solution, but the technique for finding the solution must be altered. An illustration is given 
in the following example. 

Consider the linear system 

E I : XI - X2 + 2X3 - X4 = -8, 

E2: 2xI - 2X2 + 3X3 - 3X4 = -20, 

The augmented matrix is 

XI + X2 + X3 = 
XI - X2 + 4X3 + 3 X4 = 

1 -1 2 -1 • 
• 
, 
, 2 -2 3 -3 - -(I) • A=A = 1 0 
, 

1 1 • 
• 

1 -1 4 3 • 
• 

and performing the operations 

-2 , 
4. 

-8 
-20 
-2 

4 

, 



6.1 Linear Systems of Equations 351 

• gIves 

1 -1 2 -1 • -8 
• 

,1(2) = 0 0 -1 -1 -4 
0 2 -1 1 

• 

6 • 
• 
• 

0 0 2 4 • 12 

Since ag), called the pivot element, is zero, the procedure cannot continue in its present 
form. But the operation (Ed ++ (Ej ) is pennitted, so a search is made of the elements 

a~;) and a~;) for the first nonzero element. Since aj;l -=I O. the operation (E2) ++ (E3 ) is 
perfonned to obtain a new matrix, 

1 -I 2 -1 • -8 • 
• 

,1(2)' = 0 2 -1 1 6 
0 0 -1 -1 -4 • 

• 

0 0 2 4 • 12 • 

Since X2 is already eliminated from E3 and E4, ,1(3) will be ,1(2)', and the computations 
continue with the operation (E4 + 2E3) ~ (E4), giving 

1 -1 2 -1 • -8 • 
• 

0 2 -1 1 • 6 ,1(4) = • 

-1 -1 
• 

-4 • 

0 0 
0 0 0 2 • 4 • 

Finally, the backward substitution is applied: 

4 
X4 = - = 2, 

2 

[-4 - (-1)x4] 
X3 = ------ = 2, 

-1 

[6 - X4 - (-1 )X3] 
X2 = "-------- = 3, 

2 

Xl = 
[-8 - (-l)X4 - 2X3 - (-l)x2] = -7. 

1 • 

Example 2 illustrates what is done if ai~) = 0 for some k = 1,2, ... , n - 1. The 

kth column of A(k-l) from the kth row to the nth row is searched for the first nonzero 
entry. If a~~ -=I 0 for some p,with k + 1 < P :::: n, then the operation (Ek ) ++ (Ep) is 

performed to obtain A(k-l)'. The procedure can then be continued to form A(k), and so on. 
If a~~ = 0 for each p, it can be shown (see Theorem 6.16 in Section 6.4) that the linear 

system does not have a unique solution and the procedure stops. Finally, if a~~) = 0, the 
linear system does not have a unique solution, and again the procedure stops. Algorithm 6.1 
summarizes Gaussian elimination with backward substitution. The algorithm incorporates 
pivoting when one of the pivots ak~l is 0 by interchanging the kth row with the pth row, 

where p is the smallest integer greater than k for which a a~~ is nonzero. 
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Gaussian Elimination with Backward Substitution 

To solve the n x n linear system 

E l : allxl + a12X2 + ... + alnXn = al,n+l 

E2 : a21 Xl + a22x2 + ... + a2nXn = a2.n+l 
• • • • • 
• • • • • 
• • • • • 

INPUT number of unknowns and equations n; augmented matrix A = (aij), where I < 
i < nand 1 < j < n + 1. 

OUTPUT solution Xl, X2, ... , Xn or message that the linear system has no unique solu
tion. 

Step 1 For i = 1, ... , n - 1 do Steps 2-4. (Elimination process.) 

Step 2 Let P be the smallest integer with i < p :::: n and api 1:- o. 
If no integer p can be found 

then OUTPUT ('no unique solution exists'); 
STOP. 

Step 3 If P 1:- i then perfOlID (E p) ++ (Ei). 

Step 4 For j = i + 1, ... , n do Steps 5 and 6. 

Step 5 Set m ji = a ji / aii. 

Step 6 Perform (Ej - mjiEi) ~ (Ej ); 

Step 7 If ann = 0 then OUTPUT ('no unique solution exists'); 
STOP. 

Step 8 Set Xn = an,n+J/ann . (Start backward substitution.) 

Step9 Fori =n -1, ... ,1 set Xi = [ai,n+l - L~=i+laijXj] aii. 

Step 10 OUIPUT (Xl, ... ,xn); (Procedure completed successfully.) 
STOP. • 

All CAS have matrix routines. To define matrices and perfoIIll Gaussian elimination 
using Maple, you must first access the linear algebra library using the command 

>with(linalg) ; 

To define the matrix A: (I) of Example 2, which we will call AA, use the command 

>AA:=matrix(4,5, [1,-1,2,-1,-8,2,-2,3,-3,-20,1,1,1,0,-2,1,-1,4,3,4]); 

The first two parameters, 4 and 5, give the number of rows and columns, respectively, and 
the last parameter is a list of the entries of A:(I) == AA. The function addrow(AA, i, j ,m) 
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performs the operation (E j +mEi ) ~ (E j ) and the function swaprow(AA, i, j) performs 
the operation (Ei) ++ (E j ). So, the sequence of operations 

>AA:=addrow(AA,1,2,-2); 
>AA:=addrow(AA,1,3,-1); 
>AA:=addrow(AA,1,4,-1); 
>AA:=swaprow(AA,2,3); 
>AA:=addrow(AA,3,4,2); 

gives the reduction to ,.1(4), which is again called AA. Alternatively, the single command 
AA : =gausselim (AA); returns the reduced matrix. In either case, the final operation 

>x:=backsub(AA); 

produces the solution x := [-7,3,2,2]. 

The purpose of this example is to show what can happen if Algorithm 6.1 fails. The com
putations will be done simultaneously on two linear systems: 

XI + X2 + X3 = 4, 

2xI + 2X2 + X3 = 6, 

XI + X2 + 2X3 = 6, 

These systems produce matrices 

-A= 

-

1 1 
2 2 
1 I 

1 1 1 
A = 0 0 -1 

o 0 1 

1 : 4 
• 

1 : 6 
• 

2 : 6 

• 4 • 
• 
• -2 • 
• 
• 2 • 

XI + X2 + X3 = 4, 

and 2xI + 2X2 + X3 = 4, 

XI + X2 + 2X3 = 6. 

-and A = 

-

1 1 
2 2 
1 1 

1 I 

1 : 4 
• 

1 : 4 
• 

2 : 6 

I • 
• 
• 

4 
and A = 0 0 -I • -4 • 

• 

o 0 I • 2 • 

• 

At this point, a22 = a32 = O. The algorithm requires that the procedure be halted, and no 
solution to either system is obtained. Writing the equations for each system gives 

XI + X2 + X3 = 4, 
-X3 = -2, and 

X3 = 2, 

XI + X2 + X3 = 4, 
-X3 = -4, 

X3 = 2. 

The first linear system has an infinite number of solutions; X3 = 2, X2 = 2 - XI, and XI 

arbitrary. The second system leads to the contradiction X3 = 2 and X3 = 4, so no solution 
exists. In each case, however, there is no unique solution, as we conclude from Algorithm 
6.1. • 

Although Algorithm 6.1 can be viewed as the construction of the augmented matrices 
A (I), ... , A (n) , the computations can be performed in a computer using only one n x (n + I) 
array for storage. At each step we simply replace the previous value of aij by the new one. 
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In addition, we can store the multipliers m ji in the locations of a ji since a ji has the value 
o for each i = 1, 2, ... ,n - 1 and j = i + 1, i + 2, . " , n. Thus, A can be overwritten by 
the multipliers below the main diagonal and by the nonzero entries of lien) on and above 
the main diagonal. These values can be used to solve other linear systems involving the 
original matrix A, as we will see in Section 6.5. 

Both the amount of time required to complete the calculations and the subsequent 
roundoff error depend on the number of floating-point arithmetic operations needed to 
solve a routine problem. In general, the amount of time required to perform a multiplica
tion or division on a computer is approximately the same and is considerably greater than 
that required to perfOlm an addition or subtraction. The actual differences in execution 
time, however, depend on the particular computing system. To demonstrate the counting 
operations for a given method, we will count the operations required to solve a typical lin
ear system of n equations in n unknowns using Algorithm 6.1. We will keep the count of 
the additions/subtractions separate from the count of the multiplications/divisions because 
of the time differential. 

No arithmetic operations are performed until Steps 5 and 6 in the algorithm. Step 
5 requires that (n - i) divisions be performed. The replacement of the equation E j by 
(E j - m ji E i ) in Step 6 requires that m ji be multiplied by each term in Ei , resulting in a 
total of (n - i) (n - i + 1) multiplications. After this is completed, each term of the resulting 
equation is subtracted from the corresponding term in E j. This requires (n - i) (n - i + 1) 
subtractions. For each i = 1, 2, . " ,n - 1, the operations required in Steps 5 and 6 are as 
follows. 

Multiplications/divisions 

• 

(n - i) + (n - i)(n - i + 1) = (n - i)(n - i + 2). 

Additions/subtractions 

(n - i)(n - i + 1). 

The total number of operations required by these steps is obtained by summing the 
operation counts for each i. Recalling from calculus that 

m 

L1 =m, 
j=1 

tJ = m(m + 1), 

j=l 2 
and 

f-.. .2 _ m(m + I)(2m + 1) 
~J - 6 ' 
j=1 

we have the following operation counts. 

Multiplications/divisions 

n-I n-I 

L(n - i)(n - i + 2) = L(n2 
- 2ni + i 2 + 2n - 2i) 

i=! i=1 

n-I n-I n-I 2 3 3 2 5 
" "" n+n-n = (n 2 + 2n) ~ 1 - 2(n + 1) ~ i + ~ i 2 = . 
'1 '1'1 6 l= 1= 1= 
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Additions/subtractions 

n-l n-l 

L(n - i)(n - i + 1) = L(n2 
- 2ni + i 2 + n - i) 

i=1 i=1 

n-l n-l n-l :l n- - n 
= (n 2 + n) L 1 - (2n + 1) L i + L i 2 

= . 
. 1 . 1 . 1 3 l= 1= 1= 

The only other steps in Algorithm 6.1 that involve arithmetic operations are those 
required for backward substitution, Steps 8 and 9. Step 8 requires one division. Step 9 
requires (n - i) multiplications and (n - i-I) additions for each summation term and 
then one subtraction and one division. The total number of operations in Steps 8 and 9 is 
as follows. 

Multiplications/divisions 

n-l n2 +n 
1 + L«n - i) + 1) = . 

i=1 2 

Additions/subtractions 

n-l 2 
'""' n -n L../(n - i-I) + 1) = . 
i=1 2 

The total number of arithmetic operations in Algorithm 6.1 is, therefore: 

Multiplications/divisions 

Additions/subtractions 

n3 n =_+n2 __ . 
3 3 

n3 n2 Sn 
=-+-- . 
326 

For large n, the total number of multiplications and divisions is approximately 11 j /3, 
as is the total number of additions and subtractions. Thus, the amount of computation and 
the time required increases with 11 in proportion to n3 , as shown in Table 6.1. 

n Multi p licationslDi visi ons Additions/Subtractions 

3 17 11 
10 430 375 
50 44,150 42,875 

100 343,300 338,250 
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E X ERe I S ESE T 6.1 

1. For each of the following linear systems, obtain a solution by graphical methods, if possible. 
Explain the results from a geometrical standpoint. 

a. Xl + 2X2 = 3, 

Xl - X2 = O. 

C. Xl + 2X2 = 3, 

2Xl + 4X2 = 6. 

e. Xl + 2X2 = 0, 

2Xl + 4X2 = O. 

g. 2Xl + X2 = -1, 

4Xl + 2X2 = -2, 

Xl - 3X2 = 5. 

b. Xl + 2X2 = 0, 

Xl - x2 = O. 

d. Xl+2x2=3, 

-2Xl - 4X2 = 6. 

f. 2x1 + xz=-l, 

Xl + Xz = 2, 

Xl - 3xz = 5. 

h. 2Xl + X2 + X3 = 1, 

2Xl + 4X2 - X3 = -1. 

2. Use Gaussian elimination with backward substitution and two-digit rounding arithmetic to 
solve the following linear systems. Do not reorder the equations. (The exact solution to each 
system is Xl = 1, X2 = -1, X3 = 3.) 

a. 4Xl - X2 + X3 = 8, 

2Xl + 5X2 + 2X3 = 3, 

Xl + 2X2 + 4X3 = 11. 

b. 4Xl + X2 + 2X3 = 9, 

2Xl + 4X2 - X3 = -5, 

Xl + X2 - 3X3 = -9. 

3. Use the Gaussian Elimination Algorithm to solve the following linear systems, if possible, and 

determine whether row interchanges are necessary: 

a. Xl - X2 + 3X3 = 2, 

3XI-3x2+ x3=-1, 

= 3. 

C. 2Xl = 3, 

e. 

Xl + 1.5X2 

- 3X2 + 0.5X3 

= 4.5, 

= -6.6, 

Xl +X2 + X4 = 2, 

2Xl + X2 - X3 + X4 = 1, 

4Xl - X2 - 2X3 + 2x4 = 0, 

3Xl - X2 - X3 + 2X4 = -3. 

b. 

+ 2X3 = 3, 

d. Xl-~X2+X3 =4, 

f. 

2Xl - X2 - X3 + X4 = 5, 

XI + X2 = 2, 

Xl - ~X2 +X3 +X4 = 5. 

+ X4 = 2, 

2Xl + X2 - X3 + X4 = 1, 

-Xl + 2X2 + 3X3 - X4 = 4, 

3Xl - X2 - X3 + 2X4 = -3. 

4. Use the Gaussian Elimination Algorithm and single-precision arithmetic on a computer to 
solve the following linear systems. 
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b. 3.333xl + 15920x2 - 1O.333x3 = 15913, 

2.222xl + 16.71x2 + 9.612x3 = 28.544, 
. 

1.5611xl + 5.1791x2 + 1.6852x3 = 8.4254. 

c. 

d. 2Xl + X2 - X3 + X4 - 3xs = 7, 

Xl + 2X3 - X4 + X~ = 2, 

- 2x2 - X3 + X4 - Xs = -5, 

3Xl + X2 - 4X3 + 5xs = 6, 

Xl - X2 - X3 - X4 + Xs = 3. 

5. Given the linear system 

2xI - 6ax2 = 3, 

3 - 3 CUI - X2 - 2' 

a. Find value(s) of a for which the system has no solutions. 

b. Find value(s) of a for which the system has an infinite number of solutions. 

c. Assuming a unique solution exists for a given a, find the solution. 

6. Given the linear system 

Xl - X2 +ax3 = -2, 

-XI + 2X2 - aX3 = 3, 

aXI + X2 + X3 = 2. 

a. Find value(s) of a for which the system has no solut~ons. 

b. Find value(s) of a for which the system has an infinite number of solutions. 

c. Assuming a unique solution exists for a given a, find the solution. 

7. Show that the operations 

B. (AEj ) --+ (Ej ) b. (Ej + AEj ) --+ (Ej ) c. (Ej ) ++ (E j ) 

do not change the solution set of a linear system. 

357 

S. Gauss-Jordan Method: This method is described as follows. Use the ith equation to elimi
nate not only Xj from the equations Ei+l, E j+2 , ••• , En, as was done in the Gaussian elimina
tionmethod, but also from E l , E 2 , •.• , E j _ l . Upon reducing [A, b] to: 

a(l) 0 11 
• • • o • (I) 

• a l •n+1 • 
• 

0 (2) 
a 22 

• • • (2) • a
2n

_
1 • • 

• • 
• • 

• , 
• • • • • 
• • 
• • 

• • 
• • • o • 

0 ••• 
• (n) 
• an•n+1 • 

a(n) 
nn o 



358 C HAP T E R 6 • Direct Methods jar Solving Linear Systems 

the solution is obtained by setting 

(i) 
Qi,n+l 

Xi = (i)' 
a· 
" 

for each i = 1, 2, ... , n. This procedure circumvents the backward substitution in the Gaus
sian elimination. Construct an algorithm for the Gauss-Jordan procedure patterned after that 
of Algorithm 6.1. 

9. Use the Gauss-Jordan method and two-digit rounding arithmetic to solve the systems in Exer
cise 2. 

lO. Repeat Exercise 4 using the Gauss-Jordan method. 

11. a. Show that the Gauss-Jordan method requires 

mUltiplications/divisions 

and 

n' n 

2 2 
additions/subtractions. 

b. Make a table comparing the required operations for the Gauss-Jordan and Gaussian elim
ination methods for n = 3, 10,50, 100. Which method requires less computation? 

12. Consider the following Gaussian-elimination-Gauss-Jordan hybrid method for solving the sys
tem (6.4). First, apply the Gaussian-elimination technique to reduce the system to triangular 
form. Then use the nth equation to eliminate the coefficients of Xn in each of the first n - 1 
rows. After this is completed use the (n - l)st equation to eliminate the coefficients of Xn~l in 
the first n -2 rows, etc. The system will eventually appear as the reduced system in Exercise 8. 

a. Show that this method requires 

n3 3 5 - + _n2 - -n multiplications/divisions 
3 2 6 

and 

n3 n2 5 - + - - -n additions/subtractions. 
3 2 6 

b. Make a table comparing the required operations for the Gaussian elimination, Gauss
Jordan, and hybrid methods, for n = 3, 10, 50, 100. 

13. Use the hybrid method described in Exercise 12 and two-digit rounding arithmetic to solve the 
systems in Exercise 2. 

14. Repeat Exercise 4 using the method described in Exercise 12. 

15. Suppose that in a biological system there are n species of animals and m sources of food. 
Let Xj represent the population of the jth species, for each j = 1, ... , n; bi represent the 
available daily supply of the ith food; and aij represent the amount of the ith food consumed 
on the average by a member of the jth species. The linear system 

allXl + a12X2 + ... + alnXn = bl • 

a2l Xl + a22X2 + ... + a2nxn = bz • 

• • 
• 
• • 
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represents an equilibrium where there is a daily supply of food to precisely meet the average 
daily consumption of each species. 

a. Let 

I 2 0 3 
A=(aij)= I 0 2 2 

o 0 I I 

x = (Xj) = [1000,500,350,400], and b = (bi ) = [3500,2700,900). Is there sufficient 
food to satisfy the average daily consumption? 

b. What is the maximum number of animals of each species that could be individually added 
to the system with the supply of food still meeting the consumption? 

c. If species I became extinct, how much of an individual increase of each of the remaining 
species could be supported? 

d. If species 2 became extinct, how much of an individual increase of each of the remaining 
species could be supported? 

16. A Fredholm integral equation of the second kind is an equation of the form 

b 

u(x) = I(x) + K(x, t)u(t) dt, 
a 

where a and b and the functions I and K are given. To approximate the function u on the 
interval [a, b], a partition Xo = a < Xl < ... < Xm-l < Xm = b is selected and the equations 

·u(xi)=/(Xi)+ lb K(xi,t)u(t)dt, foreachi =O, ... ,m. 

are solved for u(xo), U(XI), ... , u(xm). The integrals are approximated using quadrature for
mulas based on the nodes xo, ... , Xm. In our problem, a = 0, b = I, I(x) = X2, and 
K(x, t) = e1x - tl . 

a. Show that the linear system 

1 
u(O) = 1(0) + 2 [K(O, O)u(O) + K(O, I)u(l»), 

I 
u(1) = l(l) + 2 [K(l, O)u(O) + K(l, l)u(1)] 

must be solved when the Trapezoidal rule is used. 

b. Set up and solve the linear system that results when the Composite Trapezoidal rule is 
used with n = 4. 

c. Repeat part (b) using the Composite Simpson's rule. 

6.2 Pivoting Strategies 

In deriving Algorithm 6.1, we found that a row interchange is needed when one of the 
pivot elements ak~) is O. This row interchange has the form (Ek ) ~ (Ep), where p is the 

smallest integer greater than k with a~~ i= O. To reduce roundoff error, it is often necessary 
to perfoIlll row interchanges even when the pivot elements are not zero. 
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If ak~) is small in magnitude compared to a j~), the magnitude of the multiplier 

(k) 
a jk 

m jk = (k) 
akk 

will be much larger than 1. Roundoff error introduced in the computation of one of the 
terms al~) is multiplied by m jk when computing aj~+l), which compounds the original 
error. Also, when perf 011 Iling the backward substitution for 

(k) "n (k) 
ak,n+l - L..j=k+l a kj 

Xk = (k) , 
akk 

with a small value of a~!) , any error in the numerator can be dramatically increased because 

of the division by ak~). An illustration of this difficulty is given in the following example. 

The linear system 

El : 0.003000Xl + 59.14x2 = 59.17 

E2 : 5.291xl - 6. 130x2 = 46.78, 

has the exact solution Xl = 10.00 and X2 = 1.000. Suppose Gaussian elimination is per
formed on this system using four-digit arithmetic with rounding. 

The first pivot element, ag) = 0,003000, is small, and its associated multiplier, 

5.291 -
m2l = 0.003000 = 1763.66, 

rounds to the large number 1764. Performing (E2 - m21El) ~ (E2) and the appropriate 
rounding gives 

O.003000Xl + 59.14x2 ~ 59.17 

-104300x2 ~ -104400, 

instead of the precise values, 

0.003000Xl + 59. 14x2 = 59.17 

- -
-104309.376x2 = -104309.376. 

The disparity in the magnitudes of m2la13 and a23 has introduced roundoff error, but the 
roundoff error has not yet been propagated. Backward substitution yields 

X2 ~ 1.001, 

which is a close approximation to the actual value, X2 = 1.000. However, because of the 
small pivot all = 0.003000, 

59.17 - (59.14)(1.001) 
Xl ~ 0.003000 = -10.00 



Figure 6.1 

EXAMPLE 2 

6.2 Pivoting Strategies 

contains the small error of 0.001 multiplied by 

59.14 
0.003000 ::<::: 20000. 

This ruins the approximation to the actual value XI = 10.00. (See Figure 6.1.) 

Approximation 
(- 10, 1.(01) 

-10 

X2 

Exact solution 
(10, 1) 

10 
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Example 1 shows how difficulties arise when the pivot element ak~) is small relative to 

the entries ai~) , for k < i :s nand k :s j :s n. To avoid this problem, pivoting is performed 

by selecting a larger element atd for the pivot and interchanging the kth and pth rows, 
followed by the interchange of the kth and qth columns, if necessary. The simplest strategy 
is to select an element in the same column that is below the diagonal and has the largest 
absolute value; specifically, we determine the smallest p 2: k such that 

and perfonIl (Ed ~ (Ep). In this case no interchange of columns is used. 

Reconsider the system 

. EI : 0.003000xI + 59. 14x2 = 59.17, 

£2 : 5.291xl -6.130x2 = 46.78. 

The pivoting procedure just described results in first finding 

{
(I) (I)} 5 5 2 I (I) max la ll I, la21 I = max {10.0030001, I .2911} = I . 911 = a21 I· 

The operation (E2) ~ (EI) is then performed to give the system 

EI : 5.291xI - 6. 130x2 = 46.78, 

E2 : 0.003OOOxl + 59. 14x2 = 59.17. 
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The multiplier for this system is 

(I) 
a21 

m21 = (I) = 0.0005670, 
all 

and the operation (E2 - m21 E I) -+ (E2) reduces the system to 

5.291xl - 6.130x2 ~ 46.78, 

59.14x2 ~ 59.14. 

The four-digit answers resulting from the backward substitution arc the correct values 
Xl = 10.00 and X2 = 1.000. • 

The technique just described is called partial pivoting, or maximal column pivoting, 
and is detailed in Algorithm 6.2. The actual row interchanging is simulated in the algorithm 
by interchanging the values of NROW in Step 5. 

Gaussian Elimination with Partial Pivoting 

To solve the n x n linear system 

E I : allxl + a12x2 + ... + alnXn = al,n+l 

E2 : a21 X I + a22x2 + ... + a2n Xn = a2,n+1 
• • 
• • 
• • 

INPUT number of unknowns and equations n; augmented matrix A = (aij) where 1 < 
i < nand 1 ::: j ::: n + 1. 

OUTPUT solution XI, . ,. , Xn or message that the linear system has no unique solution. 

Step 1 For i = 1, ... , n set NROW(i) = i. (Initialize row pointer.) 

Step 2 For i = 1, ... , n - 1 do Steps 3-6. (Elimination process.) 

Step 3 Let p be the smallest integer with i < p < n and 
la(NROW(p), i)1 = maxi<j<n la(NROW(j), i)l· 
(Notation: a(NROW(i), j) = aNROW;,j.) 

Step 4 If a (NROW(p), i) = 0 then OUTPUT ('no unique solution exists'); 
STOP. 

Step 5 If NROW(i) =f. NROW(p) then set NCOPY = NROW(i); 
NROW(i) = NROW(p); 
NROW(p) = NCOPY. 

(Simulated row interchange.) 

Step 6 For j = i + 1, . .. , n do Steps 7 and 8. 
I 



EXAMPLE 3 

6.2 Pivoting Strategies 

Step 7 Set m(NROW(j), i) = a(NROW(j), i)(a(NROW(i), i). 

Step 8 Perf 01 III (ENROW(j) - m(NROW(j), i) . ENROW(i» --+ (ENROW(j». 

Step 9 If a (NROW(n), n) = 0 then OUTPUT ('no unique solution exists'); 
STOP. 

Step 10 Set Xn = a(NROW(n), n + 1)/a(NROW(n), n). 
(Start backward substitution.) 

Step 11 For i = n - I, ... , 1 

a(NROW(i), n + 1) - L~=i+1 a(NROW(i), j) . Xj 
set X = . 

I a(NROW(i), i) 

Step 12 OUTPUT (XI, ... , xn ); (Procedure completed successfully.) 
STOP. 
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Each multiplier m ji in the partial pivoting algorithm has magnitude less than or equal 

to 1. Although this strategy is sufficient for most linear systems, situations do arise when 
it is inadequate. 

The linear system 

E I: 30.00XI + 591400x2 = 591700, 

E2: 5.291xI - 6.130x2 = 46.78, 

is the same as that in Examples 1 and 2 except that all the entries in the first equation 
have been multiplied by 104

. The procedure described in Algorithm 6.2 with four-digit 
arithmetic leads to the same results as obtained in Example 1. The maximal value in the 
first column is 30.00, and the multiplier 

leads to the system 

5.291 
m21 = = 0.1764 

30.00 

30.00XI + 591400x2 ~ 591700, 

-104300x2 ~ 104400, 

which has the same inaccurate solutions as in Example 1: X2 ~ 1.001 and Xl ~ -10.00 . 

• 
Scaled partial pivoting, also called scaled-column pivoting, is appropriate for the sys

tem in Example 3. It places the element in the pivot position that is largest relative to the 
entries in its row. The first step in this procedure is to define a scale factor Sj for each row 
as 

Si = max laij I. 
I<j<n 

If, for some i, we have Si = 0, then the system has no unique solution since aU entries in 
the ith row are O. Assuming that this is not the case, the appropriate row interchange to 
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place zeros in the first column is determined by choosing the least integer p with 

and perfOIming (E I ) ++ (Ep). The effect of scaling is to ensure that the largest element 
in each row has a relative magnitude of 1 before the comparison for row interchange is 
perfOImed. 

In a similar manner, before eliminating the variable Xi using the operations 

we select the smallest integer p > i with 

lap;! lak;! 
--'--' = max --' 

sp i<k<n Sk 

and perform the row interchange E j ++ E p if i i= p. The scale factors S(, ••. ,Sn are 
computed only once, at the start of the procedure, and must also be interchanged when row 
interchanges are perfOImed. 

Applying scaled partial pivoting to Example 3 gives 

SI = max{130.ool, 15914001} = 591400 

and 

S2 = max{15.2911, 1-6.1301} = 6.130. 

Consequently, 

1:1/ I = 5~~: = 0.5073 X 10-
4

, 
la211 = 5.291 = 0.8631, 

S2 6.130 

and the interchange (EI) ++ (E2) is made. 
Applying Gaussian elimination to the new system 

5.291xI - 6.130x2 = 46.78 

30.ooxl + 5914oox2 = 591700 

produces the correct results: XI = 10.00 and X2 = 1.000. 
Algorithm 6.3 implements scaled partial pivoting. 

Gaussian Elimination with Scaled Partial Pivoting 

The only steps in this algorithm that differ from those of Algorithm 6.2 are: . 

Step 1 For i = 1, ... ,n setsi = maxl<j<n laijl; 
if Si = 0 then OUTPUT ('no unique solution exists'); 

STOP. 
setNROW(i) = i. 

Step 2 For i = 1, ... ,n - 1 do Steps 3-6. (Elimination process.) 
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Step 3 Let p be the smallest integer with i < P < n and 

la(NROW(p), i)1 la(NROW(j), i)1 
= max ------. 

s(NROW(p» i<j<n s(NROW(j» • 

The next example illustrates scaled partial pivoting using Maple with finite-digit 
rounding arithmetic. 

Solve the linear system using three-digit rounding arithmetic. 

2.11Xj - 4.21x2 + 0.921x3 = 2.01, 

4.0lx j + 1O.2x2 - 1.12x3 = -3.09, 

1.09xj + 0.987x2 + 0.832x3 = 4.21. 

To obtain three-digit rounding arithmetic, enter 

>Digits:=3; 

We have Sj = 4.21, S2 = 10.2, and S3 = 1.09. 
So 

lal1l 2.11 
- = =0.501, 

la211 4.01 
- = = 0.393, and 

la311 1.09 
--- =1. 

Sj 4.21 Sj 10.2 1.09 

The augmented matrix AA is defined by 

>AA:=matrix(3,4, [2.11,-4.21,0.921,2.01,4.01,10.2,-1.12,-3.09,1.09, 
0.987,0.832,4.21J); 

which gives 

2.11 -4.21 .921 
AA:= 4.01 10.2 -1.12 

1.09 .987 .832 

Since la3Ii/s3 is largest, we perform (Ed ++ (E3) using 

>AA:=swaprow(AA,1,3); 

to obtain 

AA:= 

Computing multipliers gives 

>m21:=4.01/1.09; 

1.09 .987 
4.01 10.2 
2.11 -4.21 

.832 
-1.12 

.921 

m21 := 3.68 

2.01 
-3.09 

4.21 

4.21 
-3.09 . 

2.01 

• 
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>m31:=2.11/1.09j 

m31 := 1.94 

We perform the first two eliminations using 

>AA:=addrow(AA,l,2,-m21)j 

and 

>AA:=addrow(AA,l,3,-m31)j 

to obtain 

1.09 .987 .832 4.21 
AA:= 0 6.57 -4.18 -18.6 

0 -6.12 -.689 -6.16 

Since 

_ia2_2i _ 6.57 _ 0 644 ia32i _ 6.12 _ 
- -. < - - 1.45, 

S2 10.2 S3 4.21 

we perform 

>AA:=swaprow(AA,2,3)j 

• • gIVIng 

1.09 .987 .832 
AA:= 0 -6.12 -.689 

0 6.57 -4.18 

The multiplier m32 is computed by 

>m32:=6.57/(-6.12)j 

m32 := -1.07. 

The elimination step 

>AA:=addrow(AA,2,3,-m32)j 

• gives 

1.09 .987 
AA := o -6.12 

o .02 

.832 
-.689 

-4.92 

4.21 
-6.16 

-18.6 

4.21 
-6.16 . 

-25.2 

• 

• 

We cannot use backsub because of the entry .02 in the (3, 2) position. This entry is 
nonzero due to rounding, but we can remedy this minor problem using the command 

>AA[3,2] :=0; 
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which replaces the entry .02 with aO. To see this enter 

>evalm(AA); 

which displays the matrix AA. Finally, 

>x:=backsub(AA); 

gives the solution 

x := [-.431 .430 5.12]. • 
The first additional computations required for scaled partial pivoting result from the 

determination of the scale factors; there are (n - 1) comparisons for each of the n rows, 
for a total of 

n(n - 1) comparisons. 

To determine the correct first interchange, n divisions are performed, followed by n - 1 
comparisons. So the first interchange determination adds 

n divisions and (n - 1) comparisons. 

Since the scaling factors are computed only once, the second step requires 

(n - 1) divisions and (n - 2) comparisons. 

We proceed in a similar manner until there are zeros below the main diagonal in all 
but the nth row. The final step requires that we perform 

2 divisions and 1 comparison. 

As a consequence, scaled partial pivoting adds a total of 

n-I (n - l)n 3 
n(n - 1) + I> = n(n - 1) + = -n(n - 1) 

k=! 2 2 

• compansons (6.7) 

and 

~k ~k n(n + 1) 1 di" ~ = ~ - 1 = 2 - VISIOns 
k=2 k=l 

to the Gaussian elimination procedure. The time required to perform a comparison is 
about the same as an addition/subtraction. Since the total time to perforlll the basic 
Gaussian elimination procedure is O(n3/3) multiplications/divisions and O(n3/3) addi
tions/subtractions, scaled partial pivoting does not add significantly to the computational 
time required to solve a system for large values of n. 

To emphasize the importance of choosing the scale factors only once, consider the 
amount of additional computation that would be required if the procedure were modified 
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so that new scale factors were deteImined each time a row interchange decision was to be 
made. In this case, the term n(n - 1) in Eq. (6.7) would be replaced by 

n 1 L k(k - 1) = -nCn2 
- 1). 

k=2 3 

As a consequence, this pivoting technique would add O(n3 /3) comparisons, in addi
tion to the [n (n + 1)/2] - 1 divisions. If a system warrants this type of pivoting, complete 
(or maximal) pivoting should instead be used. Complete pivoting at the kth step searches 
all the entries ai}, for i = k, k + 1, .,. ,n and j = k, k + 1, .,. ,n, to find the entry with 
the largest magnitude. Both row and column interchanges are performed to bring this entry 
to the pivot position. The first step of total pivoting requires that n2 - 1 comparisons be 
performed, the second step requires (n - 1)2 - 1 comparisons, and so on. Hence the total 
additional time required to incorporate complete pivoting into Gaussian elimination is 

tCk2 - 1) = _nC_n_-_l_)_(2_n_+_5_) 

k=2 . 6 

comparisons. This figure is comparable to the number required for the modified scaled
column pivoting technique, but no divisions are required. Complete pivoting is, conse
quently, the strategy recommended for systems where accuracy is essential and the amount 
of execution time needed for this method can be justified. 

E X ERe I S ESE T 6.2 
1. Find the row interchanges that are required to solve the following linear systems using Algo

rithm 6.1. 

a. XI-5X2+ x3=7, 

lOx I + 20X3 = 6, 

X3 = 4. 

C. 2x1 - 3X2 + 2X3 = 5, 

-4Xl + 2x2 - 6X3 = 14, 

2Xl + 2x2 + 4X3 = 8. 

2. Repeat Exercise 1 using Algorithm 6.2. 

3. Repeat Exercise 1 using Algorithm 6.3. 

4. Repeat Exercise 1 using complete pivoting. 

b. Xl + x2 - X3 = 1, 

Xl + X2 + 4X3 = 2, 

2Xl - X2 + 2X3 = 3. 

d. X2 + X3 = 6, 

Xl - 2X2 - X3 = 4, 

Xl - X2 + X3 = 5. 

5. Use Gaussian eliminiation and three-digit chopping arithmetic to solve the following linear 
systems, and compare the approximations to the actual solution. 

a. 0.03XI + 58.9x2 = 59.2, 

5.31xI - 6.lOx2 = 47.0. 

Actual solution (10, 1)'. 

b. 58.9xI + O.03X2 = 59.2, 

-6.IOxI +5.3lx2 = 47.0. 

Actual solution (I, 10)'. 
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C. 3.03xl - 12.1x2 + 14x3 = -119, 

-3.03xl + 12.lx2 - 7X3 = 120, 

6.11xl - 14.2x2 + 21x3 = -139. 

Actual solution (0, 10, ~)'. 

d. 3.3330Xl + 15920x2 + 1O.333x3 = 7953, 

2.2220xI + 16.71Ox2 + 9.6120x3 = 0.965, 

-1.5611xl + 5. 1792x2 - 1.6855x3 = 2.714. 

Actual solution (1, 0.5, -1)'. 

e. 1.19xl + 2.llx2 - lOOx3 +X4 == 1.12, 

14.2xl - 0.122x2 + 12.2x3 - X4 == 3.44, 

100x2 - 99.9x3 + X4 == 2.15, 

15.3xl + 0.110x2 - 13.1x3 - X4 == 4.16. 

Actual solution (0.17682530,0.01269269, -0.02065405, -1.18260870)'. 

r. ]l'Xl - eX2 + .J2X3 - v3X4 = v'tT, 
]l'2Xl + eX2 - e2x3 + ~X4 = 0, 

J5xl - "J6X2 + X3 - .J2X4 =]l', 

]l'3 X1 + e2
x2 - .J7x3 + !X4 = .J2. 

Actual solution (0.78839378, -3.12541367, 0.16759660, 4.55700252)'. 

6. Repeat Exercise 5 using three-digit rounding arithmetic. 

7. Repeat Exercise 5 using Gaussian elimination with partial pivoting. 

8. Repeat Exercise 6 using Gaussian elimination with partial pivoting. 

9. Repeat Exercise 5 using Gaussian elimination with scaled partial pivoting. 

10. Repeat Exercise 6 using Gaussian elimination with scaled partial pivoting. 

11. Repeat Exercise 5 using Algorithm 6.1 with single-precision computer arithmetic. 

12. Repeat Exercise 5 using Algorithm 6.2 with single-precision computer arithmetic. 

13. Repeat Exercise 5 using Algorithm 6.3 with single-precision computer arithmetic. 

14. Construct an algorithm for the complete pivoting procedure discussed in the text. 

15. Use the complete pivoting algorithm developed in Exercise 14 to obtain solutions to 

a. Exercise 5 

16. Suppose that 

b. Exercise 6 

2Xl + X2 + 3X3 = 1, 

4Xl + 6X2 + 8X3 = 5, 

6xj + etXz + lOx3 = 5, 

c. Exercise 11 

369 

with let I < 10. For which of the following values of et will there be no row interchange required 
when solving this system using scaled partial pivoting? 

a. a = 6 b. a = 9 c. a = -3 
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6.3 Linear Algebra and Matrix Inversion 

Definition 6.2 

DefInition 6.3 

Definition 6.4 

EXAMPLE 1 

Matrices were introduced in Section 6.1 as a convenient method for expressing and manip
ulating linear systems. In this section we consider some algebra associated with matrices 
and show how it can be used to solve problems involving linear systems. 

Two matrices A and B are equal if they have the same number of rows and columns, say 
n x m, and if aij = bij, for each i = 1,2, ... , n and j = 1,2, ... , m. _ 

This definition means, for example, that 

since they differ in dimension. 

2 -1 7 
3 1 0 

2 3 
-1 1 

7 0 
, 

Two important operations perfOlmed on matrices are the sum of two matrices and the 
multiplication of a matrix by a real number. 

If A and B are both n x m matrices, then the sum of A and B, denoted A + B, is the n x m 
matrix whose entries are aij + bij, for each i = 1, 2, ... , nand j = 1, 2, ... , m. _ 

If A is an n x m matrix and J.. is a real number, then the scalar multiplication of J.. and 
A, denoted A.A, is the n x m matrix whose entries are J..aij, for each i = 1, 2, .... nand 
j = 1,2, ... , m. _ 

Let 

A = 2 -1 7 
3 1 0 ' 

B = 4 2 -8 
o 1 6 

and J.. = -2. Then 

A+B= 
2+4 
3+0 

-1+2 7-8 
1+1 0+6 

and 

J..A= 
-2(2) 
-2(3) 

-2(-1) 
-2(1) 

-2(7) 
-2(0) -

- 6 1 
3 2 

-4 2 
-6 -2 

-1 
6 ' 

-14 
o . -

Let 0 denote a matrix all of whose entries are 0 and - A be the matrix whose entries 
are -aij' We have the following general properties for matrix addition and scalar multi
plication. These properties are sufficient to classify the set of all n x m matrices with real 
entries as a vector space over the field of real numbers. (See [ND, pp. 107-109].) 
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Let A, B, and C be n x m matrices and A. and J.L be real numbers. The following properties 
of addition and scalar multiplication hold: 

a. A + B = B + A, 

c. A + 0 = 0 + A= A, 

e. A.(A + B) = A.A + A.B, 

g. )'(J.LA) = ()'J.L)A, 

, 
b. (A + B) + C = A + (B + C), 

d. A + (-A) = -A + A = 0, 

f. (). + J.L)A = )'A + J.LA, 

h. lA = A. 

All these properties follow from similar results concerning the real numbers. • 
Let A be an n x m matrix and B an m x p matrix. The matrix product of A and B, denoted 
AB, is an n x p matrix C whose entries cij are 

m 

Cij = L aikbkj = ail b 1j + ai2b 2j + ... + aimbmj, 

k=1 

foreachi = 1,2, ... n,and} = 1,2, ... ,p. • 
The computation of Cij can be viewed as the multiplication of the entries of the ith row 

of A with corresponding entries in the}th column of B, followed by a summation; that is, 

where 

• 
• 
• 

m 

Cij = ai I b 1j + ai2b 2j + ... + aimbmj = L aikbkj. 

k=1 

This explains why the number of columns of A must equal the number of rows of B for 
the product AB to be defined. 

The following example should serve to further clarify the matrix multiplication pro
cess. 

EXAMPLE 2 Let 

A= 

C= 

2 1 
3 1 
o -2 

-I 
2 , 

-3 

2 I 0 
-I 3 2 ' 

3 2 
B= -I 1 , 

and D = 

6 4 

I -I 1 
2 -I 2 
303 

• 
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Then, 

Further, 

1 -3 1 
AD = 11 -4 11 

-13 2-13 

BC= 
4 

-3 
8 

9 4 
2 2 

18 8 

-1 -2 -6 
1 -3 -10 = DA. 
6 -3 -12 

and CB = 
5 5 
6 9 

are not even the same size. 
Finally, 

AB= 

but B A cannot be computed. 

-1 1 
20 15 

-16 -14 
, 

• 
Definition 6.7 A square matrix has the same number of rows as columns. A diagonal matrix is a square 

matrix D = (dij) withdij = o whenever i =1= j. The identity matrix of order n, In = (8ij), 
is a diagonal matrix with entries 

DefInition 6.' 

EXAMPLE 3 

1, if i = j, 
8ij = 

0, ifi =1= j. 

When the size of In is clear, this matrix is generally written simply as I. 

For example, the identity matrix of order three is 

1 0 0 
1= o 1 0 • 

o 0 1 

An upper-triangular n x n matrix U = (uij) has, for each j = 1, 2, ... , n, the entries 

Uij = 0, for each i = j + 1, j + 2, ... , n; 

and a lower-triangular matrix L = (lij) has, for each j = 1, 2, ... , n, the entries 

lij = 0, for each i = 1, 2, ... , j - 1. 

Consider the identity matrix of order three, 

h= 
1 0 0 
o 1 0 
001 

• 

• 

• 
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If A is any 3 x 3 matrix, then 

a1l al2 aI3 

Ah = aZI azz aZ3 

a31 a3Z a33 

1 0 0 
010 
o 0 1 

--

373 

all alZ al3 

aZI aZ2 a23 = A. • 
a31 a3Z a33 

The identity matrix In commutes with any n x n matrix A; that is, the order of mul
tiplication does not matter, InA = A = Aln. In Example 2 it was seen that the property 
A B = B A is not generally true for matrix multiplication. Some of the properties involving 
matrix mUltiplication that do hold are presented in the next theorem. 

Let A be an n x m matrix, B be an m x k matrix, C be a k x p matrix, D be an m x k 
matrix, and)" be a real number. The following properties hold: 

a. A(BC) = (AB)C; b. A(B + D) = AB + AD; 

c. 1mB = Band Bh = B; d. )"(AB) = ()"A)B = A()"B). 

Prool The verification of the property in part (a) is presented to show the method in
volved. The other parts can be shown in a similar manner. 

To show that A(BC) = (AB)C, compute the i, j-entry of each side of the equation. 
B C is an m x p matrix with i, j -entry 

k 

(BC)U = L bi/clj. 
1=1 

Thus, A(BC) is an n x p matrix with entries 

m m 

[A(BC)]ij = L ais(BC)sj = L ais 
.=1 s=1 

Similarly, AB is an n x k matrix with entries 
• 

m 

(AB)ij = L ai.bsj, 
.=1 

so (AB)C is an n x p matrix with entries 

. k k 

[(AB)C]ij = L(AB)i/clj = L 
1=1 1=1 

k m 

Clj = L L ai.bsIClj. 
1=1 .=1 

Interchanging the order of summation on the right side gives 

m k 

[(AB)C]ij = LLai.b.IClj = [A(BC)];), 
.=1 1=1 

for each i = 1,2, ... , nand j = 1,2 •...• p. So A(BC) = (AB)C. • • • 
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The linear system 

allXI + a12X2 + ... + alnXn = bl , 

a21 XI + a22 X2 + ... + a2n x n = b2 , 

• • 
• • 
• • 

can be viewed as the matrix equation 

Ax = b, 

where 

all al2 • • • aln XI bl 

a21 a22 • • • a2n X2 b2 
A= • • , x= • • , and b= • • 

• • • • • 
• • • • • 

ani a n2 • • • ann Xn b n 

Related to the linear systems is the inverse of a matrix. 

Definition 6.10 An n x n matrix A is said to be nonsingular (or invertible) if an n x n matrix A -I exists 
with AA- I = A -I A = I. The matrix A -I is called the inverse of A. A matrix without an 

Theorem 6.11 

EXAMPLE 4 

inverse is called singular (or noninvertible). • 
The following properties regarding matrix inverses follow from Definition 6.10. The 

proofs of these results are considered in Exercise 5. 

For any nonsingular n x n matrix A:. 

a. A -I is unique. 

b. A-I is nonsingularand (A-I)-I = A. 

c. If B is also a nonsingular n x n matrix, then 

• 
Let 

2 5 I 
1 2 -1 -- - --

9 9 9 

A= 2 1 0 and B= 4 I 2 --
9 9 9 • 

-1 1 2 I I I -- - -
3 3 3 

Then 

2 5 I 
1 2 -1 -- -- I 0 0 9 9 9 

AB= 2 1 0 4 I 2 - 0 1 0 = h. • - -- -9 9 9 
-1 1 2 1 1 1 0 0 1 -- - -

3 3 3 

In a similar manner, B A = h so A and B are nonsingular with B = A -I and A = B-1. 
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If we have the inverse of A, we can easily solve a linear system of the form Ax = b. 
Suppose, for example, we want to solve 

XI + 2x2 - X3 = 2, 

2xI + X2 = 3, 

-XI + X2 + 2X3 = 4. 

First, convert the system to the matrix equation 

1 2 -1 
2 1 0 -

-1 1 2 

and then multiply both sides by the inverse: 

2 5 I 2 -- - -- 1 2 -1 --
9 9 9 XI 9 
4 I 2 2 1 0 X2 - 4 - -- - -
9 9 9 - 9 
I I I -1 1 2 X3 I -- - - --3 3 3 3 

so 

7 2 5 I -- - -- 1 2 -1 9 9 9 9 
13 - 4 I 2 2 1 0 - --
9 9 9 9 
5 3 3 3 -1 1 2 - -- - -3 9 9 9 

2 
3 
4 

XI 

X2 

X3 

This gives the solution XI = 7/9, X2 = 13/9, and X3 = 5/3. 

, 

5 I 7 -- 2 -
9 9 9 
I 2 3 13 -- - - -
9 9 9 

, 
I I 4 5 - -
3 3 3 

XI XI 

=h X2 - Xz • 

X3 X3 

• 
Although it is easy to solve a linear system of the form Ax = b if A-I is known, it is 

not computationally efficient to deteonine A -I in order to solve the system. (See Exercise 
8.) Even so, it is useful from a conceptual standpoint to describe a method for detennining 
the inverse of a matrix. 

To find a method of computing A-I assuming its existence, let us look again at matrix 
multiplication. Let Bj be the jth column of the n x n matrix B, 

bl} 

Bj = 
b2j 

• • 
• 
• 

b nj 

If AB = C, then the jth column of C is given by the product 

elj all al2 • • • aln b l ) L:Z=I alkbkj 

e2j a21 a22 • • • a2n b 2j L:Z=I aZkbkj 
= C j = ABj = -

• • • • • • • 
• • • • • • 
• • • • • • 

en} anI a n2 • • • ann b n} 2:;=1 ankbkj 
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Suppose that A -I exists and that A -I = B = (bij). Then A B = 1 and 

0 
• 
• 
• 

0 
ABj = 1 , where the value 1 appears in the lth row. 

0 
• 
• 
• 

0 

To find B we must solve n linear systems in which the lth column of the inverse is the 
solution of the linear system with right-hand side the lth column of I. The next example 
demonstrates this method. 

To detenuine the inverse of the matrix 

A= 
1 
2 

-1 

2 -1 
1 0, 
1 2 

let us first consider the product AB, where B is an arbitrary 3 x 3 matrix. 

1 2 -1 bll b l 2 b!3 
AB= 2 1 0 bZ1 b22 bZ3 

-1 1 2 b31 b32 b33 

bll + 2bzI - b31 biZ + 2bn - b3Z 
- 2bll + b21 2bl 2 + b22 -

-bll + b21 + 2b31 -b12 + b22 + 2b32 

If B = A -I, then A B = I, so we must have 

bll + 2b21 - b31 = 1, 
2bll + b21 = 0, 
-bll + b21 + 2b31 = 0, 

b12 + 2b22 - b32 = 0, 
2bl 2 + b22 = 1, 

-b12 + b22 + 2b32 = 0, 

b13 + 2bz3 - b33 
2b13 + b23 • 

-b13 + b23 + 2b33 

b13 + 2b23 - b33 = 0, 
2b l3 + b23 = 0, 
-b13 + b23 + 2b33 = 1. 

Notice that the coefficients in each of the systems of equations are the same, the only 
change in the systems occurs on the right side of the equations. As a consequence, Gaussian 
elimination can be perfonned on a larger augmented matrix fOlmed by combining the 
matrices for each of the systems: 

1 
2 

-1 

2 -1 : 1 0 0 
1 
1 

• 

o : 0 1 0 
• 

2 : 0 ° 1 
• 

First, performing (Ez - 2EI ) --+ (Ez) and (E3 + E 1) --+ (E3), followed by (E3 + E 2 ) --+ 
(E 3) produces 

1 2 -1 • 1 0 0 1 2 -1 • 1 0 0 • • 
• • 

0 -3 2 • -2 1 0 and 0 -3 2 • -2 1 0 • • • 
• • 

0 3 1 • 1 0 1 0 0 3 • -1 1 1 • • 
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Backward substitution is performed on each of the three augmented matrices, 

1 2 
o -3 
o 0 

to eventually give 

-1 • 

1 • 

2 • -2 • 
• 

3 • -1 

bll = -~, 

b - 4 
21 - 9' 

b - 1 
31 - - 3' 

, 
1 2 
o -3 
o 0 

b - 5 
12 - 9' 

b22 = -!, 
b - 1 

32 - 3' 

-1 · 0 
• 

2 : 1 
• 

3 : 1 

and 

As shown in Example 4, these are the entries of A-I: 

2 5 I -- --
9 9 9 

A-I = 4 I 2 - --9 9 9 
I 1 I -- - -3 3 3 

, 
1 2 
o -3 
o 0 

-1 : 0 

b13 = -b, 
b - 2 

23 - 9' 

b - 1 
32 - 3' 

• 

2 : 0 
• 

3 : 1 

377 

, 

• 

In the last example we illustrated the computation of A-I. As we saw in that example, 
it is convenient to set up a larger augmented matrix, 

[A • I] . • 
• 

Upon perfonning the elimination in accordance with Algorithm 6.1, we obtain an aug
mented matrix of the fOlm 

[u • y] , • 
• 

where U is an upper-triangular matrix and Y is the matrix obtained by performing the same 
operations on the identity I that were perfolmed to take A into U. 

Gaussian elimination with backward substitution requires 4n 3/3 - nl3 multiplica
tions/divisions and 4n3 13-3n2 12+n16 additions/subtractions to solve the n linear systems 
(see Exercise 8(a». Special care can be taken in the implementation to note the operations 
that need not be performed, as, for example, a multiplication when one of the multipliers 
is known to be unity or a subtraction when the subtrahend is known to be O. The number 
of multiplications/divisions required can then be reduced to n3 and the number of addi
tions/subtractions reduced to n3 - 2n2 + n (see Exercise 8(d». 

Another important matrix associated with a given matrix A is its transpose, de
noted N. 

DefInition 6.12 The transpose of an n x m matrix A = (aij) is the m x n matrix N, where for each i, the 
ith column of At is the same as the ith row of A, that is, N = (aji). A square matrix A is 
called symmetric if A = AI. • 

For example, the matrices 

7 2 0 
2 4 7 

6 4 -3 
A= 3 5 -1 B= c= 4 -2 0 , 

3 -5 -1 , 
0 5 -6 -3 0 I 
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have transposes 

7 3 0 2 3 6 4 -3 
At= 2 5 5 , Bt= 4 -5 , Cl = 4 -2 0 • 

0 -1 -6 7 -1 -3 0 1 

The matrix C is symmetric since C t = C, but the matrices A and B are not. 
The proof of the next result follows directly from the definition of the transpose. 

The following operations involving the transpose of a matrix hold whenever the operation 
is possible: 

a. (Nl = A, b. (A + B)I = At + B t, 

c. (AB)l = Bt N, d. if A-I exists, then (A-I)l = (N)-l. 

• 
Any CAS can be used to perform matrix operations. For example, matrix addition 

is done in Maple with matadd(A, B) or evalm(A+B). Scalar multiplication is defined by 
scalarmulCA, c) or evalm(c*A). 

Matrix multiplication is done using multiply(A,B) or evalm(A&*B). Matrix trans
position is achieved with transpose (A) and matrix inversion, with inverse (A) . 

E X ERe I S ESE T 6.3 

1. Detennine which of the following matrices are nonsingular, and compute the inverse of these 
matrices: 

a. 

c. 

e. 

426 
3 0 7 

-2-1 -3 

400 
000 
003 

4 000 
6 700 
9 11 1 0 
541 1 

b. 

d. 

f. 

1 2 0 
2 1 -1 
3 1 1 

1 1 -1 1 
1 2 -4 -2 
2 1 1 5 

-1 0 -2 -4 

2 0 1 2 
1 1 0 2 
2 -1 3 1 
3 -1 4 3 

2. Consider the four 3 x 3 linear systems having the same coefficient matrix: 

2xI - 3X2 + X3 = 2, 

XI + X2 - X3 = -I, 

-XI + X2 - 3X3 = 0; 

2xI - 3X2 + X3 = 0, 

XI + X2 - X3 == I, 

-Xl + X2 - 3X3 = -3; 

2xI - 3X2 + X3 = 6, 

XI + X2 - X3 = 4, 

-Xl + X2 - 3X3 = 5; 

2xI - 3X2 + X3 = -1, 

Xl + X2 - X3 = 0, 

-Xl + X2 -3X3 = o. 
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a. Solve the linear systems by applying Gaussian elimination to the augmented matrix 

2 -3 1 
1 1 -I 

-1 1 -3 

• 
• 

• 
• 
• 
• 

2 
-1 

0 

6 0-1 
410 
5 -3 0 

b. Solve the linear systems by finding and mUltiplying by the inverse of 

2 -3 1 
A = I 1-1 

-I 1-3 

c. Which method requires more operations? 

3. Repeat Exercise 2 using the linear systems 

Xl - X2 + 2X3 - X4 = 6, 

XI - X3 + X4 = 4, 

2XI + X2 + 3X3 - 4X4 = -2, 

- X2 + X3 - X4 = 5; 

Xl - X2 + 2X3 - X4 = 1, 

Xl - X3 + X4 = I, 
2XI + X2 + 3X3 - 4X4 = 2, 

- X2 + X3 - X4 = -I. 

4. Prove the following statements or provide counterexamples to show they are not true. 

a. The product of two symmetric matrices is symmetric. 

b. The inverse of a nonsingular symmetric matrix is a nonsingular symmetric matrix. 

c. If A and B are n x n matrices, then (AB)' = A' B'. 

5. The following statements are needed to prove Theorem 6.11. 

a. Show that if A-I exists, it is unique. 

b. Show that if A is nonsingular, then (A -1 )-1 = A. 

c. Show that if A and B are nonsingular n x n matricies, then (AB)-I = B-1 A-I. 

6. Prove Theorem 6.5. 

7. a. Show that the product of two n x n lower triangular matrices is lower triangular. 

b. Show that the product of two n x n upper triangular matrices is upper triangular. 

c. Show that the inverse of a nonsingular n x n lower triangular matrix is lower triangular. 

8. Suppose m linear systems 

Ax(p) = hlp), P = 1,2, ... , m, 

are to be solved, each with the n x n coefficient matrix A. 

a. Show that Gaussian elimination with backward substitution applied to the augmented 
matrix 

• reqUlres 

and 

• 

1 3 2 1 
3 n + mn - 3 n multiplications/divisions 

13 212 1 
-n + mn - -n - mn + -n additions/subtractions. 
326 
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b. Show that the Gauss-Jordan method (see Exercise 8, Section 6.1) applied to the aug
mented matrix 

• reqUires 

I 3 2 I 
-n + mn - -n multiplications/divisions 
2 2 

and 

I 
- -m n 
2 

additions/subtractions. 

c. For the special case 

0 
• 
• 

b(p) = 0 
I +- pth row, 

• 
• 

• 

0 

for each p == 1, ... , m, with m == n, the solution x(p) is the pth column of A -I. Show 
that Gaussian elimination with backward substitution requires 

4 3 1 
3 n - 3 n multiplications/divisions 

and 

4 3 3 2 1 
-n - -n + -n additions/subtractions 
3 2 6 

for this application, and that the Gauss-Jordan method requires 

and 

3 3 I 
-n - -n multiplications/divisions 
2 2 

3 3 2 I 
-n - 2n + -n additions/subtractions. 
2 2 

d. Construct an algorithm using Gaussian elimination to find A -I, but do not perform mul
tiplications when one of the multipliers is known to be I, and do not perform addi
tions/subtractions when one of the elements involved is known to be O. Show that the 
required computations are reduced to n3 multiplications/divisions and n3 

- 2n2 + n ad
ditions/subtractions. 

e. Show that solving the linear system Ax == b, when A -I is known, still requires n2 multi
plications/divisions and n2 

- n additions/subtractions. 

f. Show that solving m linear systems Ax(p) == b(p), for p == I, 2, ... , m, by the method 
x(p) == A -Ib(p) requires mn2 multiplications and m(nz - n) additions, if A -I is known . 

• 
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g. Let A be an n x n matrix. Compare the number of operations required to solve n linear 
systems involving A by Gaussian elimination with backward substitution and by first 
inverting A and then multiplying Ax = b by A-I, for n = 3,10,50,100. Is it ever 
advantageous to compute A-I for the purpose of solving linear systems? 

9. Use the algorithm developed in Exercise 8(d) to find the inverses of the nonsingular matrices 
in Exercise 1. 

10. It is often useful to partition matrices into a collection of submatrices. For example, the matri
ces 

I 
A= 3 

6 

can be partitioned into 

and 

2 -I 
-4 -3 

5 0 
and B = 

2 
3 

-2 

-I 
o 
1 

2 
3 

• • • 

-2 

1 2:-1 
3 -4:-3 
• • • • • • • • • • • • 

6 5: 0 

-1 7 • 
• 

0 4 
• 

• 

0 
5 

• • • • • • • • • • • • • • • 

1 -3 • 1 • 

AIl : AI2 . . . . . . . . . . . 
A21 : A22 

Bll • BI2 • 
• • • • • • • • • • 

B21 • B22 • 

a. Show that the product of A and B in this case is 

7 0 
4 5 

-3 1 

AB= • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

b. If B were instead partitioned into 

2 -1 7 • 0 • 
Bll • B12 • • • • • • • • • • • • • • • • • • • 

B - 3 0 4 • 5 - . . . . . . . . . • - , 
• B21 • B22 -2 1 -3 • 1 · 

would the result in part (a) hold? 

c. Make a conjecture concerning the conditions necessary for the result in part (a) to hold 
in the general case. 

11. In a paper entitled "Population Waves," Bemadelli [Ber] (see also [SeD hypothesizes a type of 
simplified beetle that has a natural life span of 3 years. The female of this species has a survival 
rate of ; in the first year of life, has a survival rate of ~ from the second to third years, and gives 
birth to an average of six new females before expiring at the end of the third year. A matrix 
can be used to show the contribution an individual female beetle makes, in a probabilistic 
sense, to the female population of the species by letting au in the matrix A = (aij) denote the 
contribution that a single female beetle of age j will make to the next year's female population 
of age i; that is, 

A= 
o 
1 
2 
o 

o 
o 
1 
3 

6 
o 
o 

• 
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a. The contribution that a female beetle makes to the population 2 years hence is detennined 
from the entries of A 2, of 3 years hence from A 3 , and so on. Construct A 2 and A 3 , and try 
to make a general statement about the contribution of a female beetle to the population 
in n years' time for any positive integral value of n. 

b. Use your conclusions from part (a) to describe what will occur in future years to a pop
ulation of these beetles that initially consists of 6000 female beetles in each of the three 
age groups. 

c. Construct A -I, and describe its significance regarding the popUlation of this species. 

12. The study of food chains is an important topic in the detennination of the spread and accumu
lation of environmental pollutants in living matter. Suppose that a food chain has three links. 
The first link consists of vegetation of types v I , V2, . . . ,Vn , which provide all the food require
ments for herbivores of species hI, h2 , ••• , hm in the second link. The third link consists of 
carnivorous animals CI. C2, ... ,Ck, which depend entirely on the herbivores in the second link 
for their food supply. The coordinate ail of the matrix 

represents the total number of plants of type Vi eaten by the herbivores in the species h J , 

whereas hi} in 

describes the number of herbivores in species hi that are devoured by the animals of type C j. 

a. Show that the number of plants of type Vi that eventually end up in the animals of species 
C j is given by the entry in the i th row and j th column of the matrix A B . 

b. What physical significance is associated with the matrices A-I, B-1, and (AB)-I = 
B-1 A -I? 

13. In Section 3.5 we found that the parametric form (x(t), y(t» of the cubic Hennite polynomials 
through (x(O), yeO»~ = (xo, Yo) and (x(I), y(I» = (XI. YI) with guide points (xo+ao, Yo+ 
/30) and (XI - al. YI - fJI). respectively. are given by 

and 

yet) = [2(yo - YI) + (/30 + /31)]t 3 + [3(YI - Yo) - /31 - 2fio]t2 + fiot + Yo· 

The Bezier cubic polynomials have the form 

and 

A) ( 3 2 yet = [2 Yo - YI) + 3(/30 + fiJ)]t + [3(YI - Yo) - 3(fJI + 2fJo)]t + 3fJot + Yo. 
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a. Show that the matrix 

7 4 4 0 

A= -6 -3 -6 0 
0 0 3 0 
0 0 0 1 

transfonns the Hermite polynomial coefficients into the Bezier polynomial coefficients. 

h. Determine a matrix B that transfonns the Bezier polynomial coefficients into the Hermite 
polynomial coefficients. 

14. Consider the 2 x 2 linear system (A + i B)(x + iy) = c + id with complex entries in component 
fonn: 

(all + ibll)(XI + iyd + (al2 + ib 1Z )(X2 + iyz) = Cl + id1, 

(a2J + ib2d(XI + iYl) + (a22 + ib22 )(X2 + iY2) = Cz + idz. 

a. Use the properties of complex numbers to convert this system to the equivalent 4 x 4 real 
linear system 

h. Solve the linear system 

Ax - By = c, 

Bx+ Ay = d. 

(I - 2i)(XI + iYl) + (3 + 2i)(X2 + iyz) = 5 + 2i, 

(2 + i)(XI + iYl) + (4 + 3i)(xz + iyz) = 4 - i. 

6.4 The Detenninant of a Matrix 

Definition 6.14 

The determinant of a matrix provides existence and uniqueness results for linear systems 
having the same number of equations and unknowns. We will denote the determinant of a 
square matrix A by det A, but it is also common to use the notation 1 A I. 

a. If A = [a] is a 1 x 1 matrix, then detA = a. 

h. If A is an n x n matrix, the minor Mij is the determinant of the (n - 1) x (n - 1) 
submatrix of A obtained by deleting the ith row and jth column of the matrix A. 

c. The cofactor Aij associated with Mij is defined by Ai} = (_l)i+ j Mij. 

d. The determinant of the n x n matrix A, when n > 1, is given either by 

n n " ,,+ detA = ~aijAij = ~(_1)' laijMi) , for any i = 1, 2, ... , n, 
j=! j=! 

or by 

for any j = 1, 2, ... , n. • 
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It can be shown (see Exercise 9) that to calculate the determinant of a general n x n ma
trix by this definition requires 0 (n!) multiplications/divisions and additions/subtractions. 
Even for relatively small values of n, the number of calculations becomes unwieldy. 

Although it appears that there are 2n different definitions of det A, depending on which 
row or column is chosen, all definitions give the same numerical result. The flexibility in 
the definition is used in the following example. It is most convenient to compute det A 
across the row or down the column with the most zeros. 

Let 

2 -1 3 0 

A= 
4 -2 7 0 

-3 -4 I 5 • 

6 -6 8 0 

To compute det A, it is easiest to expand about the fourth column: 

det A = al4AI4 + a24A24 + a34A34 + a44A44 = 5A34 = -5M34. 

Eliminating the third row and the fourth column gives 

2 -1 3 
det A = -5 det 4 - 2 7 

6 -6 8 

= -5 
-2 7 

2 det -6 8 - (-1) det 
474 
6 8 + 3det 6 

-2 
-6 = -30. • 

The deteIlllinant of a matrix can also be computed in Maple by the command det (A) ; . 

The following properties are useful in relating linear systems and Gaussian elimination 
to determinants. These are proved in any standard linear algebra text. (See, for example, 
[ND, pp. 200-201].) 

Suppose A is an n x n matrix: 

a. If any row or column of A has only zero entries, then det A = O. 

h. If A has two rows or two columns the same, then det A = O. 
- -

c. If A is obtained from A by the operation (E;) ~ (Ej ), with i i= j, then det A = 
- det A. 

d. If A is obtained from A by the operation (AE;) -+ (E;), then det A = A det A. 
-e. If A is obtained from A by the operation (E; + AE j) -+ (E;) with i i= j, then -detA = detA. 

f. If B is also an n x n matrix, then det A B = det A det B., 

g. det At = det A. 

h. When A -I exists, det A-I = (det A)-I. 

i. If A is an upper triangular, lower triangular, or diagonal matrix, then det A = 

• 
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A matrix in triangular form has an easily calculated determinant, so computing the 
determinant of any matrix can be simplified by first reducing the matrix to triangular form, 
and then using part (i) of the theorem to find the determinant of the triangular matrix. 

Compute the determinant of the matrix 

A= 

2 1 -1 1 
1 1 0 3 

-1 2 3-1 
3 -I -I 2 

using parts (b), (d), and (e) of Theorem 6.15, doing the computations in Maple. Matrix A 
is defined by 

A:=matrix(4,4, [2,1,-1,1,1,1,0,3,-1,2,3,-1,3,-1,-1,2]); 

The sequence of operations in Table 6.2 produces the matrix 

I 1 1 1 -- -2 2 2 

A8= 
0 1 1 5 
0 0 3 13 • 

0 0 0 -13 

By part (i), detA8 = -39, so detA = 39. • 

Operation Maple Effect 

~EI->EI A1:= mulrow(A,1,O.5) detAl = ~ detA 

E2 - EI -> E2 A2:= addrow(A1,1,2,-1) detA2 = detAI = ~ detA 

E3 + EI -> E3 A3:= addrow(A2,1,3,1) detA3 = detA2 = ~ detA 

E4 - 3EI -> E4 A4:= addrow(A3,1,4,-3) detA4 = detA3 = ~ detA 

2E2 -> E2 A5:= mulrow(A,2,2) detA5 = 2detA4 = detA 

E3 - ;E2 -> E3 A6:= addrow(A,2,3,-2.5) detA6 = detA5 = detA 

E4 + ;E2 -> E4 A7:= addrow(A,2,4,2.5) detA7 = detA6 = detA 

E3 ++ E4 AS:= swaprow(A,3,4) detA8 = -detA7 = -detA 

The key result relating non singularity, Gaussian elimination, linear systems, and de
tenrunants is that the following statements are equivalent. 

The following statements are equivalent for any n x n matrix A: 

a. The equation Ax = 0 has the unique solution x = o. 
b. The system Ax = b has a unique solution for any n-dimensional column vector b. 

c. The matrix A is nonsingular; that is, A-I exists. 
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d. det A "1= O. 

e. Gaussian elimination with row interchanges can be performed on the system 
Ax = b for any n-dimensional column vector b. • 

E X ERe I S ESE T 6.4 

1. Use Definition 6.14 to compute the determinants of the following matrices: 

a. 

c. 

120 
2 1 -1 
311 

1 1 
1 2 
2 1 

-1 
-4 

1 
-1 0 -2 

b. 

1 
-2 

5 
d. 

-4 

2. Repeat Exercise 1 using the method of Example 2. 

3. Compute det A, det B, det A B, and det B A for 

A= 

4 
2 
3 

6 1 
1 0 
o 0 

-1 
I 
2 
1 

and B = 

4 0 
2 

1 
o 

2 3 
1 

2 

2 0 1 2 
1 1 0 2 
2 -1 3 1 
3 -1 4 3 

1 2 3 
o 2 -1 
003 

4 
1 
2 

1 -1 1 1 o 0 o -1 

-
4. Let A be a 3 x 3 matrix. Show that if A is the matrix obtained from A using any of the 

operations 

-
then det A = - det A. 

5. Find all values of a that make the following matrix singular. 

1 
A = 2 

o 

-1 
2 

a 
1 
3 --
2 

• 

6. Find all values of a that make the following matrix singular. 

1 2 -1 
A = 1 a 1 • 

2 a -1 

7. Find all values of a so that the following linear system has no solutions. 

2Xl - X2 + 3X3 = 5, 

4Xl + 2X2 + 2X3 = 6, 

-2Xl + aX2 + 3X3 = 4. 

• 
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8. Find all values of Ct so that the following linear system has an infinite number of solutions. 

2xI - X2 + 3X3 = 5. 

4xI + 2X2 + 2X3 = 6, 

-2xl + aX2 + 3X3 = 1. 

9. Use mathematical induction to show that when n > 1, the evaluation of the determinant of 
an n x n matrix using the definition requires n! L;-: ;, mUltiplications/divisions and n l - I 
additions/subtractions. 

10. Prove that AB is nonsingular if and only if both A and B are nonsingular. 

11. The solution by Cramer's rule to the linear system 

has 

and 

where 

allXI + a12X2 + a13X3 = bl , 

a2lxI + a22x2 + a23x3 = b2 , 

a3lXl + a32X2 + a33X3 = b3, 

1 
XI = - det 

D 

1 
X2 = D det 

1 
X3 = D det 

a. Find the solution to the linear system 

by Cramer's rule. 

b. Show that the linear system 

2xI + 3X2 - X3 = 4. 

XI - 2X2 + X3 = 6, 

XI - 12x2 + 5X3 = 10, 

2Xl + 3X2 - X3 = 4, 

XI - 2X2 + X3 = 6, 

-Xl - 12x2 + 5X3 = 9 

does not have a solution. Compute D l , D 2 , and D 3 . 

D2 
D' 
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c. Show that the linear system 

2xJ + 3X2 - X3 = 4, 
XI - 2X2 + X3 = 6, 

-XI - 12x2 + 5X3 = 10 

has an infinite number of solutions. Compute DJ, D 2 , and D 3 . 

d. Prove that if a 3 x 3 linear system with D = 0 has solutions, then Dl = D2 = D3 = O. 

e. Determine the number of multiplications/divisions and additions/subtractions required 
for Cramer's rule on a 3 x 3 system. 

12. a. Generalize Cramer's rule to an n x n linear system. 

b. Use the result in Exercise 9 to determine the number of multiplications/divisions and 
additions/subtractions required for Cramer's rule on an n x n system. 

6.5 Matrix Factorization 

Gaussian elimination is the principal tool in the direct solution of linear systems of equa
tions, so it should be no surprise that it appears in other guises. In this section we will see 
that the steps used to solve a system of the form Ax = b can be used to factor a matrix. The 
factorization is particularly useful when it has the form A = LV, where L is lower trian
gular and V is upper triangular. Although not all matrices have this type of representation, 
many do that occur frequently in the study of numerical techniques. 

In Section 6.1 we found that Gaussian elimination applied to an arbitrary linear system 
Ax = b requires 0 (n3 /3) arithmetic operations to determine x. If A has been factored into 
the triangular form A = LV, then we can solve for x more easily by using a two-step 
process. First we let y = Vx and solve the system Ly = b for y. Since L is triangular, 
determining y from this equation requires only O(n2) operations. Once y is known, the 
upper triangular system Vx = y requires only an additional O(n2) operations to determine 
the solution x. This fact means that the number of operations needed to solve the system 
Ax = b is reduced from O(n 3/3) to O(2n2). In systems greater than 100 by 100, this 
can reduce the amount of calculation by more than 97%. Not surprisingly, the reductions 
resulting from matrix factorization do not come free; determining the specific matrices L 
and V requires O(n3/3) operations. But once the factorization is determined, a system 
involving the matrix A and any vector b can be solved in this simplified manner. 

To examine which matrices have an LV factorization and to find how it is determined, 
first suppose that Gaussian elimination can be performed on the system Ax = b without 
row interchanges. With the notation in Section 6.1, this is equivalent to having nonzero 

. 1 (i) C h . 1 2 pIvot e ements aii ,lor eac I = , , ... , n. 
The first step in the Gaussian elimination process consists of performing, for each 

j = 2, 3, ... , n, the operations 

where 

(I) 
a'i , _ J 

mJ,1 - (I)' 

all 

(6.8) 
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These operations transform the system into one in which all the entries in the first column 
below the diagonal are zero. 

The system of operations in (6.8) can be viewed in another way. It is simultaneously 
accomplished by multiplying the original matrix A on the left by the matrix 

1 0: . . . . . . . . . . 0 
• • 

1. . .. • 

• • • 

• 
• • 

O . . · . . 
• • • 

• 

• • • • • • 

· '. ". '. 0 • • 
• • 

• • • • • • o· ...... : 0 . 1 

This is called the first Gaussian transfonnation matrix. We denote the product of 
this matrix with A (I) = A by A (2) and with b by b(2), so 

In a similar manner we construct M(2), the identity matrix with the entries below the 
diagonal in the second column replaced by the negatives of the multipliers 

(2) 
a ·2 

· _ J m j ,2- (2)· 
a22 

The product of this matrix with A (2) has zeros below the diagonal in the first two columns, 
and we let 

In general, with A (k)x = b(k) already fonned, multiply by the kth Gaussian transfor
mation matrix 

1. 0: ........ , .......................... 0 
• • • 

• • 
• • 

o. • • 
• • 

• • 
• • 

• 

• 
• 

• • • 
• • • 

• • 
• • 

• • 
• • 

• 
• 

• • • • • • 
• • • • • • • • • • 

• • • • 

0 • • 
• • • • 

• 
• • • 
• • • • 

• • 
• • 

• 
, • 

• • 
• 

-mk+l,k • 
• • 

• • 
• • • 

• 
• 

• • • • 
• • 

• • 
• • 

• • 

0 • • 
• • 

• 

• 
• • 

• • • • • • • • • • 
• • • • • • • 

• 
• • • • • 

• • 
• • • 
• • ·0 • 

• • • • 
• • • • 

• • • • • • o· ....... ·0 -m k n, o· ....... ·0 1 

to obtain 

The process ends with the formation of A (n)x = b(n), where A (n) is the upper triangular 
matrix 
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(1 ) (1) (1) 
aJl a 2 ......... a

l I . n 
• 

(2) 
• • 

• 

0 • • 
a 22 

• 

A (n) 
• • • - • • • • • - • • • 

• • • (n-I) 
, 

• • • • 

an-I,n • • 
• • • 

• • • • • 

O· 
• 

0 'a(n) • • • • • • • · • 
nn 

given by 

A (n) = M(n-I) M(n-2) ... M(l) A. 

This process forms the V = A (n) portion of the matrix factorization A = LV. To 
determine the complementary lower triangular matrix L, first recall the multiplication of 
A (k)X = b(k) by the Gaussian transfonnation of M(k) used to obtain (6.9): 

where M(k) generates the row operations 

To reverse the effects of this transformation and return to A (k) requires that the operations 
(E j + mj,kEk) -+ (E j ) be performed for each j = k + 1, ... ,n. This is equivalent to 
multiplying by the inverse of the matrix M(k), the matrix 

1 . 0: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 
• • • 

• • 
• 

O. 
• 

• 
• 

• , 
, 

, , 
• • • 

• , , 
• • , 

, , 
• • • • 

, 
, 

• 
• , • • , , , , , • 

• • , , , • , , 
• 

L (k) [MCk)r l • - -- - • 

• 
• 
, 

• 

0 , 
• 

• , 
• , , 

, , 
, , 

• , • 
• 

• 
• 

• 
, 

, 
, mk+l,k 

• • , , 
, , 

, , 
• , • • • 

• , 
• 

• • • • 

, 

• 
• 

, 
• 
, 

, 
, 
• 

o "" 
• 

, 
• 

, 
• • • • • 

, 
• • 

, 
• 

• • • • • • '0 , 
, 

, 
• • 

• • , • • • 
, 

, , • 
, , 

• · , 

0""""'0 mn,k 0"""",0 1 

The lower-triangular matrix L in the factorization of A is the product of the matrices 
L (k): 

1 0::········0 
, . 

1 • , 
• , 

• 
• 

• .. , 
• , • 

• • , • 

, • • • 

'0 
• • • 

m~I' ... ','mn,n-I ' . I 

since the product of L with the upper-triangular matrix V = MCn-1) , .. M(2) M(l) A gives 

LV = L (I) L (2) ... L (n-3) L (n-2) L (n-I) . M(n-I) M(n-2) M(n-3) ... M(2) M(I) A 

= [M(I)]-I[M(2)r 1 ••• [M(n-2)]-I[M(n-l)r 1 • M(n-I) M(n-2) .. , M(2) Mil) A = A. 

Theorem 6.17 follows from these observations. 
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If Gaussian elimination can be performed on the linear system Ax = b without row inter
changes, then the matrix A can be factored into the product of a lower-triangular matrix L 
and an upper-triangular matrix U, 

A = LU, 

(i) (i) where m J·,· = a·, /a .. , 
Jl II 

(I) 
all 

(I) (I) 
a 12 :,··,····aln 

• 
1 0: ......... 0 

• • • 
0 

U= • • 

(2) ... 
a'l2 ... • 

• m21 1. 
and L = 

• 
• • • • 

• 

• • • 
• • • 
• • 

• • 
'. (n-I) 

... an_l,n • 
• • 

• 

, 

• • • o· ........ '. 0 'a(n) 
nn 

The linear system 

XI + X2 + 3X4 = 4, 

2xI + X2 - X3 + X4 = 1, 

3x] - X2 - x3 + 2X4 = -3, 

-XI+2x2+3x3- X4= 4 

• • 
• 

0 . • • 
• • • • 

• 

• • 

was considered in Section 6.1. The sequence of operations (E2 - 2Ed ~ (E2), (E3 -
3Ed ~ (E3), (E4 - (-l)EI) ~ (E4), (E3 - 4E2) ~ (E3), (E4 - (-3)E2) ~ (E4) 
converts the system to the triangular system 

XI +X2 + 3X4 = 4. 

- X2 - X3 - 5X4 = -7. 

3X3 + 13x4 = 13, 

- 13x4 = -13. 

The multipliers mij and the upper triangular matrix produce the factorization 

1 1 0 

A= 
2 1 -1 
3 -1 -1 

-1 2 3 

3 
1 
2 

-1 

1 
2 
3 

000 
100 
410 

-1 -3 0 1 

1 1 0 
o -1 -1 
003 

3 
-5 
13 

o o -13 

= LU. 

This factorization permits us to easily solve any system involving the matrix A. For exam
ple, to solve 

1 0 0 0 

Ax= LUx= 
2 1 0 0 
3 4 1 0 

-1 -3 0 1 

1 1 
o -1 
o 0 
o 0 

o 3 
-1 -5 

3 13 
o -13 

we first introduce the substitution y = Ux. Then Ly = b; that is, 

Xl 8 
X2 7 -- 14 

, 
X3 
X4 -7 
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1 0 0 0 

LUx = Ly = 
2 1 0 0 
3 4 1 0 

-1 -3 0 1 

Yl 
Yz 
Y3 
Y4 

8 
7 

14 
-7 

This system is solved for y by a simple forward-substitution process: 

Yl = 8; 

2Yl + Yz = 7, so Yz = 7 - 2Yl = -9; 

• 

3Yl + 4yz + Y3 = 14, so Y3 = 14 - 3Yl - 4Y3 = 26; 

-Yl - 3yz + Y4 = -7, so Y4 = -7 + Yl + 3yz = -26. 

We then solve Ux = y for x, the solution ofthe original system; that is, 

1 1 
o -1 
o 0 
o 0 

o 3 
-1 -s 

3 13 
o -13 

8 
-9 
26 

-26 

• 

Using backward substitution we obtain X4 = 2, X3 = 0, Xz = -1, Xl = 3. • 
The factorization used in Example 1 is called Doolittle's method and requires that l's 

be on the diagonal of L, which results in the factorization described in Theorem 6.17. In 
Section 6.6, we consider Crout's method, a factorization which requires that l's be on the 
diagonal elements of U, and Choleski's method, which requires that Iii = Uii, for each i. 

A general procedure for factoring matrices into a product of triangular matrices is 
contained in Algorithm 6.4. Although new matrices L and U are constructed, the generated 
values can replace the corresponding entries of A that are no longer needed. 

Algorithm 6.4 pennits either the diagonal of L or the diagonal of U to be specified. 

LU 

To factor the n x n matrix A = (aij) into the product of the lower-triangular matrix L = 
(lij) and the upper-triangular matrix U = (uij); that is, A = LU, where the main diagonal 
OP either L or U consists of all ones: 

INPUT dimension n; the entries aij, 1 < i, j < n of A; the diagonal III = ... = Inn = I 
of L or the diagonal Ull = ... = Unn = 1 of U. 

OUTPUT the entries lij, 1 < } < i, 1 < i < n of L and the entries, uij, i < j < n, 
1 < i < n of U. - -

Step 1 Selectlll and Ull satisfying III Un = all. 
If lllUll = 0 then OUTPUT (,Factorization impossible'); 

STOP. 

Step2 For}=2, ... ,nsetulj=alj/lll; 
ljl = ajI!ull. 

(First row ofU.) 
(First column of L.) 
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Step 3 For i = 2, ... , n - 1 do Steps 4 and 5. 

Step 4 Select Ii; and Uii satisfying liiuii = aii - I:~~!!/ikuki' 

If liiuii = ° then OUTPUT (,Factorization impossible'); 
STOP. 

Step 5 For j = i + I, . . . , n 

! [ ,,; ~ 1 I ] set uij = Iii aij - L..k=1 ikUkj ; (i th row of U .) 

(ith column of L.) 

Step 6 Select Inn and Unn satisfying lnnunn = ann - I:;~~ InkUkll' 

(Note: Iflnnunn = 0, then A = LU but A is singular.) 

Step 7 OUTPUT (lij for j = 1, ... , i and i = 1, ... , n); 

OUTPUT (Ui; for j = i, ... , nand i = I, ... , n); 

STOP. 
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• 
Once the matrix factorization is complete, the solution to a linear system of the form 

Ax = LUx = b is found by first letting y = Ux and solving Ly = b for y. Since L is 
lower triangular, we have 

and, for each i = 2, 3, ... , n, 

1 
Yi =

Ii i 

YI 

i~ 1 

b i - LlijYj . 
j=! 

After y is found by this forward-substitution process, the upper-triangular system Ux = y 
is solved for x by backward substitution using the equations 

Xn = 
Yn 

and 
unn 

1 
Xi =-

Uii 

n 

Yi - L UijXj 

j=i+l 

• 

In the previous discussion we assumed that Ax = b can be solved using Gaussian 
elimination without row interchanges. From a practical standpoint, this factorization is 
useful only when row interchanges are not required to control the roundoff error resulting 
from the use of finite-digit arithmetic. Fortunately, many systems we encounter when us
ing approximation methods are of this type, but we will now consider the modifications 
that must be made when row interchanges are required. We begin the discussion with the 
introduction of a class of matrices that are used to rearrange, or permute, rows of a given 
matrix. 

An n x n permutation matrix P is obtained by rearranging the rows of In, the identity 
matrix. This gives a matrix with precisely one nonzero entry in each row and in each 
column, and each nonzero entry is a 1. 
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The matrix 

1 0 0 
P = 0 0 I 

o I 0 

is a 3 x 3 permutation matrix. For any 3 x 3 matrix A, multiplying on the left by P has the 
effect of interchanging the second and third rows of A: 

I 0 0 
PA= 0 0 I 

010 

all al2 al3 

a2l a22 a23 

a3l a32 a33 

all al2 al3 

a3l a32 a33 • 

a2l a22 a23 

Similarly, mUltiplying A on the right by P interchanges the second and third columns of A . 

• 
Two useful properties of permutation matrices relate to Gaussian elimination, the first 

of which is illustrated in the previous example. Suppose k l , ... , kn is a permutation of the 
integers I, ... , n and the permutation matrix P = (Pij) is defined by 

I, if j = k i , 
Pij = 

0, otherwise. 

Then 

(i) P A permutes the rows of A; that is, 

ak1l ak12 · . . akIn 

ak2l ak22 • • • abn 
PA= 

• 
• • • • • 
• • • • 
• • • • 

aknl akn2 • • • aknn 

(ii) p- l exists and p-l = pl. 

At the end of Section 6.4 we saw that for any nonsingular matrix A, the linear system 
Ax = b can be solved by Gaussian elimination, with the possibility of row interchanges. 
If we knew the row interchanges that were required to solve the system by Gaussian elim
ination, we could arrange the original equations in an order that would ensure that no row 
interchanges are needed. Hence there is a rearrangement of the equations in the system that 
permits Gaussian elimination to proceed without row interchanges. This implies that for 
any nonsingular matrix A, a permutation matrix P exists for which the system 

PAx = Pb 

can be solved without row interchanges. But this matrix P A can be factored into 

PA = LU, 

, , 
, , 

• 
, 

, 

[ 
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where L is lower triangular and V is upper triangular. Since p-I 
factorization 
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pI, we have the 

The matrix V is still upper triangular, but pI L is not lower triangular unless P = I. 

Since all = 0, the matrix 

o 1 -1 1 

A= 
1 1 -1 2 

-1 -1 1 0 
1 2 0 2 

does not have an LV factorization. However, using the row interchange (EI ) B (E2), 

followed by (E3 + E I ) --+ E3 and (E4 - E I ) --+ E4, produces 

1 1 -1 2 
o 1 
o 0 

-1 1 
o 2 

o 1 1 0 

• 

Then the row interchange (E3) B (E4), followed by (E3 - E2) --+ E 3 , gives the matrix 

1 1 

V= 
o 1 
o 0 
o 0 

-1 2 
-1 1 

2 -1 
o 2 

• 

The perlllutation matrix associated with the row interchanges (EI) B (E2) and (E3) B 

(E4) is 

p= 

o 1 0 0 
1 0 0 0 
o 0 0 1 
o 0 1 0 

• 

Gaussian elimination can be performed on P A without row interchanges to give the LV 
factorization of P A, 

So 

PA= 

1 0 0 0 
o 1 0 0 
1 1 1 0 

-1 0 0 1 

1 1 -1 2 
o 1 -1 1 
o 0 2-1 
o 0 0 2 

1 1 

A = P-ILV = (pIL)V = 
o 1 0 0 
1 000 

-1 0 0 1 
1 110 

o 1 
o 0 
o 0 

= LV. 

-1 
-1 

2 
o 

2 
1 

-1 
2 

• • 
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Maple has the command LUdecomp to compute a factorization of the form A = P LV 
of the matrix A. If the matrix A has been created, the function call 

>U:=LUdecomp(A,P='G', L='H'); 

returns the upper triangular matrix V as the value of the function and returns the lower 
triangular matrix L in H and the permutation matrix Pin G. 

E X ERe I 5 ESE T 6.5 

1. Solve the following linear systems: 

I 0 0 2 3 -I Xl 2 
a. 2 1 0 0 -2 1 X2 - -1 -

-1 0 1 0 0 3 X3 1 

2 0 0 1 1 1 Xl -1 
b. -1 1 0 0 1 2 X2 - 3 

3 2 -1 0 0 1 X3 0 

2. Consider the following matrices. Find the permutation matrix P so that P A can be factored 
into the product L U, where L is lower triangular with I's on its diagonal and U is upper 
triangular for these matrices. 

I 2 -I 
B. A= 24 0 

c. A= 

o 1 -1 

1 1 
1 I 
2 -1 
2 -1 

-1 0 
4 3 
2 4 
2 3 

o I 1 
b. A = I -2 -I 

1 -I I 

d. A= 

o 1 
o 1 
1 2 
1 1 

1 
1 

-1 
2 

2 
-1 

3 
o 

3. Factor the following matrices into the LV decomposition using the LU Factorization Algo
rithm with Ijj = 1 for all i. 

a. 

c. 

d. 

2 
3 
3 

-1 1 
3 9 
3 5 

2 0 0 0 
1 1.5 0 0 
o -3 0.5 0 
2 -2 1 1 

2.1756 
-4.0231 
-1.0000 

6.0235 

4.0231 
6.0000 

-5.2107 
7.0000 

-2.1732 
o 

1.1111 

b. 

5.1967 
1.1973 

o 
o -4.1561 

1.012 
-2.132 

3.104 

-2.132 
4.906 

-7.013 

3.104 
-7.013 

0.014 

4. Modify the LU Factorization Algorithm so that it can be used to solve a linear system, and 
then solve the following linear systems. 



, 
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a. 2Xl- X2+ x3=-1, 

3Xl + 3X2 + 9X3 = 0, 

3Xl + 3X2 + 5X3 = 4. 

b. 1.012xl - 2.132x2 + 3.I04x3 = 1.984, 

-2.132xl + 4.096x2 - 7.013X3 = -5.049, 

3.I04xl - 7.013x2 + 0.014x3 = -3.895 . 

• 

C. 2Xl 

Xl + 1.5x2 

3X2 + 0.5X3 

-3 - , 

= 4.5, 

= -6.6, 

d. 2.1756xl +4.023Ix2 - 2.1732x3 + 5. I 967x4 = 17.102, 

-4.023Ixl +6.0000X2 + 1.1973x4 = -6.1593, 

-1.0000Xl - 5.2107X2 + UllIx3 = 3.0004, 

6.0235xl + 7.0000X2 - 4.1561x4 = 0.0000. 

5. Obtain factorizations of the fonn A = pI L V for the following matrices. 

023 
a. A = I I-I 

o -1 I 

c. A= 

I 
3 
2 
I 

-2 3 
-6 9 

1 4 
-2 2 

o 
3 
I 

-2 

I 2-1 
b. A= I 2 3 

d. A= 

2 -I 4 

I 
I 
I 
2 

-2 3 
-2 3 
-2 2 

I 3 

o 
I 

-2 
-I 
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6. Suppose A = pI LV, where P is a pennutation matrix, L is a lower-triangular matrix with 
ones on the diagonal, and V is an upper-triangular matrix. 

a. Count the number of operations needed to compute pI LV for a given matrix A. 

b. Show that if P contains k row interchanges, then 

delP =detp l = (_l)k. 

c. Use det A = del pI det L det V = (_I)k det V to count the number of operations for 
determining det A by factoring. 

d. Compute det A and count the number of operations when 

0 2 1 4 -I 3 
1 2 -I 3 4 0 

A= 
0 1 1 -1 2 -1 
2 3 -4 2 0 5 

• 

1 I I 3 0 2 
-1 -1 2 -1 2 0 

7. a. Show that the LV Factorization Algorithm requires ~n3 - ~n multiplications/divisions 
and ~n3 - tn2 + ~n additions/subtractions. 

b. Show that solving Ly = b, where L is a lower-triangular matrix with iii = I for all i, 
requires ~ n2 - ~ n multiplications/divisions and ~ n2 - ~ n additions/subtractions. 
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C. Show that solving Ax = b by first factoring A into A = LV and then solving Ly = band 
V x = y requires the same number of operations as the Gaussian Elimination Algorithm 
6.1. 

d. Count the number of operations required to solve m linear systems AX(k) = b(k) for 
k = 1, ... ,m by first factoring A and then using the method of part (c) m times. 

6.6 Special Types of Matrices 

We will now tum attention to two classes of matrices for which Gaussian elimination can be 
performed effectively without row interchanges. The first class is described in the following 
definition. 

Definition 6.18 The n x n matrix A is said to be strictly diagonally dominant when 

EXAMPLE 1 

Theorem 6.19 

holds for each i = 1, 2, ... , n. 

Consider the matrices 

A= 
720 
3 5 -1 
o 5 -6 

n 

lau I > L laij I 
j=l, 
j#i 

and B = 
6 4-3 
4 -2 0 

-3 0 1 

-

• 

The non symmetric matrix A is strictly diagonally dominant since 171 > 121 + 101, 151 > 
131 +1-11, and 1-61 > 101 +151. The symmetric matrix B is not strictly diagonally dominant 
because, for example, in the first row the absolute value of the diagonal element is 161 < 
141 + 1-31 = 7. It is interesting to note that At is not strictly diagonally dominant, nor, of 
course, is Bt = B. • 

The following theorem was used in Section 3.4 to ensure that there are unique solu
tions to the linear systems needed to determine cubic spline interpolants. 

A strictly diagonally dominant matrix A is nonsingular. Moreover, in this case, Gaussian 
elimination can be perfollned on any linear system of the form Ax = b to obtain its unique 
solution without row or column interchanges, and the computations will be stable with 
respect to the growth of roundoff errors. -

Proof We first use proof by contradiction to show that A is nonsingular. Consider the 
linear system described by Ax = 0, and suppose that a nonzero solution x = (Xi) to this 
system exists. Let k be an index for which 

0< IXkl = max IXjl. 
l:sj:sn 
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Since I:J=I aijX j = 0 for each i = 1,2, ... , n, we have, when i = k, 

This implies that 

or 

n 

akkXk = - LakjXj. 
j=1. 
j# 

n 

lakkllxkl < L lakjllxjl, 
j=l. 
j# 
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This inequality contradicts the strict diagonal dominance of A. Consequently, the only 
solution to Ax = 0 is x = 0, a condition shown in Theorem 6.16 to be equivalent to the 
non singularity of A. 

To prove that Gaussian elimination can be perfonlled without row interchanges, we 
will show that each of the matrices A (2), A (3), ... , A (n) generated by the Gaussian elimi
nation process (and described in Section 6.5) is strictly diagonally dominant. 

Since A is strictly diagonally dominant, all :I 0 and A (2) can be formed. Thus, for 
each i = 2, 3, ... , n, 

S· (2) 0 
IDee ail = , 

(I) (I) 
(2) (I) a l ) ai I 

aij = aij - (I)' for 2 < j < n. 

all 

(I) (I) 
(I) a lj a i I 

a·· - --'--;:-::--
'J a(l) 

I I 

a
(l)a(l) 
Ij il 

(I) 
all 

I (1) I n 
< la(l) I - la(1) I + ail "la(1) I 

" Ii I (I) I ~ IJ 
all j=2 

ii'i 

(2) = laii I· 
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This establishes the strict diagonal dominance for rows 2, ... ,n. Since the first row of A (2) 

and A are the same, A (2) is strictly diagonally dominant. 
This process is continued inductively until the upper-triangular and strictly diagonally 

dominant A (n) is obtained. This implies that all the diagonal elements are nonzero, so 
Gaussian elimination can be performed without row interchanges. 

The demonstration of stability for this procedure can be found in [We]. ••• 

The next special class of matrices is called positive definite. 

Definition 6.20 A matrix A is positive definite if it is symmetric and if Xl Ax > 0 for every n-dimensional 

EXAMPLE 1 

vector x f= O. • 

Not all authors require symmetry of a positive definite matrix. For example, Golub 
and Van Loan [GV], a standard reference in matrix methods, requires only that Xl Ax > 0 
for each x f= O. Matrices we call positive definite are called symmetric positive definite in 
[GV]. Keep this discrepancy in mind if you are using material from other sources. 

To be precise, Definition 6.20 should specify that the 1 x 1 matrix generated by the 
operation Xl Ax has a positive value for its only entry since the operation is performed as 
follows: 

The matrix 

Xl Ax = [XI, X2, ... , Xn] 

= [X1' X2,"" Xn] 

alJ al2 

a2l a22 

• • 
• • 
• • 

ani a n2 

E;=1 aljXj 

EJ=1 a2jXj 

• 
• 
• 

• • • 

• • • 

• • • 

2 -1 0 
A = -1 2-1 

o -1 2 

aln Xl 

a2n X2 

• • 
• • 
• • 

ann Xn 

n n 

= LLa;jX;Xj . 

;=1 j=l 

is positive definite, for suppose x is any three-dimensional column vector. Then 

2 -1 0 Xl 

Xl Ax = [Xl, X2, X3] -1 2 -1 X2 

0 -1 2 X3 

2x1 - X2 

= [X1,X2,X3] -XI + 2X2 - X3 

-X2 + 2X3 

= 2x~ - 2X1X2 + 2x~ - 2XZX3 + 2xi. 
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Rearranging the terms gives 

I A 2 (2 2 2) (2 2 2 2 X X = Xl + Xl - XIX2 + X2 + X2 - X2 X3 + X3) + X3 

= xf + (Xl - X2)2 + (X2 - X3)2 + X~ 

and 

unless Xl = X2 = X3 = O. • 
It should be clear from Example 2 that using the definition to determine whether a 

matrix is positive definite can be difficult. Fortunately, there are more easily verified crite
ria, which are presented in Chapter 9, for identifying members of this important class. The 
next result provides some conditions that can be used to eliminate certain matrices from 
considerati on. 

If A is an n x n positive definite matrix, then 

a. A is nonsingular; 

b. aii > 0, for each i = I, 2, ... , n; 

c. maxI <k,}<n !ak;! :::: maxl<i<n !au!; 

d. (aij)2 < aija jj, for each i i= j. • 
Proof 

a. If x satisfies Ax = 0, then Xl Ax = O. Since A is positive definite, this implies 
x = O. Consequently, Ax = 0 has only the zero solution, and A is nonsingular. 

b. For a given i, let x = (x j ) be defined by Xi = I and X j = 0, if j i= i. Since x i= 0, 

o < Xl Ax = au. 

c. For k i= j, define x = (Xi) by 

0, if i i= j and i i= k, 

Xi = I, if i = j, 

-1, ifi=k. 

Since x i= 0, 

But AI = A, so ajk = akj and 

(6.10) 
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Now define z = (Zi) by 

0, if i ::f. j and i ::f. k, 
Zi = 

1, if i = j or i = k. 

Then Zl Az > 0, so 

Equations (6.10) and (6.11) imply that for each k ::f. j, 

akk + a·· 
la ·1 < )) 

kJ 2 < max la··1 _ u, 
l<i<n 

so max lakil < max laiil· 
l<k,j<n l<i<n 

d. For i ::f. j, define x = (Xk) by 

0, if k ::f. j and k ::f. i, 

Xk= a, ifk=i, 

1, ifk=j, 

where a represents an arbitrary real number. Since x ::f. 0, 

(6.11) 

As a quadratic polynomial in a with no real roots, the discriminant of pea) = 
aiia2 + 2aija + aii must be negative. Thus, 

and • • • 

Although Theorem 6.21 provides some important conditions that must be true of posi
tive definite matrices, it does not ensure that a matrix satisfying these conditions is positive 
definite. 

The following notion will be used to provide a necessary and sufficient condition. 

Definition 6.22 A leading principal submatrix: of a matrix A is a matrix of the form 

for some 1 < k ~ n. • 
A proof of the following result can be found in [Stew1, p. 250]. 
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A symmetric matrix A is positive definite if and only if each of its leading principal sub
matrices has a positive detenninant. _ 

In Example 2 we used the definition to show that the symmetric matrix 

2 -1 0 
A = -1 2-1 

o -1 2 

is positive definite. To confiIm this using Theorem 6.23 note that . 

detA 1 = det[2] = 2> 0, 

2 -1 
detA 2 =det -1 2 =4-1=3>0, 

and 

detA3 = det 
2 

-1 
o 

-1 
2 

-1 

o 
-1 

2 
= 2det 

= 2(4 - 1) + (-2 + 0) = 4 > O. 

The Maple command 

>definite(A,positive_def) ; 

2 
-1 

-1 
2 

- (-1) det 
-1 

o 
-1 

2 

-

returns true or false as an indication of positive definiteness. Consistent with our definition, 
symmetry is required for a true result. 

The next result extends part (a) of Theorem 6.21 and parallels the strictly diagonally 
dominant results presented in Theorem 6.19. We will not give a proof of this theorem since 
it requires introducing teIminology and results that are not needed for any other purpose. 
The development and proof can be found in [We, pp. 120 ffJ. 

The symmetric matrix A is positive definite if and only if Gaussian elimination without 
row interchanges can be perfOlmed on the linear system Ax = b with all pivot elements 
positive. Moreover, in this case, the computations are stable with respect to the growth of 
roundoff errors. _ 

Some interesting facts that are uncovered in constructing the proof of Theorem 6.24 
are presented in the following corollaries. 

Corollary 6.25 The matrix A is positive definite if and only if A can be factored in the forlIl LDV, where 
L is lower triangular with 1 's on its diagonal and D is a diagonal matrix with positive 
diagonal entries. _ 

Corollary 6.26 The matrix A is positive definite if and only if A can be factored in the form LV, where L 
is lower triangUlar with nonzero diagonal entries. _ 
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The matrix L in Corollary 6.26 is not the same as the matrix in Corollary 6.25. A 
relationship between them is presented in Exercise 26. 

Algorithm 6.5 is based on the LU Factorization Algorithm 6.4 and obtains the LDV 
factorization described in Corollary 6.25. 

LOLt Factorization 

To factor the positive definite n x n matrix A into the form LDV, where L is a lower 
triangular matrix with 1 's along the diagonal and D is a diagonal matrix with positive 
entries on the diagonal: 

I N PUT the dimension n; entries aij, for 1 ::::: i, j < n of A. 

OUTPUT the entries lij, for 1 < j < i and 1 < i < n of L, and di , for 1 < i < n of D. 

Step 7 For i = 1, ... , n do Steps 2-4. 

Step2 Forj=1, ... ,i-1,setvj=lijdj . 

Step 3 Set di = aii - L~-lllijvj. 

Step 4 For j = i + 1, ... , n setlji = (aji - Li-~ Ijkvk)/di. 

Step 5 OUTPUT (lij for j = 1, ... ,i - 1 and i = 1, ... , n); 
OUTPUT (di for i = 1, ... , n); 
STOP. -

Corollary 6.25 has a counterpart when A is symmetric but not necessarily positive 
definite. This result is widely applied since symmetric matrices are common and easily 
recognized. 

Corollary 6.27 Let A be a symmetric n x n matrix for which Gaussian elimination can be applied without 
row interchanges. Then A can be factored into L D L t, where L is lower triangular with l' s 
on its diagonal and D is the diagonal matrix with ag), ... , a;~) on its diagonal. _ 

Algorithm 6.5 is easily modified to factor the symmetric matrices described in Corol
lary 6.27. It simply requires adding a check to ensure that the diagonal elements are 
nonzero. Choleski's Algorithm 6.6 produces the LV factorization described in Corollary 
6.26. 

Choleski's 

To factor the positive definite n x n matrix A into LV, where L is lower triangular: 

I N PUT the dimension n; entries aij, for I < i, j < n of A. 

OUTPUT the entries lij, for 1 ::::: j ::::: i and I ::::: i < n of L. (The entries of U = V are 
Uij = I ji ,for i < j < n and 1 ::::: i ::::: n.) 
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Step 1 Setl11 = JaIl. 
Step 2 For j = 2, ... ,n, setljl = ajd Ill. 

Step 3 For i = 2, ... ,n - 1 do Steps 4 and 5. 

Step 4 Setlii = (a ii - L~ -II llk Y /2. 

Step 5 For j = i + 1, ... ,n 

setlji = (aji -L~-i ljklik) / Iii. 

_ ( n-I 2) 1/2 Step 6 Set Inn - ann - Lk=1 Ink . 

Step 7 OUTPUT (Ii) for j = 1, ... ,i and i = 1, ... ,n); 
STOP. 

The Choleski factorization of A is computed in Maple using the statement 

>L:=cholesky(A); 

The matrix 

A= 
4 

-1 
1 

-1 
4.25 
2.75 

1 
2.75 
3.5 

is positive definite. The factorization L D V of A given in Algorithm 6.5 is 

A = LDLt = 
1 

-0.25 
0.25 

o 
1 
0.75 

o 
o 
1 

400 
040 
001 

1 
o 
o 

-0.25 
1 
o 

and Choleski's Algorithm 6.6 produces the factorization 

2 0 
-0.5 2 

o 
o 

0.5 1.5 1 

2 -0.5 0.5 
o 2 1.5 
o o 1 

• 

0.25 
0.75 
I 
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• 

• 

• 

The LDV factorization described in Algorithm 6.5 requires n3 /6+n 2 -7n/6 multipli
cations/divisions and n3 /6 - n/6 additions/subtractions. The LV Choleski factorization 
of a positive definite matrix requires only n3/6 + n2/2 - 2n/3 multiplications/divisions 
and n3 /6 - n/6 additions/subtractions. The computational advantage ofCholeski's factor-

~ -
ization is misleading, however, since it requires extracting n square roots. However, the 
number of operations required for computing the n square roots is a linear factor of nand 
will decrease in significance as n increases. 

Algorithm 6.5 provides a stable method for factoring a positive definite matrix into the 
fOlm A = LDV, but it must be modified to solve the linear system Ax = b. To do this, 
we delete the STOP statement from Step 5 in the algorithm and add the following steps to 
solve the lower triangular system Ly = b: 
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Step 6 Set YI = hi. 

Step 7 For i = 2, ... ,n set Yi = hi - L~-lllijYj. 

The linear system Dz = y can then be solved by 

Step 8 For i = 1, ... , n set Zi = Yi/d/. 

Finally, the upper-triangular system £Ix = z is solved with the steps given by 

Step 9 Set Xn = Zn. 

Step 10 For i = n - 1, .. , , 1 set Xi = Z/ - L;=i+l1j/Xj. 

Step 77 OUTPUT (Xi for i = 1, ... , n); 

STOP. 

The additional operations required to solve the linear system are shown in Table 6.3. 

Step MultiplicationslDivisions Additions/Subtractions 

6 0 0 
7 n(n - 1)/2 n(n - 1)/2 
8 n 0 
9 0 0 

10 n(n - 1)/2 n(n - 1)/2 
Total n 2 n 2 

- n 

If the Choleski factorization given in Algorithm 6.6 is preferred, the additional steps 
for solving the system Ax = b are as follows. First delete the STOP statement from Step 
7. Then add 

Step 8 Set YI = hI! Ill. 

Step 9 For i = 2, ... , n set Yi = (hi - L~-lllijYj) l;;. 

Step 10 Set Xn = Yn/ inn. 

Step 11 For i = n - 1, ... , 1 set Xi = (Yi - LJ=i+11 jiX j ) Ii;' 

Step 12 OUTPUT (Xi for i = 1, ... ,n); 

STOP. 

Steps 8-12 require n2 + n multiplications/divisions and n2 
- n additionsl subtractions. 

The last class of matrices considered are called band matrices. In most applications, 
the band matrices are also strictly diagonally dominant or positive definite. 

Definition 6.28 An n x n matrix is called a band matrix if integers p and q, with 1 < p, q < n, exist with 
the property that aij = 0 whenever i + P :::: j or j + q < i. The bandwidth of a band 
matrix is defined as w = p + q - 1. • 
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For example, the matrix 

720 
A = 3 5-1 

o -5 -6 

is a band matrix with p = q = 2 and bandwidth 2 + 2 - I = 3. 
The definition of band matrix forces those matrices to concentrate all their nonzero 

entries about the diagonal. Two special cases of band matrices that occur frequently have 
p = q = 2 and p = q = 4. 

Matrices of bandwidth 3, occurring when p = q = 2, are called tridiagonal since 
they have the fmm 

all al2 
0; : . . . . . . . . . . . . . . . . 0 

• • 
• 

• • 

a2J a22 a23 
• 

• 
• 

• 
• 
• 

• • 

A= 
O. a32 

• • • • • • • • • 
• 

• • • • 
• • 

• 

• 

a33 a34 • • • • • • • • 
• • 

• • • 
• • • • 

• 

• 
• 

• • 

• ... 0 
• • 

• • • 
• • • 

• • • • 

• • 
. . . . an-J.n 

• 

• • 
• • • • 

• • • O· ............. 0 . . 
an,n-J '. ann 

Tridiagonal matrices are also considered in Chapter 11 in connection with the study of 
piecewise linear approximations to boundary-value problems, The case of p = q = 4 will 
be used for the solution of boundary-value problems when the approximating functions 
assume the form of cubic splines. 

The factorization algorithms can be simplified considerably in the case of band ma
trices because a large number of zeros appear in these matrices in regular patterns. It is 
particularly interesting to observe the fOlIn the Crout or Doolittle method assumes in this 
case. 

To illustrate the situation, suppose a tridiagonal matrix A can be factored into the 
triangular matrices L and V. Since A has only (3n - 2) nonzero entries, there are only 
(3n - 2) conditions to be applied to determine the entries of L and V, provided, of course, 
that the zero entries of A are also obtained. Suppose that the matrices can be found in the 
fmlll 

III 0: ............. 0 
• • 

1 UJ2 0: • • • • • • ·0 
• • • 

L= 

• 

121 122 .... 
• • • 

• • O. ". . . . . . 
• O. 

• 
• 

and V - • - • 

• • • 

1 • 
• • • 

• • • • • • • • • • • • 0 • • • • • 
• • • 

• 

• 
• • • • • • • • • • • • • • • • 

• 
• 
• • O· .......... 0 • · . 1 

• 
• • • 

• • 
• • • 

• • 
'. '. Un-l,n 

• • • 
.. 0 • 

• • 

6······:0 'In,n-I"'lnn 

• 

There are (2n -1) undetennined entries of Land (n -1) undetermined entries of V, which 
totals the number of conditions, (3n - 2). The 0 entries of A are obtained automatically. 

The multiplication involved with A = LV gives, in addition to the 0 entries, 

ai,i_1 = li,i-J, for each i = 2, 3, ... , n; 

aii = li,i-Jui-J,i + [ii, for each i = 2, 3, ... , n; 

(6.12) 

(6.13) 
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and 

ai,i+1 = liiUi.i+l, for each i = 1,2, ... , n - 1. (6.14) 

A solution to this system is found by first using Eq. (6.12) to obtain all the nonzero 
off-diagonal terms in L and then using Eqs. (6.13) and (6.14) to alternately obtain the 
remainder of the entries in U and L. These can be stored in the corresponding entries of A. 

Algorithm 6.7 solves an n x n system of linear equations whose coefficient matrix is 
tridiagonal. This algorithm requires only (5n - 4) multiplications/divisions and (3n - 3) 
additions/subtractions. Consequently, it has considerable computational advantage over the 
methods that do not consider the tridiagonality of the matrix. 

Crout Fadorization for Tridiagonal Linear Systems 

To solve the n x n linear system 

allXI + al2X2 = al.n+l, 

a21XI + a22x 2 + a23 x 3 = a2,n+l, 

• • • 
• • • 
• • • 

an-l,n-2Xn-2 + an-l,n-IXn-1 + an-l,nXn = an-l.n+l, 

an,n-IXn-1 + annXn = an,n+l, 

which is assumed to have a unique solution: 

INPUT the dimension n; the entries of A. 

OUTPUT the solution XI, ... , Xn . 

(Steps 1-3 set up and solve Lz = b.) 

Step 1 Set III = all; 

Ul2 = ald/ll; 

ZI = al,n+iI Ill. 

Step 2 For i = 2, ... , n - 1 set li,i-I = ai,i-I; (ith row of L.) 
Iii = aii -/i,i-IUi-l,i; 

Ui,i+l = ai,i+l/ Iii; «i + l)th column of U.) 
Zi = (ai,n+1 -/i,i-IZi-I)/ Iii' 

Step 3 Set In,n-I = an,n-I; (nth row of L.) 
Inn = ann -In.n-Iun-I,n. 

Zn = (an,n+1 -In,n-IZn-l)/ Inn. 

(Steps 4 and 5 solve Ux = z.) 

Step 4 Set Xn = Zn. 

Step 5 For i = n - 1, ... , 1 set Xi = Zi - Ui,i+IXi+l. 

Step 6 OUTPUT (XI, ... , xn ); 

STOP. • 
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To illustrate the procedure for tridiagonal matrices, consider the tridiagonal system of equa
tions 

whose augmented matrix is 

2xI - X2 = 1, 
-XI + 2X2 - X3 = 0, 

2 
-1 

0 
0 

X2 + 2X3 - X4 = 0, 
- X3 + 2X4 = 1, 

-1 0 0 
• 

1 • 
• 

2 -1 0 • 0 • 

-1 2 -1 
• 

0 • 
• 

0 -1 2 • 1 • 

• 

The Crout Factorization Algorithm produces the factorization 

2 -1 0 0 2 0 0 0 1 I --
2 

3 -1 2 -1 0 -1 0 0 0 1 2 -
2 -1 - 4 0 -1 0 -1 0 0 0 3 

0 0 -1 2 0 0 -1 5 0 0 -
4 

0 0 
2 0 --
3 = LV. 3 1 --

4 
0 1 

Solving the system Lz = b gives z = 
(1,1,1,1)1. 

n, j, !, 1)1, and the solution of Vx = z is x = 

• 
The Crout Factorization Algorithm can be applied whenever iii f=. 0 for each i = 

1,2, ... , n. Two conditions, either of which ensure that this is true, are that the coefficient 
matrix of the system is positive definite or that it is strictly diagonally dominant. An ad
ditional condition that ensures this algorithm can be applied is given in the next theorem, 
whose proof is discussed in Exercise 22. 

Suppose that A = (aij) is tridiagonal withai,i-Iai,i+1 f=. 0, for each i = 2, 3, ... , n -1. If 
lalll > la121, laii I > lau-II + lai,i+d, for each i = 2,3, ... , n - 1, and Ianni> lan,n-II, 
then A is nonsingular and the values of Iii described in the Crout Factorization Algorithm 
are nonzero for each i = 1, 2, . " , n. • 

E X ERe I S ESE T 6.6 

1. Determine which of the following matrices are (i) symmetric, (ii) singular, (iii) strictly diago
nally dominant, (iv) positive definite. 

a. 

c. 

2 1 
I 3 

2 I 0 
030 
104 

b. 

d. 

-2 I 
1 -3 

2 I 0 
032 
1 2 4 
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e. 

g. 

4 2 6 
3 0 7 

-2 -1 -3 

4 
6 
9 
5 

000 
700 

11 1 0 
4 1 1 

f. 

h. 

2 -1 0 
-1 4 2 
022 

1 2 2 3 
-2 4 

3 7 
6 -9 

--I 5 
1.5 1 
3 7 

2. Use the LOL' Factorization Algorithm to find a factorizaton of the fonn A = LOL' for the 
following matrices: 

a. A= 

c. A= 

2 -I 0 
-1 2-1 

o -I 2 

4 1 -1 
1 3 -1 

-1 -1 5 
0 0 2 

b. 

0 
0 d. 
2 
4 

A= 

A= 

4 1 
1 3 
1 -1 
1 1 

6 2 
2 4 
1 1 

-1 0 

1 1 
-1 1 

2 0 
o 2 

1 -1 
1 0 
4 -1 

-1 3 

3. Use Choleski's Algorithm to find a factorization of the fonn A 
Exercise 2. 

L L' for the matrices in 

4. Modify the LOL' Factorization Algorithm as suggested in the text so that it can be used to 
solve linear systems. Use the modified algorithm to solve the following linear systems. 

a. 2Xl - X2 = 3, 

-Xl + 2X2 - X3 = -3, 

- X2 + 2X3 = 1. 

-7 - , 

Xl + 3X2 - X3 = 8, 

-Xl - X2 + 5X3 + 2X4 = -4, 

2X3 + 4X4 = 6. 

b. 4Xl + X2 + X3 + X4 = 0.65, 

Xl + 3X2 - X3 + X4 = 0.05, 

d. 

Xl - X2 + 2X3 = 0, 

Xl + X2 + 2X4 = 0.5. 

6Xl + 2x2 + X3 - X4 = 0, 

2Xl +4X2 + X3 = 7, 

Xl + X2 + 4X3 - X4 = -1, 

-Xl - X3 + 3X4 = -2. 

5. Modify Choleski's Algorithm as suggested in the text so that it can be used to solve linear 
systems, and use the modified algorithm to solve the linear systems in Exercise 4. 

6. Use Crout factorization for tridiagonal systems to solve the following linear systems. 

a. = 0, 

-2Xl +4X2 - 2X3 = -I, 

- X2 + 2X3 = 1.5. 

-3 - , 

-Xl + 2X2 - X3 = -3, 

- X2 + 2X3 = 1. 

= -1, 

2Xl +4X2 + X3 = 7, 

2X2 + 5X3 = 9. 
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d. 0.5XI + 0.25xz = 0.35, 

O.35xI + O.8xz + 0.4X3 = 0.77, 

0.25xz + X3 + 0.5X4 = -0.5, 

X3 - 2X4 = -2.25. 

7. Let A be the 10 x 10 tridiagonal matrix given by aii = 2, ai.HI = ai.i-I = -I, for each 
i = 2, ... , 9, and all = alO.W = 2, aIZ = aW.9 = -1. Let b be the ten-dimensional column 
vector given by hI = hw = 1 and hi = 0, for each i = 2, 3, ... , 9. Solve Ax = b using the 
Crout factorization for tridiagonal systems. 

8. Modify the LDL' factorization to factor a symmetric matrix A. [Note: The factorization may 
not always be possible.] Apply the new algorithm to the following matrices: 

3 -6 9 3 -3 6 
a. A = -3 2-7 

6 -7 13 
b. A = -6 14 -20 

9 -20 29 

-1 2 0 1 2 -2 

A= 
2 -3 2 -1 

d. A= 
-2 3 c. 

0 2 5 6 4 -4 
1 -1 6 12 -4 5 

9. Which of the symmetric matrices in Exercise 8 are positive definite? 

ct 1 -1 
10. Find ct so that A = 1 2 

-1 1 
I is positive definite. 
4 

2 ct -1 
11. Find ct so that A = ct 2 1 is positive definite. 

-1 I 4 

12. Find ct and f3 > 0 so that the matrix 

4 ct 1 
A = 2f3 5 4 

f3 2 ct 

is strictly diagonally dominant. 

13. Find ct > 0 and f3 > 0 so that the matrix 

3 2 f3 
A= ct 5 f3 

2 1 ct 

is strictly diagonally dominant. 

14. Suppose that A and B are strictly diagonally dominant n x n matrices. 

a. Is -A strictly diagonally dominant? 

b. Is At strictly diagonally dominant? 

c. Is A + B strictly diagonally dominant? 

d. Is A Z strictly diagonally dominant? 

e. Is A - B strictly diagonally dominant? 

4 
-4 
10 

-10 

-4 
5 

-10 
14 
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15. Suppose that A and B are positive definite n x n matrices. 

a. Is - A positive definite? 

b. Is A' positive definite? 

c. Is A + B positive definite? 

d Is A 2 positive definite? 

e. Is A - B positive definite? 

16. Let 

1 0 -1 
A = 0 1 1 • 

-1 1 IX 

Find all values of IX for which 

a. A is singUlar. 

b. A is strictly diagonally dominant. 

c. A is symmetric. 

d. A is positive definite. 

17. Let 

A= 
IX 1 0 
fJ 2 1 
o 1 2 

• 

Find all values of IX and fJ for which 

a. A is singular. 

b. A is strictly diagonally dominant. 

c. A is symmetric. 

d. A is positive definite. 

18. Suppose A and B commute, that is, AB =: BA. Must A' and B' also commute? 

19. Construct a matrix A that is nonsymmetric but for which x' Ax > 0 for all x =F o. 
20. Show that Gaussian elimination can be performed on A without row interchanges if and only 

if all leading principal submatrices of A are nonsingular. [Hint: Partition each matrix in the 
equation 

A (t) = M(t-I) M(k-2) ... M(I) A 

vertically between the kth and (k + 1)st columns and horizontally between the kth and (k + 1 )st 
rows (see Exercise 10 of Section 6.3). Show that the nonsingularity of the leading principal 
submatrix of A is equivalent to ai~k =F O.J 

21. Tridiagonal matrices are usually labeled by using the notation 

al CI 0: ....... 0 
• • • 

bz az Cz . . . : 
A = O. h

3
' •••..•• '. ". 0 

.' . . 
• • • • • • • • 
. '.' . . . . Cn-l 

O· .... : :0 .. 'bn ", an 

to emphasize that it is not necessary to consider all the matrix entries. Rewrite the Crout 
Factorization Algorithm using this notation, and change the notation of the lij and Uij in a 
similar manner. 



6.7 Survey of Methods and Software 413 

22. Prove Theorem 6.29. [Hint: Show that /Ui.i+l/ < 1, for each i = 1,2, ... ,n - 1, and that 
Iii;! > 0, for each i = 1,2, ... ,n. Deduce that det A = det L . det U "f. 0.] 

23. Suppose V = 5,5 volts in the lead example of this chapter. By reordering the equations, a 
tridiagonal linear system can be formed. Use the Crout Factorization Algonthm to find the 
solution of the modified system. 

24. Construct the operation count for solving an n x n linear system using the Crout Factorization 
Algorithm. 

25. In a paper by Dom and Burdick [DoB], it is reported that the average wing length that resulted 
from mating three mutant varieties of fruit flies (Drosophila meianogaster) can be expressed 
in the symmetric matrix form 

A= 
1.59 1.69 2.13 
1.69 
2.13 

1.31 
1.72 

1.72 
1.85 

, 

where aij denotes the average wing length of an offspring resulting from the mating of a male 
of type i with a female of type j. 

a. What physical significance is associated with the symmetry of this matrix? 

b. Is this matrix positive definite? If so, prove it; if not, find a nonzero vector x for which 
x, Ax < O. 

26. Suppose that the positive definite matrix A has the Cholesky factorization A = L L' and also , , 
the factorization A = L D L', where D is the diagonal matrix with positive diagonal entries 
dll , dn , ... , dnn. Let DI/2 be the diagonal matrix with diagonal entries~, .jd22 , ' , ., p;;;;. 

, 
a. ShowthatD=D 1/ 2 D 1/ 2 . b. ShowthatL=LD 1/ 2 

6.7 Survey of Methods and Software 

In this chapter we have looked at direct methods for solving linear systems. A linear system 
consists of n equations in n unknowns expressed in matrix notation as Ax = b. These 
techniques use a finite sequence of arithmetic operations to determine the exact solution of 
the system subject only to roundoff error. We found that the linear system Ax = b has a 
unique solution if and only if A -I exists, which is equivalent to det A i= O. The solution of 
the linear system is the vector x = A-lb. 

Pivoting techniques were introduced to minimize the effects of roundoff error, which 
can dominate the solution when using direct methods. We studied partial pivoting, scaled 
partial pivoting, and total pivoting. We recommend the partial or scaled partial pivoting 
methods for most problems since these decrease the effects of roundoff error without 
adding much extra computation. Total pivoting should be used if roundoff error is sus
pected to be large. In Section 7.4 we will see some procedures for estimating this roundoff 
error. 

Gaussian elimination with minor modifications was shown to yield a factorization of 
the matrix A into LU, where L is lower triangular with 1 's on the diagonal and U is upper 
triangular. This process is called Doolittle factorization. Not all nonsingular matrices can 
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be factored this way, but a pennutation of the rows will always give a factorization of the 
fOIm P A = LU, where P is the permutation matrix used to rearrange the rows of A. 
The advantage of the factorization is that the work is reduced when solving linear systems 
Ax = b with the same coefficient matrix A and different vectors b. 

Factorizations take a simpler form when the matrix A is positive definite. For example, 
the Choleski factorization has the form A = LV, where L is lower triangular. A symmetric 
matrix that has an LU factorization can also be factored in the fOIm A = LDV, where D 
is diagonal and L is lower triangular with l's on the diagonal. With these factorizations, 
manipulations involving A can be simplified. If A is tridiagonal, the LU factorization takes 
a particularly simple form, with U having l's on the main diagonal and Os elsewhere, 
except on the diagonal immediately above the main diagonal. In addition, L has its only 
nonzero entries on the main diagonal and one diagonal below. 

The direct methods are the methods of choice for most linear systems. For tridiago
nal, banded, and positive definite matrices, the special methods are recommended. For the 
general case, Gaussian elimination or LU factorization methods, which allow pivoting, are 
recommended. In these cases, the effects of roundoff error should be monitored. In Section 
7.4 we discuss estimating errors in direct methods. 

Large linear systems with primarily 0 entries occurring in regular patterns can be 
solved efficiently using an iterative procedure such as those discussed in Chapter 7. Sys
tems of this type arise naturally, for example, when finite-difference techniques are used to 
solve boundary-value problems, a common application in the numerical solution of partial
differential equations. 

It can be very difficult to solve a large linear system that has primarily nonzero entries 
or one where the 0 entries are not in a predictable pattern. The matrix associated with 
the system can be placed in secondary storage in partitioned form and portions read into 
main memory only as needed for calculation. Methods that require secondary storage can 
be either iterative or direct, but they generally require techniques from the fields of data 
structures and graph theory. The reader is referred to [BuR] and [RW] for a discussion of 
the current techniques. ' 

The software for matrix operations and the direct solution of linear systems imple
mented in IMSL and NAG is based on LAPACK, a subroutine package in the public do
main. There is excellent documentation available with it and from the books written about 
it. We will focus on several of the subroutines that are available in all three sources. 

Accompanying LAPACK is a set of lower-level operations called Basic Linear Alge
bra Subprograms (BLAS). Levell of BLAS generally consists of vector-vector operations 
with input data and operation counts of O(n). Level 2 consists of the matrix-vector opera
tions with input data and operation counts of O(n2). Level 3 consists of the matrix-matrix 
operations with input data and operation counts of O(n3). For example, in Levell, the sub
routine SCapy overwrites a vector y with a vector x; SSCAL computes a scalar a times a 
vector x; SAXPY adds a scalar a times a vector x to a vector y (y = a . x + y); SDOT com
putes the inner, or scalar, product of two vectors; SNRM2 computes the Euclidean norm 
of a vector by a method similar to that discussed in Section 1.4; and ISAMAX computes 
the index of the vector component that gives the maximum absolute value of all the com
ponents. In Level 2, SGEMV computes the product of a matrix and a vector and in Level 
3, SGEMM computes the product of a matrix and a matrix. 

The subroutines in LAPACK for solving linear systems first factor the matrix A. The 
factorization depends on the type of matrix in the following way; 
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1. General matrix P A = L U; 

2. Positive definite matrix A = LV; 

3. Symmetric matrix A = LDV; 

4. Tridiagonal matrix A = LU (in banded form). 

The subroutine STRTRS solves a triangular linear system when the matrix is either 
upper or lower triangular. 

The subroutine SGETRF factors P A into L U as a preliminary operation to the sub
routine SGETRS, which then computes the solution to Ax = b. The subroutine SGETRI 
is used to construct the inverse of a matrix A and to calculate the determinant of A once A 
has been factored via SGETRF. 

The Choleski factorization of a positive definite matrix A is obtained with the subrou
tine SPOTRF. The linear system Ax = b can then be solved using the subroutine SPOTRS. 
Inverses and determinants of positive definite matrices, given the Choleski factorization, 
can be computed using SPOTRI. If A is symmetric, the LDLt factorization is found using 
SSYTRF. Linear systems can then be solved using SSYTRS. If inverses or determinants 
are desired, SSYTRI can be used. 

Many of the subroutines in UNPACK, and its successor LAPACK, can be imple
mented using MATLAB. A nonsingular matrix A is factored using the command 

[L, U, P] = lu(A) 

into the form P A = LU, where P is the perIllutation matrix defined by perfOIming partial 
pivoting to solve a linear system involving A. If the nonsingular matrix A and the vector b 
have been defined in MATLAB, the command 

x = A\b 

solves the linear system by first using the P A = LU factoring command. Then it solves 
the lower-triangular system Lz = b for z using its command, 

z = L\b 

This is followed by a solution to the upper-triangular system Ux = z using the command 

x = U\z 

Other MATLAB commands include computing the inverse, transpose, and determi
nant of matrix A by issuing the commands inv(A), A', and det(A), respectively. 

The IMSL Library includes counterparts to almost all the LAPACK subroutines and 
some extensions as well. They are named with regard to the tasks they perform as follows: 

1. The first three letters of the name are used. 

a. LSL: solves a linear system 

b. LFf: factors a coefficient matrix 

c. LFS: solves a linear system given factors from LFf 

d. LFD: calculates the determinants of given factors 

e. LIN: computes the inverse of given factors 
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2. The last two letters detelllline the type of matrix involved. 

a. RG: real, general 

b. RT: real triangular 

c. DS: real positive definite 

d. SF: real symmetric 

e. RB: real banded 

For example, the routine LFTDS factors a real positive definite matrix. 
The NAG Library has many subroutines for direct methods of solving linear systems 

similar to those in LAPACK and IMSL. For example, the subroutine F04AEF solves linear 
systems using Crout factorization. The subroutine F04ATF solves a single linear system 
using Crout factorization, as in F04AEF. The subroutine F04EAF solves a single linear 
system where the matrix is real and tridiagonal, and F04ASF solves a system when the 
matrix is real and positive definite. Inverse matrices can be computed by F07 AJF after 
using F07ADF for an arbitrary real matrix and by FOIABF if the matrix is positive defi
nite. A determinant can be computed using F03AAF. Factorizations can be obtained using 
F07 ADF for the LU factorization of a real matrix and using FOILEF for a tridiagonal ma
trix. Linear systems can then be solved using F07 AEF. Choleski's factorization of a positive 
definite matrix can be obtained using F07FDF, and a linear system can then be solved using 
F07FEF. The NAG library also includes the lower-level matrix-vector manipulations. 

Further information on the numerical solution of linear systems and matrices can be 
found in Golub and Van Loan [GV], Forsythe and Moler [FM], and Stewart [Stewl]. The 
use of direct techniques for solving large sparse systems is discussed in detail in George 
and Liu [GL] and in Pissanetzky [Pi]. Coleman and Van Loan [CV] consider the use of 
BLAS, UNPACK, and MArLAB. 



Iterative Tee • 
nl ues 

• 
In atrix A 

• •• 

T russes are lightweight capable of carrying heavy loads. In 

bridge design, the individual members of the truss are connected with 

rotatable pin joints that pt:nnit forces to be transferred from one memo 

ber of the truss to another. The accompanying figure shows a truss that 

is held stationary at the lower left endpoint 00, is permitted to move hori

zontally at the lower right endpoint @, and has pin joints at 00, @, @, and 

@. A load of 10,000 newtons (N) is placed at the joint @, and the forces 

on the members of the truss have magnitudes given by II. h, h, I., and 

Is. as shown. The stationary support member has both a horizontal force 

F 1 and a vertical force F 2, but the movable support member has only the 

vertical force F 3• 

7T 1T -4 6 

1O,OOON 
is 

IT the truss is in static equilibrium, the forces at each joint must add 

to the zero vector, so the slim of the horizontal and vertical components 

of the forces at each joint must be O. This produces the system of linear 
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equations shown in the accompanying table. An 8 x 8 matrix describing 

this system has 46 zero entries and only 18 nonzero entries. Matrices with 

a high percentage of zero entries are called sparse and are often solved 

using iterative, rather than direct, techniques. The iterative solution to 

this system is considered in Exercise 18 of Section 7.3. 

Joint Horizontal Component Vertical Component 

ill -Fl + 1 h + 12 = 0 1 II-F2 = 0 
@ -1/1 + !{-14 =0 -4 II - h + U4 = 0 
@ -12+/5=0 h -10,000= 0 

® -114-/5=0 ~/4-F3=0 

The methods presented in Chapter 6 used direct techniques to solve a system of n x n 
linear equations. of the form Ax = b. In this chapter, we present iterative methods to solve 
a system of this type. 

7.1 Nor illS of Vectors and Matrices 

Definition 7.7 

In Chapter 2 we described iterative techniques for finding roots of equations of the fOlm 
f(x) = O. An initial approximation (or approximations) was found, and new approxima
tions were then determined based on how well the previous approximations satisfied the 
equation. To discuss iterative methods for solving linear systems, we first need to be able 
to measure the distance between n-dimensional column vectors to detellnine whether a 
sequence of vectors converges to a solution of the system. In actuality, this measure is also 
needed when the solution is obtained by the direct methods presented in Chapter 6. Those 
methods required a large number of arithmetic operations, arid using finite-digit arithmetic 
leads only to an approximation to an actual solution of the system. 

Let IRn denote the set of all n-dimensional column vectors with real-number coeffi
cients. To define a distance in IRn we use the notion of a nonn. 

A vector norm on IRn is a function, II . II, from IRn into IR with the following properties: 

(i) IIxll > 0 for all x E IRn, 

(ii) IIxll = 0 if and only if x = 0, 

(iii) lIaxll = lalllxll for all a E IR and x E IRn, 

(iv) Ilx + yll < IIxll +lIyll for all x, y E IRn. • 



7.1 Norms oj Vedol5 and Matrices 419 

We will need only two specific norms on 1R", although a third nOlln on JR" is presented 
in Exercise 2. 

Since vectors in JR" are column vectors, it is convenient to use the transpose notation 
presented in Section 6.3 when a vector is represented in tenns of its components. For 
example, the vector 

, 

XI 

X2 
x= • 

• 
• 

X" 

Dejlnltlon 7.2 The l2 and 100 nonus for the vector x = (XI, X2, ... , x")t are defined by 

Figure 7.1 

n 1/2 

IIxll2 = L X? and 
i=1 

IIxlioo = max IXi I· 
-l<i<n • 

The 12 norIIl is called the Euclidean norm of the vector x since it represents the usual 
notion of distance from the origin in case x is in IR I == lR, 1R2, or 1R3. For example, the 12 
norm of the vector x = (XI, X2, X3)' gives the length of the straight line joining the points 
(0,0,0) and (XI, X2, X3). Figure 7.1 shows the boundary of those vectors in]R2 and]R3 that 
have 12 nonuless than 1. Figure 7.2 is a similar illustration for the Zoo nor Ill. 

The vectors in 1R2 
with lz nonn less 
than I are inside (0, 1) 
thi figure. 

(0, - 1) 

• 

(0, 0, 1) 

(1. 0) 

(1,0, 

The vectors in the 
first octant of 1R3 
with l2 nonn less 
than 1 are inside 
this figure. 

(0, 1,0) 
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Figure 7.2 

EXAMPLE 1 

Theorem 7.3 
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(-1,1) (0, 1) (1, 1) 
-.;..,.~=--.... 

(-1, -1) (0, -I) 

The vectors in 1R2 with 
l.., norm less than 1 are 

inside this figure. 

(1,0) Xl 

(1, -1) 

(1,0, I) 

(1, 0, 

(0, 0, 1) 

(1,1,0) 

The vectors in the first 
octant of 1R3 with lO) norm 

less than 1 are inside 
this fi gure. 

The vector x = (-1, 1, _2)1 in R3 has nOlms 

and 

IIxlloo = max{l- 11,111,1- 21} = 2. 

(0, 1, 1) 

(0, I, 0) 

Xl 

• 
It is easy to show that the properties in Definition 7.1 hold for the 100 nOlm since they 

follow from similar results for absolute values. For example, if x = (XI, X2, .. , ,xn)1 and 
Y = (YI, Y2,···, Yn)l, then 

IIx + Ylloo = max IXi + yil :s: max (ixil + Iyd) :s: max Ixil + max lyiI = IIxlioo + lIylloo' 
l<i<n l<j~n l<i<n l<i<n 

To show that 

IIx + yII2 :s: IIxll2 + lIyll2. for each x, y ERn, 

we need a famous inequality. 

Inequality for Sums) 
For each x = (XI, X2, ... , Xn)1 and y = (Yl, Y2, ... , Yn)1 in IRn

, 

n 

xty = LXiYi :s: 
i=1 

n 1/2 

LX; 
i=1 

1/2 

= IIxll . lIyll· (7.1) 

• 
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Proof If Y = 0 or x = 0, the result is immediate since both sides of the inequality are 
zero. 

Suppose y =1= 0 and x =1= O. For each).. E lR, 

n n n n 

0:5 Ilx - ).YII~ = L(x; - )..Y;)z = L x;Z - 2).. L X,Y; +).2 L l, 
;=1 i=1 i=1 i=1 

and 

n n n 

2,\ L XiYi < L xl +,\Z L Yl = Ilx/l~ + )..Z/lYII~. 
i=1 i=1 i=1 

Since IIxl12 > 0 and Ily/iz > 0, we can let J... = IIxi/z/llyllz to give 

so 

Thus, 

2/1x llz 
lIyl12 

n 

< IIxl12 + /lx/l~ IlyliZ = 211xllz 
- 2 /lYII~ Z 2' 

~ /ly/l2 
2 ~XiYi < 211x/l~ = 211x/i2/iy/iZ. 

i=1 IIxll2 

n 1/2 I/Z 

xty = LXiYi < IIx/i2/1YI12 = Lxl 
;=1 ;=] 

With this result we see that for each x, y E ]Rn, 

n n n n 

• • • • 

/Ix + Y/l~ = L(Xi + Yi)2 = L xl + 2 LXi Yi + Lyl < IIxll~ + 2/1xll211yllz + IIYII~, 
i=1 i=1 i=1 i=1 

which gives the final nonn property 

2 2 1/2 /Ix + y/lz < (/lx/lz + 2/1X/l2/1y/l2 + /lyl/z) = /lx/l2 + /ly/l2. 

Since the norm of a vector gives a measure for the distance between an arbitrary vec
tor and the zero vector, the distance between two vectors is defined as the nOIIn of the 
difference of the vectors. 

If x = (XI, X2, ... , xn/ and y = (YI, yz, ... , Ynf are vectors in ]Rn, the 12 and 100 distances 
between x and y are defined by 

n 1/2 

IIx - yllz = L(xi - y;)z and 
i=1 

IIx - Ylloo = max IXi - Yi I· 
l<i<n • 
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The linear system 

3.3330xI + 15920x2 - 1O.333x3 = 15913, 

2.2220xI + 16.71Ox2 + 9.6120x3 = 28.544, 

1.5611xI + 5.1791x2 + 1.6852x3 = 8.4254 

has solution (Xl, X2, X3)1 = (l, 1, 1)1. If Gaussian elimination is performed in five-digit 
rounding arithmetic using maximal column pivoting (Algorithm 6.2), the solution obtained 
• 
IS 

and 

Measurements of x - x are given by 

Ilx - xlloo = max{11 - 1.20011, 11 - 0.999911,11 - 0.925381} 

= max{0.2001, 0.00009, 0.07462} = 0.2001 

Ilx - xll2 = [(1- 1.2001)2 + (1- 0.99991)2 + (1- 0.92538)2]1/2 

= [(0.2001)2 + (0.00009)2 + (0.07462)2]1/2 = 0.21356. 

Although the components X2 and X3 are good approximations to X2 and X3, the component 
XI is a poor approximation to XI, and IXI - XII dominates the norms. _ 

The concept of distance in IRn is also used to define a limit of a sequence of vectors in 
this space. 

A sequence {x(k) }LI of vectors in IRn is said to converge to x with respect to the norm II . II 
if, given any e > 0, there exists an integer N(e) such that 

IIx(k) - xII < e, for all k > N(e). • 
The sequence of vectors {x(k)} converges to x in IRn with respect to II . 1100 if and only if 
limk~oo x?) = Xi, for each i = 1,2, ... ,n. _ 

Prool Suppose {X(k)} converges to x with respect to II . 1100. Given any e > 0, there exists 
an integer N(e) such that for all k ~ N(e), 

. max Ix?) - Xi I = IIx(k) - xll oo < e. 
l=1,2, ... ,n 

This result implies that Ix?) - xii < E, for each i = 1, 2, . .. ,n, so liffik~oo x?) = Xi for 
each i. 
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Conversely, suppose that limk--> 00 xtJ = Xi, for every i = I, 2, ... ,n. For a given 
e > 0, let Ni (e) for each i represent an integer with the property that 

I (k) I Xi - Xi < e, 

whenever k > NiCe). 

Define N(e) = maxi=I,2, ... ,n NiCe). If k > N(e), then 

. max Ix?) - Xi I = IIx(k) - xll oo < e. 
1=1,2, ... ,n 

This implies that {X(k)} converges to x with respect to II . 1100' • • • 

Let X(k) E ]R4 be defined by 

I 3 ' X(k) - (x(k) x(k) x(k) x(k)), - I 2 + e-k sink 
- I' 2 ' 3 '4 - , k' k2' . 

Since limk-->oo 1 = 1, limk--> 00 (2 + 1/ k) = 2, limk-->oo 3/ k2 = 0, and limk-->oo e-k sin k = 
0, Theorem 7.6 implies that the sequence {X(k)} converges to (1, 2, 0, 0)' with respect to 
II . 1100' • 

To show directly that the sequence in Example 3 converges to (1, 2, 0, 0)' with respect 
to the 12 nonn is quite complicated. It is easier to prove the next result and apply it to this 
special case. 

For each x E ]Rn, 

• 
Prool Let Xj be a coordinate ofx such that IIxlloo = maxl<i<n IXi I = IXj I. Then 

n 

II x ll;" = Ix j 12 = X; < LX; = IIxll~, 
i=1 

so 

and 

n n 

Ilxll~ = LX; :s LX; = nxJ = nllxll;", 
i=1 i=1 

• • • 

Figure 7.3 illustrates this result when n = 2. 
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Figure 73 
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II x Ib "'" 1 

-l 

- 1 

In Example 3, we found that the sequence {X(k)}, defined by 

I 3 I 
X(k) = I 2 + - - e-k sin k 

, k' k2 ' 
, 

converges to x = (1,2,0,0)1 with respect to II . 1100' Given any £ > 0, there exists an 
integer N(s/2) with the property that 

£ 
IIx(k) - xll oo < 2' 

whenever k ~ N(s/2). By Theorem 7.7, this implies that 

IIx(k) - xl12 < .J4l1x(k) - xll oo < 2(£/2) = £, 

when k ~ N(£/2). So {X(k)} also converges to x with respect to II . 112. • 
It can be shown that all nouns on IR" are equivalent with respect to convergence; that 

is, if II . II and II . II' are any two nOlIns on]R" and {x(k)}EI has the limit x with respect to 
II . II, then {X(k)}ZO I also has the limit x with respect to II . II' . The proof of this fact for the 
general case can be found in [Or2, p. 8]. The case for the norms II . 112 and II . 1100 follows 
from Theorem 7.7. 

In the subsequent sections of this and later chapters, we will need methods for deter
mining the distance between n x n matrices. This again requires the use of a norm. 

A matrix norm on the set of all n x n matrices is a real-valued function, II . II, defined on 
this set, satisfying for all n x n matrices A and B and all real numbers a: 

(i) IIAII > 0; 

(ii) II A II = 0, if and only if A is 0, the matrix with all 0 entries; 
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Corollary 7.10 
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(iii) lIaAIl = lal/IAII; 
(iv) IIA + BII < IIAII + IIBII; 

(v) IIABII:S IIAIIIIBII· 
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• 
The distance between n x n matrices A and B with respect to this matrix norm is 

IIA-BII· 
Although matrix nOlms can be obtained in various ways, the only norms we consider 

are. those that are natural consequences of the vector norms t2 and too. 
The following theorem is not difficult to show, and its proof is left as Exercise 13. 

If II . II is a vector norm on ~n, then 

is a matrix norm. 

IIA II = max II Axil 
IIxll= 1 

• 
This is called the natural, or induced, matrix norm associated with the vector norm. 

In this text, all matrix norms will be assumed to be natural matrix norms unless specified 
otherwise. 

For any z =F 0, we have x = z/lIzll as a unit vector. Hence, 

z II Az II 
max IIAxll = max A = max , 

z;60 II z II Ilxll=l z;60 

and we can alternatively write 

IIAII = max IIAzli. 
z;60 IIzll 

The following corollary to Theorem 7.9 follows from this representation of II A II. 

For any vector z =F 0, matrix A, and any natural norm II . II, we have 

IIAzl! < IIAII . IIzlI· 

(7.2) 

• 
The measure given to a matrix under a natural norm describes how the matrix stretches 

unit vectors relative to that norlll. The maximulll stretch is the norm of the matrix. The 
matrix nOllns we will consider have the forms 

and 

IIAlioo = max IIAxll oo , the toe nOlm, 
IIxlloo=1 

II A 112 = max II Ax 112, the t2 nOlln. 
IIx1l2=1 
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Figure 7.4 

Figure 7.5 

Theorem 7.17 
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-1 
-1 

-2 

3 Ax for 
X2 

IIxliz = 1 

Ilxllz = 1 
1 

1 IIAlb 
-1 

1 Xl -2 -1 1 2 Xl 

-1 
-1 

-3 

An illustration of these nOIms when n = 2 is shown in Figures 7.4 and 7.5. 
The Zoo nOIm of a matrix can be easily computed from the entries of the matrix. 

If A = (aij) is an n x n matrix, then 

n 

IIAlioo = max L laijl· 
1 <i <n . 1 

}= 

• 
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Proof First we show that /lA/Ioo < maxl<i:::n I:J=l laij I. Let x be an n-dimensional vec
tor with 1 = /lx/loo = maxl:::i<n Ix;!. Since Ax is also an n-dimensional vector, 

IIAxlloo = max I(Ax);! = max 

Consequently, 

l~i::Sn l<i<n 

n 

/lAx/ioo < max "Iaijl. 
l<l<n L-t - - j=l 

n 

/I A /100 = max II Ax/loo < max L laij I· 
IIxlloo=l l<i:::n . 1 

J= 

(7.3) 

Now we will show the opposite inequality, that IIAlloo :::: maxl:::i<n I:J=l laijl. Let p 
be an integer with 

and x be the vector with components 

Xj = 
1, 

-1 , 
if apj :::: 0, 

if apj < O. 

Then Ilxlloo = 1 and apjxj = lapj I, for all j = 1,2, ... , n, so 

/I Ax 1100 = max 
l:si <n 

This result implies that 

n 

LaijXj :::: 
j=l 

n 

n 

= max L laijl. 
l<l<n - - j=l 

/lA/Ioo = max IIAx/loo:::: max L laijl, 
IIxlloo=l l<i<n . 1 

which, together with Inequality (7.3), gives 

n 

IIA/loo = max L laijl. 
l<l<n 

EXAMPLE 5 If 

A= 

. - - j=l 

1 
o 

2 -1 
3 -1 

5 -1 1 
, 

J= 

• • • 
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then 

and 

so 

3 

L lalj I = 111 + 121 + I - 11 = 4, 
j=l 

3 

L la2j I = 101 + 131 + I - 11 = 4, 
j=l 

3 

L la3jl = 151 + 1-11 + 111 = 7; 
j=l 

IIA 1100 = max[4, 4, 7} = 7. • 
In the next section, we will discover an alternative method for finding the 12 norm of a 

matrix. 

EX ERe I S ESE T 7.1 

1. Find IIxll"" and IIxll2 for the following vectors. 

a. x = (3, -4,0, ~)' 
b. x = (2, I, -3,4)1 

C. x = (sin k, cos k, 2k)' for a fixed positive integer k 

d. x = (4/(k + 1),2/ k2, k2e-k )1 for a fixed positive integer k 

2. a. Verify that the function II . Ill, defined on lRn by 

n 

IIxlll = L lxii, 
i=l 

is a norm on lRn. 

b. Find II x 111 for the vectors given in Exercise 1. 

c. Prove that for all x E lRn, IIxlll ~ IIxll2· 
3. Prove that the following sequences are convergent, and find their limits. 

a. X(k) = 0/ k, e l - k , -2/ k2)' 

b. X(k) = (e-k cos k, k sin(l/ k), 3 + k-2r 
c. X(k) = (ke-k2 , (cosk)/k, Jk2 + k - k)1 

d. X(k) = (e l / k , (k2 + 1)/(1 - k2), (1/k2)(1 + 3 + 5 + ... + (2k - 1»), 

4. Find II . II "" for the following matrices. 

a. 
10 15 
o 1 

b. 10 0 
15 1 
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2 -1 0 4 -1 7 
c. -1 2-1 d. -1 4 0 

o -1 2 -7 o 4 

5. The following linear systems Ax = b have x as the actual solution and x as an approximate 
solution. Compute II x - x II 00 and II Ax - b II 00' 

a. I I I 
2 XI + 3 X2 = 63' 

I I I 
3XI + 4 X2 = 168' 

x=(~,-!)', 
x = (0.142, -0.166)/. 

b. XI + 2X2 + 3X3 = 1, 

2xI + 3X2 + 4X3 = -1, 

3xI + 4X2 + 6X3 = 2, 

x = (0, -7, 5)/ , 

X = (-0.33, -7.9,5.8)/. 

C. XI +2X2 +3X3 = 1, 

2xI + 3X2 + 4X3 = -1, 

3xI + 4X2 + 6X3 = 2, 

x = (0, - 7, 5)/ , 

X = (-0.2, -7.5,5.4)/. 

d. 0.04xI + O.Olxz - 0.01x3 = 0.06, 

0.2xI + O.5xz - 0.2X3 = 0.3, 

XI + 2X2+ 4X3 = 11, 

x = (1.827586,0.6551724,1.965517)/, 

x = (1.8,0.64, 1.9)'. 

6. The matrix nonn II . III, defined by II A III = max II Axil J, can be computed using the fonnula 
IIxlll=1 

n 

II A III = max" laij I, 
l::;:J:5n ~I 

1= 

where the vector norm II . III is defined in Exercise 2. Find II . III for the matrices in Exercise 4. 

7. Show by example that II . II@), defined by II A II@) = max lai} I, does not define a matrix nonn. 
1 <t,l <n 

8. Show that II . IICll, defined by 

n n 

IIAIICll = L L laul. 
i=1 }=I 

is a matrix nann. Find II . II Cll for the matrices in Exercise 4. 

9. a. The Frobenius nonn (which is not a natural nonn) is defined for an n x n matrix A by 

n n 1/2 

LLlaijlz • 

i=1 }=I 

Show that II . II F is a matrix nonn. 
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h. Find II . II F for the matrices in Exercise 4. 

c. For any matrix A, show that IIAliz < IIAIIF < n 1/2 11Allz. 
10. In Exercise 9 the Frobenius norm of a matrix was defined. Show that for any n x n matrix A 

and vector x in R", IIAxl12 ~ IIAIIFllxllz. 
11. Let S be a positive definite n x n matrix. For any x in Rn define IIxll = (x'SX)J/2 Show that 

this defines a norm on Rn. [Hint: Use Choleski factorization of S to show that Xl Sy = yl Sx < 
(Xl Sx) I(Z (yl Sy) liz.] 

12. Let S be a real and nonsingular matrix, and let II . II be any norm on JRn. Define 1/ . 1/' by 
IIxll' = IISxll . Show that II . II' is also a norm on Rn. 

13. Prove that if II· II is a vector norm on R", then IIAII = maxllxl=1 IIAxl1 is a matrix norm. 

14. The following excerpt from the Mathematics Magazine [Sz] gives an alternative way to prove 
the Cauchy-Buniakowsky-Schwarz Inequality, 

a. Show that when x =1= 0 and Y =1= 0, we have 

b. Use the result in part (a) to show that 

" 
"xy. < ~ I 1_ 

i=l 

Xi y, 

( ) 

I(Z 

L~=I x; 

1(2 1(2 

7.2 Eigenvalues and Eigenvectors 

An n x m matrix can be considered as a function that uses matrix multiplication to take 
m-dimensional vectors into n-dimensional vectors. A square matrix A takes the set of 
n-dimensional vectors into itself. In this case, certain nonzero vectors x are parallel to 
Ax, which means that a constant A exists with Ax = AX. For these vectors, we have 
(A - J..l)x = O. There is a close connection between these numbers A and the likelihood 
that an iterative method will converge. We will consider this connection in this section. 

Definition 7.12 If A is a square matrix, the characteristic polynomial of A is defined by 

p()..) = det(A - U). • 
It is not difficult to show (see Exercise 7) that p is an nth-degree polynomial and, 

consequently, has at most n distinct zeros, some of which may be complex. If J.. is a zero of 
p, then, since det( A - AI) = 0, Theorem 6.16 in Section 6.4 implies that the linear system 
defined by (A - U)x = 0 has a solution with x t= O. We wish to study the zeros of p and 
the nonzero solutions corresponding to these systems. 

De/inition 7.13 If p is the characteristic polynomial of the matrix A, the zeros of p are eigenvalues, 
or characteristic values, of the matrix A. If A is a eigenvalue of A and x t= 0 satisfies 
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• 

(A - ).l)x = 0, then x is an eigenvector, or characteristic vector, of A corresponding to 
the eigenvalue ).. • 

If x is an eigenvector associated with the eigenvalue A, then Ax = AX, so the matrix 
A takes the vector X into a scalar multiple of itself. If A is real and A > 1, then A has the 
effect of stretching X by a factor of A., as illustrated in Figure 7.6(a). If 0 < A < 1, then 
A shrinks x by a factor of A (see Figure 7.6(b)). When A < 0, the effects are similar (see 
Figure 7.6(c) and (d», although the direction of Ax is reversed. 

(a) A> 1 (b) 1> A > 0 (c) A < -1 (d) -1 < A < 0 

Ax 

Ax 
Ax 

Ax 

Ax = AX 

EXAMPLE 1 Let 

A= 
1 0 2 
o 1 -1 • 

-1 1 1 

To compute the eigenvalues of A, consider 

p().) = det(A - AI) = det 
I-A 

o 
-1 

o 
I-A 

1 

2 
-1 

I-A 
= (1 - ).)(A2 

- 2), + 4). 

The eigenvalues of A are the solutions of p(A) = 0, which are AI = 1,1..2 = 1 + Ai, and 
A3 = 1 - Ai. 

An eigenvector x of A associated with AI is a solution of the system (A - AIl)X = 0: 

Thus, 

002 
o 0 -1 

-1 1 0 
--

o 
o 
o 

• 

2X3 = 0, -X3 = 0, and - XI + X2 = 0, 
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which implies that 

X3 = 0, X2 = Xl, and Xl is arbitrary. 

The choice Xl = 1 produces the eigenvector (1, 1, 0)/ corresponding to the eigenvalue 
Al = 1. For this choice, we have 11(1, 1, 0)/ II 00 = 1. 

The choice Xl = ..Ji/2 produces an eigenvector corresponding to A with 

..Ji ..Ji 0 
2 ' 2 ' 

t 

=1. 
2 

Since )..,2 and A3 are complex numbers, their corresponding eigenvectors are also complex. 
To find an eigenvector for A2, we solve the system 

I - (1 + J3i) 

o 
-1 

o 
I - (1 +.J3i) 

I 

2 
-1 

1- (1 +.J3i) 

One solution to this system is the vector 

2.J3. J3. I t 
- 3 I, 3 I, . 

Similarly, the vector 

2J3 J3 / 
3 i, - 3 i, I 

is an eigenvector corresponding to the eigenvalue A3 = 1 - .J3i. 

-
o 
o 
o 

• 

• 
Maple provides the function Eigenvals to compute eigenvalues and, optionally, 

eigenvectors of a matrix. For the example we enter the following: 

>wi th (linalg) ; 
> A: =matrix (3,3, [1,0,2,0, 1, -1 , -1 , 1, 1] ) ; 
>evalf(Eigenvals(A)); 

[1.000000000 + 1.732050807/, 1.000000000 - 1.732050807/, 1.000000000] 

This computes the eigenvalues 

To compute both the eigenvalues and eigenvectors, use 

>evalf(Eigenvals(A,B)); 

The eigenvalues are computed and displayed as before, and the eigenvectors are indicated 
in the columns of B. If the eigenvalues are all real, each column of B gives an eigenvector. 
However, for our example we display Busing 

>evalm(B); 
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B= 
1.154700538 

- .5773502680 
-.2581988896 10-19 

.6324555321 10-10 

.1264911064 10-9 

1. 

.7453559925 

.7453559926 
-.7257277610- 11 
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The first two columns correspond to the real and imaginary parts of the eigenvectors cor
responding to eigenvalues )..2 and )..3. Thus, an eigenvector for )..2 is 

• 

1.154700538 
-.5773502680 

-.258198889610- 19 

that is, 

+ 
.6324555321 10-10 

.1264911064 10-9 

1.000000000 

(1.l54700538, -0.5773502680, i/ = 

• 
l~ 

1.154700538 
- .5773502680 

o 

2.J3 .J3. I 
- 1 

3' 3' • 

Since any multiple of an eigenvector is also an eigenvector, we have 

(1, -0.5, 0.8660254i) 

o 
+ o i' , 

1 

as an eigenvector. Multiplying each coordinate by -(2.J3/3)i gives the eigenvector in 
Example 1: 

2.J3 . .J3. I 
- I, I, 1 

3 3 
• 

Since Al is real, the third column of B is an eigenvector corresponding to AI. 
The notions of eigenvalues and eigenvectors are introduced here for a specific compu

tational convenience, but these concepts arise frequently in the study of physical systems. 
In fact, they are of sufficient interest that Chapter 9 is devoted to their numerical approxi
mation. 

Definition 7.14 The spectral radius p(A) of a matrix A is defined by 

Theorem 7.15 

peA) = max 1)..1, where).. is an eigenvalue of A. 

(Recall that for complex A = a + fJi, we have 1)..1 = (a2 + fJ2)1!2.) • 
For the matrix considered in Example 1, 

peA) = max{l, 11 + .J3il, 11 - .J3il} = max{l, 2, 2} = 2. 

The spectral radius is closely related to the nOIm of a matrix, as shown in the following 
theorem. 

If A is an n x n matrix, then 

(i) IIAII2 = [p(AI A)JI!2, 

(ii) p (A) < II A II, for any natural nonn II . II. • 
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Proof The proof of part (i) requires more information concerning eigenvalues than we 
presently have available. For the details involved in the proof, see [Or2, p. 21]. 

To prove part (ii), suppose A is an eigenvalue of A with eigenvector x and Ilxll = 1. 
(Exercise 6 ensures that such an eigenvector exists.) Since Ax = AX, 

I A I = I A I . II X II = II AX II = II Ax II :5 II A 1111 x II = II A II· 

Thus, 

p(A) = max IAI < IIAII. • • • 

Part (i) of Theorem 7.1S implies that if A is symmetric, then IIAII2 - p(A) (see 
Exercise 10). 

An interesting and useful result, which is similar to part (ii) of Theorem 7.1S, is that 
for any matrix A and any e > 0, there exists a natural norm II . II with the property that 
p(A) < IIAII < p(A) + s. Consequently, p(A) is the greatest lower bound for the natural 
nOIInS on A. The proof of this result can be found in [Or2, p. 23]. 

EXAMPLE 2 If 

then • 

A= 

1 1 -1 
1 2 1 
o 1 2 

1 1 0 
121 

-I 1 2 

110 
I 2 1 

-1 I 2 

, 

--

To calculate p(AI A) we need the eigenvalues of AI A.1f 

° = det(A t A - AI) 

3 - A 2 -1 
= det 2 6 -)... 4 

-1 4 S-A 

3 2 -1 
264 

-1 4 S 

= _A3 + 14A2 - 42)... = -A(A2 
- 14A + 42), 

then • 

A = ° or A = 7 ± .J7, 

so 

The operations in Example 2 can also be performed using Maple with 

• 

• 
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>with(linalg); 
>A:=matrix(3,3, [1,1,0,1,2,1,-1,1,2]); 
>B:=transpose(A); 
>C:=multiply(A,B); 
>evalf(Eigenvals(C)); 

[0.109767846510-8,4.354248690,9.645751311] 

Since IIAI12 = .Jp(AlA) = .Jp(C), we have 

IIAI12 = .J9.645751311 = 3.105760987. 

Maple also computes IIAI12 = J7 +.J7 directly with the command 

>norm(A,2); 

To determine the 100 nOIID of A, replace the last command with 

>norm(A,infinity); 
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In studying iterative matrix techniques, it is of particular importance to know when 
powers of a matrix become small (that is, when all the entries approach zero). Matrices of 
this type are called convergent. 

Definition 7.76 We call an n x n matrix A convergent if 

lim (Ak)ij = 0, for each i = 1,2, ... , nand j = 1,2, .. , , n. 
k-->oo 

EXAMPLE 3 Let 

A= 

Computing powers of A, we obtain: 

1 0 -
A2 = 4 

A
3 = 1 1 , 

-
4 4 

and, in general, 

Ak = 

Since 

I k 

lim - =0 
k->oo 2 

A is a convergent matrix. 

1 -2 
1 
4 

1 -
8 
3 
16 

(~l 
k 

2k+l 

and 

o 
1 
2 

• 

1 -0 
A

4 = 16 
1 

, 1 - -
8 8 

0 

(~l 
• 

. k 
hm = 0, 

k-->oo 2k+1 

0 
1 , 

-
16 

• 

• 
Notice that the convergent matrix A in Example 3 has peA) = ~, since ~ is the only 

eigenvalue of A. This illustrates the important connection that exists between the spectral 
radius of a matrix and the convergence of the matrix, as detailed in the following result. 
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Theorem 7.17 The following statements are equivalent. 

(i) A is a convergent matrix. 

(ij) limn ..... oo II An II = 0, for some natural nOlIIl. 

(iii) limn ..... oo II An II = 0, for all natural nonns. 

(iv) p(A) < 1. 

(v) limn ..... oo Anx = 0, for every x. • 
The proof of this theorem can be found in [IK, p. 14]. 

E X ERe I S ESE T 7.2 

1. Compute the eigenvalues and associated eigenvectors of the following matrices. 

2. 

3. 

4. 

5. 

6. 

7. 

a. 

c. 

e. 

g. 

2 -1 
-1 2 

0 I -
2 

I 0 -2 

2 1 0 
1 2 0 
0 0 3 

2 1 1 
232 
112 

b. 

d. 

f. 

h. 

Find the spectral radius for each matrix in Exercise 1. 

Which of the matrices in Exercise 1 are convergent? 

o 1 
1 1 

1 
-2 

-1 
0 
0 

1 
-2 

2 0 
3 4 
0 7 

3 2-1 
1 -2 3 
204 

1 0 I 0 
Let A I = I I and A2 = l6 I . Show that Al is not convergent, but A2 is convergent. 
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Find the II . 112 norm for the matrices in Exercise 1. 

Show that if A is a eigenvalue of a matrix A and II . II is a vector norm, then an eigenvector x 
associated with A exists with IIxil = 1. 

Show that the characteristic polynomial p(A) = det(A - AI) for the n x n matrix A is an 
nth-degree polynomial. [Hint: Expand det(A - AI) along the first row, and use mathematical 
induction on n.] 

8. a. Show that if A is an n x n matrix, then 

n 

detA = n AI, 
i=1 

where Ai, ... , An are the eigenvalues of A. [Hint: Consider p(O).] 

b. Show that A is singular if and only if), = 0 is an eigenvalue of A. 



7.3 Iterative Techniques/or Solving Linear Systems 437 

9. Let A be an eigenvalue of the n x n matrix A and x i= 0 be an associated eigenvector. 

a. Show that A is also an eigenvalue of AI. 

b. Show that for any integer k > I, Ak is an eigenvalue of Ak with eigenvector x. 

c. Show that if A -I exists, then 1 I A is an eigenvector of A -I with eigenvector x. 

d. Generalize parts (b) and (c) to (A-I)k for integers k > 2. 

e. Given the polynomial q(x) = qo + qlx + ... + qkxk, define q(A) to be the matrix 
q(A) = qoI +ql A + .. ·+qkAk. Show that q(A) is an eigenvalue of q(A) with eigenvector 
x. 

f. Let a i= A be given. Show that if A - a I is a nonsingular, then 1 I (A - a) is an eigenvalue 
of (A - a/)-I with eigenvector x. 

10. Show that if A is symmetric, then IIAI12 = peA). 

11. In Exercise 11 of Section 6.3, we assumed that the contribution a female beetle of a certain 
type made to the future years' beetle population could be expressed in terms of the matrix 

A= 
006 
I 
2 
o 

o 
I 
3 

o 
o 

, 

where the entry in the ith row and jth column represents the probabilistic contribution of a 
beetle of age j onto the next year's female population of age i. 

a. Does the matrix A have any real eigenvalues? If so, determine them and any associated 
eigenvectors. 

b. If a sample of this species was needed for laboratory test purposes that would have a 
constant proportion in each age group from year to year, what criteria could be imposed 
on the initial population to ensure that this requirement would be satisfied? 

12. Find matrices A and B for which peA + B) > peA) + pCB). (This shows that peA) cannot 
be a matrix norm.) 

13. Show that if II· II is any natural norm, then (liliA-III) < IAI < IIAII for any eigenvalue A of 
the nonsingular matrix A. 

7.3 Iterative Techniques for Solving Linear Systems 

In this section we describe the Jacobi and the Gauss-Seidel iterative methods, classic meth
ods that date to the late eighteenth century. Iterative techniques are seldom used for solving 
linear systems of small dimension since the time required for sufficient accuracy exceeds 
that required for direct techniques such as Gaussian elimination. For large systems with a 
high percentage of 0 entries, however, these techniques are efficient in terms of both com
puter storage and computation. Systems of this type arise frequently in circuit analysis and 
in the numerical solution of boundary-value problems and partial-differential equations. 

An iterative technique to solve the n x n linear system Ax = b starts with an initial 
approximation xeD) to the solution x and generates a sequence of vectors {x(k)},r D that 

converges to x. Iterative techniques involve a process that converts the system Ax = b into 
an equivalent system of the form x = Tx + c for some fixed matrix T and vector c. 
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EXAMPLE 1 
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After the initial vector x(O) is selected, the sequence of approximate solution vectors is 
generated by computing 

X(k) = TX(k-l) + c, 

for each k = 1,2,3, .... This result should be reminiscent of the fixed-point iteration 
studied in Chapter 2. 

The linear system Ax = b given by 

EI: lOXI - X2 + 2X3 = 6, 

E 2 : -XI + llx2 - X3 + 3X4 = 25, 

E3: 2xI- X2+IOX3- x4=-II, 

E4 : 3X2 - X3 + 8X4 = 15 

has the unique solution x = (1, 2, -1, 1)1. To convert Ax = b to the form x = Tx + c, 
solve equation Ei for Xi, for each i = 1,2,3,4, to obtain 

1 1 3 
lOx2 - 5X3 + 5' 

1 1 3 25 
X2 = 11 XI + 11 X3 - 11 X4 + 11 ' 

1 1 1 11 
X3=--XI+ X2 

5 10 + lO x4 - 10' 

3 
- -X2+ 

8 

IS 
+ 8 . 

Then Ax = b can be rewritten in the form x = Tx + c, with 

0 I I 0 3 --
JO 5 5 

I 0 I 3 25 - - -- -
T= II II II and c= II 

I I I II • 

0 -- --
5 JO JO JO 

0 3 I 0 15 -- -8 8 8 

For an initial approximation, we let x(O) = (0, 0, 0, 0)1. Then x(l) is given by 

X
O) -
I -

3 + - = 0.6000, 
5 

3 (0) 25 
11 x4 + 11 = 2.2727, 

1 x(O) _ ~ = -1.1000 
+ 10 4 10 ' 

15 
+ - = 1.8750. 

8 

Additional iterates, X(k) = (X}k) , xi
k
) , xjk) , x!k»)I, are generated in a similar manner and are 

presented in Table 7 .1. 



Table 7.1 

k 0 
(k) 

Xl 0.000 
(k) x2 0.0000 
(k) 

X3 0.0000 
(k) 

X4 0.0000 
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1 2 3 4 5 6 7 8 9 10 

0.6000 1.0473 0.9326 l.0152 0.9890 1.0032 0.9981 l.0006 0.9997 l.0001 

2.2727 1.7159 2.053 1.9537 2.0114 1.9922 2.0023 1.9987 2.0004 1.9998 

-1.1000 -0.8052 -1.0493 -0.9681 -1.0103 -0.9945 -1.0020 -0.9990 -1.0004 -0.9998 

1.8750 0.8852 1.1309 0.9739 1.0214 0.9944 1.0036 0.9989 1.0006 0.9998 

The decision to stop after ten iterations was based on the criterion 

IIx(lO) - x(9) 1100 = 8.0 X 10-4 < 10-3 . 

IIx(lO) 1100 1.9998 

In fact, IIx('O) - xll oo = 0.0002. • 
The method of Example I is called the Jacobi iterative method. It consists of solving 

the ith equation in Ax = b for Xi to obtain (provided au 1= 0) 

n 
aijXj hi =L + Xi , 

au au j=1 

for i = I, 2, ... , n 

Hi 

and generating each xY) from components of X(k-I) for k ~ I by 

LJ=I (-aijxY-I)) + hi 
(k) Hi 

X· = -~-------, 
I 

for i = I, 2, ... , n. (7.4) 
aii 

The method is written in the fOlln x(k) = TX(k-i) + c by splitting A into its diagonal 
and off-diagonal parts. To see this, let D be the diagonal matrix whose diagonal entries are 
those of A, -L be the strictly lower-triangular part of A, and -U be the strictly upper
triangular part of A. With this notation, 

• • • 

• • • 

• 
• 
• 

· .. ann 

is split into 

• • 
O' . a22 

• 
• • 

A • • • • • • - • - • • • • • • • ·0 • • • • • • • • 
• • 

• • • 
O· .' 0 • 

• • • • • • • ann 

0: ........ 0 
• • 

• 

0: . . . . . . . . . . . . . . . 0 
• • 

O. -al2······ -a In · '., . 
• • • • • • • • 

• • 
• • • 

• • • • • . ' . 
'. -an_1 n . , 

• • 
-a21 • • 

• • • • • • • • • • • • • • • • • • • 

• • 
• • 
• • 
• - • 
• • 
• • . .' 

-ani···· '-an,n-I "0 
• • • o· . . . . . . . . . . . . . : 0 

= D - L - U. 

The equation Ax = b, or (D - L - U)x = b, is then transfOlIIled into 

Dx = (L + U)x + b, 
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and, if D- l exists, that is, if aii i= 0 for each i, then 

This results in the matrix fonn of the Jacobi iterative technique: 

X(k) = D- l (L + U)X(k-l) + D- l b, k = 1,2, .... (7.5) 

Introducing the notation Tj = D-l(L + U) and Cj = D-lb, the Jacobi technique has the 
form 

(7.6) 

In practice, Eq. (7.4) is used in computation and Eq. (7.6) for theoretical purposes. 
Algorithm 7.1 implements the Jacobi iterative technique. 

Jacobi Iterative 

To solve Ax = b given an initial approximation x(O): 

INPUT the number of equations and unknowns n; the entries aij, 1 < i, j < n of the 
matrix A; the entries bi , 1 < i < n of b; the entries X OJ, 1 < i < n of XO = x(O); 

tolerance TOL; maximum number of iterations N. 

OUTPUT the approximate solution Xl, ... , Xn or a message that the number of iterations 
was exceeded. 

Step 1 Set k = 1. 

. Step 2 While (k :::: N) do Steps 3--6. 

Step 3 For i = 1, ... , n 

- L:J=1 (aijX 0) + bi 
Ji.i set Xi = ---''-'-------. 

Step 4 If IIx - XOII < TOL then OUTPUT (Xl, ... , xn ); 

Step 5 Set k = k + 1. 

(The procedure was successful.) 
STOP. 

Step 6 For i = 1, ... , n set X Oi = Xj. 

Step 7 OUTPUT (,Maximum number of iterations exceeded'); 
(The procedure was successful.) 
STOP. • 

Step 3 of the algorithm requires that aji i= 0, for each i = 1,2, ... , n. If one of the aii 

entries is 0 and the system is nonsingular, a reordering of the equations can be performed 
so that no aii = O. To speed convergence, the equations should be arranged so that aii is as 
large as possible. This subject is discussed in more detail later in this chapter. 



EXAMPLE 2 

lable 7.2 
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Another possible stopping criterion in Step 4 is to iterate until 

Ilx(k) - x(k-l) II 

IIx(k) II 
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is smaller than some prescribed tolerance. For this purpose, any convenient norm can be 
used, the usual being the 100 nonn. 

A possible improvement in Algorithm 7.1 can be seen by reconsidering Eq. (7.4). 
The components of X(k-I) are used to compute xy). Since, for i > 1, xik

), .•. ,Xi(k\ 

have already been computed and are probably better approximations to the actual solu-
. h (k-I) (k-l) . bl (k) . hons XI, ... ,Xi-I t an XI ' ... ,Xi_I ,It seems more reasona e to compute Xi usmg 

these most recently calculated values. That is, we can use 

(7.7) 

for each i = 1, 2, ... , n, instead of Eq. (7.4). This modification is called the Gauss-Seidel 
iterative technique and is illustrated in the following example. 

The linear system given by 

lOx! - X2 + 2X3 = 6, 

-Xl + llx2 - X3 + 3X4 = 25, 

2Xl - X2 + 10x3 - X4 = -11, 

3X2 - X3 + 8X4 = 15 

was solved in Example 1 by the Jacobi iterative method. Incorporating Eq. (7.7) into Al
gorithm 7.1 gives the equations to be used for each k = 1, 2, ... , 

X
(k) -
I -

X
(k) __ ~X(k) + 1 x(k) 
3 - 5 1 10 2 

X
(k) -
4 -

1 (k) + -x 8 3 

+ ~X(k-l) 
10 4 

11 

10' 

15 
+ 8 . 

Letting xeD) = (0,0,0,0)', we generate the iterates in Table 7.2. 

k 0 1 2 3 4 

(k) 
Xl 0.0000 0.6000 1.030 1.0065 1.0009 

(k) 
Xz 0.0000 2.3272 2.037 2.0036 2.0003 

(k) 
X3 0.0000 -0.9873 -1.014 -1.0025 -1.0003 

(k) x4 0.0000 0.8789 0.9844 0.9983 0.9999 

5 

1.0001 
2.0000 

-1.0000 
1.0000 
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Since 

Il x(S) - X(4) II 0.0008 
__ --,-::-:-__ 00_ = = 4 X 10-4 

IIx(S) 1100 2.000 ' 

x(S) is accepted as a reasonable approximation to the solution. Note that Jacobi's method 
in Example I required twice as many iterations for the same accuracy. _ 

To write the Gauss-Seidel method in matrix form, multiply both sides of Eq. (7.7) by 
. aii and collect all kth iterate terms, to give 

(k) (k) (k) (k-l) (k-l) 
a·lx + a·2x + ... + a .. x· = -a· ·+IX. - ... - a· x + b· 

I 1 I 2 II 1 l,t 1+1 In n " 

for each i = I, 2, ... , n. Writing all n equations gives 

(k) 
allx1 

(k) (k) 
aZlx1 + aZ2x 2 

• 
• 
• 

with the definitions of D, L, and U given previously, we have the Gauss-Seidel method 
represented by 

(D - L)x(k) = Ux(k-l) + b 

or 

X (k) = (D - L)-I Ux(k-I) + (D - L)-'b," h k 1 2 lor eac =" .... (7.8) 

Letting Tg = (D - L)-I U and cg = (D - L)-Ib, the Gauss-Seidel technique has the fOlln 

(7.9) 

For the lower-triangular matrix D - L to be nonsingular, it is necessary and sufficient that 
aii i= 0, for each i = 1, 2, ... , n. 

Algorithm 7.2 implements the Gauss-Seidel method. 

Gauss-Seidel Iterative 

To solve Ax = b given an initial approximation x(O): 

INPUT the number of equations and unknowns n; the entries aij, I :s i, j < n of the 
matrix A; the entries bi , 1 < i < n of b; the entries X Oi, 1 < i < n of XO = x(O); 

tolerance TOL; maximum number of iterations N. 

OUTPUT the approximate solution Xl, •.• , Xn or a message that the number of iterations 
was exceeded. 



Lemma 7.78 
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Step 7 Set k = 1. 

Step 2 While (k < N) do Steps 3-6. 

Step 3 For i = I, .... n 

i-I n 

- L aij xi - L aij X OJ + hi 
j=l }=i+l 

set Xi = ------------. 

Step4 Ifllx-XOII < TOLthenOUTPUT(xl, .... xn ): 

Step 5 Set k = k + l. 

(The procedure was successful.) 
STOP. 

Step 6 For i = 1, ... , n set X Oi = Xi. 

Step 7 OUTPUT ('Maximum number of iterations exceeded'): 
(The procedure was successful.) 
STOP. 
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• 
The comments following Algorithm 7.1 regarding reordering and stopping criteria also 

apply to the Gauss-Seidel Algorithm 7.2. 
The results of Examples 1 and 2 appear to imply that the Gauss-Seidel method is 

superior to the Jacobi method. This is almost always true, but there are linear systems for 
which the Jacobi method converges and the Gauss-Seidel method does not (see Exercises 
9 and lO). 

To study the convergence of general iteration techniques, we consider the formula 

x(k) = TX(k-l) + c, for each k = J, 2, .... 

where x(O) is arbitrary. 

If the spectral radius p (T) satisfies p (T) < I, then (l - T) -I exists, and 

:xl 

(l - T)-l = I + T + T2 + ... = L P. 
j=O 

• 

Proof Since Tx = Ax is true precisely when (l - T)x = (1 - Je)x, we have A as an 
eigenvalue of T precisely when I - Je is an eigenvalue of 1 - T. But IAI < p(T) < I, so 
Je = 1 is not an eigenvalue of T, and 0 cannot be an eigenvalue of I - T. Hence, (1 - T)-I 

exists. 
Let Sm = 1+ T + T2 + ... + Tm. Then 

(l - T)Sm = (1 + T + T2 + ... + Tin) - (T + T2 + ... + rn+l) = I - T"'+I. 

and, since T is convergent, the result at the end of Section 7.2 implies that 

lim (1- T)Sm = lim (l - Tm+l) = I. 
m ----+ 'Xl m ~ 00 

-I . 2 00· Thus, (l - T) = hmm-+oo Sm = 1 + T + T + ... = Lj=o T}. • • • 
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Theorem 7.19 
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For any x(O) E ]Rn, the sequence {x(k)}k' 0 defined by 

X(k) = Tx(k-l) + c, for each k 2': 1, (7.10) 

converges to the unique solution of x = Tx + c if and only if p (T) < 1. 

Proal First assume that p(T) < 1. Then, 

X(k) = Tx(k-l) + c 

= T (TX(k-2) + c) + c 

= T 2x(k-2) + (T + l)c 

• 
• 
• 

Since peT) < 1, the matrix T is convergent and 

Lemma 7.18 implies that 

lim X(k) = lim Tkx(O) + 
k~oo k~oo 

lim Tkx(O) = O. 
k~oo 

00 2:Tj c = 0 + (l - T)-lc = (l - T)-lc. 
j=O 

Hence, the sequence {x(k)} converges to the vector x = (l - T)-lc and x = Tx + c. 

• 

To prove the converse, we show that for any Z E ]Rn, we have limk~oo Tkz = O. By 
Theorem 7.17, this is equivalent to p (T) < 1. 

Let z be an arbitrary vector, and x be the unique solution to x = Tx + c. Define 
x(O) = x - z, and, for k > 1, X(k) = TX(k-l) + c. Then {x(k)} converges to x. Also, 

x - x(k) = (Tx + c) - (Tx(k-l) + c) = T (x - X(k-l)) , 

so 

x - x(k) = T (x - X(k-l») = T2 (x - x(k-2») = ... = Tk (x - x(O») = TkZ. 

H l ' Tk - l' Tk ( (0») - Ii ( (k») - 0 ence lmk~oo z - lmk~oo x - x - mk~oo x - x -. 
Since Z E ]Rn was arbitrary, this implies that T is a convergent matrix and that 

p(T) < 1. • • • 

The proof of the following corollary is similar to the proofs in Corollary 2.4. It is 
considered in Exercise 11. 

Corollary 7.20 If II T II < 1 for any natural matrix norm and c is a given vector, then the sequence {X(k)} f 0 

defined by x(k) = Tx(k-l) + c converges, for any x(O) E ]Rn, to a vector x E IRn , and the 
following error bounds hold: 



Theorem 7.21 

Theorem 7.22 

7.3 Iterative Techniques for Solving Linear Systems 445 

(ii) Il x - X(k) II < IITllk Ilx(l) - x(D)11 
- I-IIT1! . • 

We have seen that the Jacobi and Gauss-Seidel iterative techniques can be written 

X(k) = T;x(k- O + Cj and X(kl = TgX(k- lJ + cg , 

using the matrices 

T; = D- I (L + U) and Tg = (D - L)-IU. 

If peT)~ or p(Tg ) is less than 1, then the corresponding sequence {X(kl},r 0 will converge to 
the solution x of Ax = b. For example, the Jacobi scheme has 

and, if {x(kl}r 0 converges to x, then 

x = D-1 (L + U)x + D-1b. 

This implies that 
• 

Dx = (L + U)x + band (D - L - U)x = b. 

Since D - L - U = A, the solution x satisfies Ax = b. 
We can now give easily verified sufficiency conditions for convergence of the Jacobi 

and Gauss-Seidel methods. (To prove convergence for the Jacobi scheme, see Exercise 12, 
and for the Gauss-Seidel scheme, see [Or2, p. 120].) 

If A is strictly diagonally dominant, then for any choice of x(O) , both the Jacobi and Gauss
Seidel methods give sequences {X(kl},r 0 that converge to the unique solution of Ax = h . 

• 
The relationship of the rapidity of convergence to the spectral radius of the iteration 

matrix T can be seen from Corollary 7.20. Since the inequalities hold for any natural matrix 
norm, it follows from the statement after Theorem 7.15 that 

(7.11) 

Thus, it is desirable to select the iterative technique with minimal peT) < I for a partic
ular system Ax = b. No general results exist to tell which of the two techniques, Jacobi 
or Gauss-Seidel, will be most successful for an arbitrary linear system. In special cases, 
however, the answer is known, as is demonstrated in the following theorem. The proof of 
this result can be found in [Y, pp. 120-127]. 

(Stein-Rosenberg) 

If aij < 0, for each i =I- j and aii > 0, for each i = 1,2, ... ,n, then one and only one of 
the following statements holds: 
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a. o < p(Tg ) < peT)~ < 1; 

b. I < peT)~ < p(Tg); 

c. pCT) = p(Tg ) = 0; 

d. p(Tl ) = p(Tg ) = 1. • 
For the special case described in Theorem 7.22, we see from part Ca) that when one 

method gives convergence, then both give convergence, and the Gauss-Seidel method con
verges faster than the Jacobi method. Part (b) indicates that when one method diverges then 
both diverge, and the divergence is more pronounced for the Gauss-Seidel method. 

Since the rate of convergence of a procedure depends on the spectral radius of the 
matrix associated with the method, one way to select a procedure to accelerate conver
gence is to choose a method whose associated matrix has minimal spectral radius. Before 
describing a procedure for selecting such a method, we need to introduce a new means of 
measuring the amount by which an approximation to the solution to a linear system differs 
from the true solution to the system. The method makes use of the vector described in the 
following definition. 

Definition 7.23 Suppose X E ]Rn is an approximation to the solution of the linear system defined by Ax = b. 
The residual vector for x with respect to this system is r = b - Ax. • 

In procedures such as the Jacobi or Gauss-Seidel methods, a residual vector is asso
ciated with each calculation of an approximation component to the solution vector. The 
object is to generate a sequence of approximations that will cause the residual vectors to 
converge rapidly to zero. Suppose we let 

(k) (k) (k) (k)t 
r i = (r li ,r2i ' ... ,rni 

denote the residual vector for the Gauss-Seidel method corresponding to the approximate 
solution vector x;k) defined by 

The mth component of r;k) is 

i-I n 

r~l = bm - I>mlXY) - L amjxY-
I
), (7.12) 

)=1 )=i 

or, equivalently, 

for each m = 1, 2, ... , n. 
In particular, the ith component of r;k) is 

i-I n 
(k) b '" (k) '" (k-l) (k-l) 

r ii = i - ~aijXj - ~ aijXj - aii Xi ' 
j=1 j=i+1 
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so 

i-I n 

aii X /
k- l

) + ri~k) = hi - L aijxy) - L aijxt I). 

j=1 j=,+1 

Recall, however, that in the Gauss-Seidel method, x?J is chosen to be 

(k) I 
x· =, 

aii 

so Eq. (7.13) can be rewritten as 

(k-i) (k) (k) 
aUxi + rii = aUxi . 
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(7.13) 

(7.14 ) 

Consequently, the Gauss-Seidel method can be characterized as choosing x?) to satisfy 

(k) 

x(k) = x(k-l) + ru . , , 
aii 

(7.l5) 

We can derive another connection between the residual vectors and the Gauss-Seidel 
technique. Consider the residual vector ri~i' associated with the vector X;~l = (xlk

), ... , 

(k) (k-I) (k-i)t B (7 12) h . h f (k) '. Xi ,xi + I , ... , xn . Y . , tel t component 0 r i + I IS 

, n 

ri~:~1 = hi - L aijxY) - L aijxY-I) 
j = I j =i I I 

i-J n 

= hi - Laijxjkl - L aijxY- lJ - aii x?). 
j=1 j=i+1 

Equation (7.14) implies that ri~~~1 = O. In a sense, then, the Gauss-Seidel technique is also 
characterized choosing Xi~l in such a way that the ith component of r;~1 is zero. 

Choosing Xi(~l so that one coordinate of the residual vector is zero, however, is not the 
most efficient way to reduce the norm of the vector ri~J' If we modify the Gauss-Seidel 
procedure, as given by Eq. (7.15), to 

(k) 
(k) _ (k-J) + ru 

Xi - Xi W, 
aii 

(7.16) 

for certain choices of positive w, we can reduce the norm of the residual vector and obtain 
significantly faster convergence. 

Methods involving Eq. (7.16) are called relaxation methods. For choices of w with 
o < w < 1, the procedures are called under-relaxation methods and can be used to 
obtain convergence of some systems that are not convergent by the Gauss-Seidel method. 
For choices of w with 1 < w, the procedures are called over-relaxation methods, which 
are used to accelerate the convergence for systems that are convergent by the Gauss-Seidel 
technique. These methods are abbreviated SOR, for Successive Over-Relaxation, and are 
particularly useful for solving the linear systems that occur in the numerical solution of 
certain partial-differential equations. 
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Before illustrating the advantages of the SOR method, we note that by using Eq. (7.13), 
Eq. (7.16) can be refOIlllulated for calculation purposes to 

(k) _ (1 _ ) (k-l) + W x· - w X 
I I a· . 

" 
• 

To determine the matrix of the SOR method, we rewrite this as 

• ;-1 n 
(k) ~ (k) . (k-I) ~ (k-J) 

a;ixi +w~aijXj = (l-w)aii Xi -w ~ aijXj +wbi , 

j=J j=i+J 

so that in vector fDIm, we have 

(D - wL)x(k) = [(1 - w)D + wU]x(k-l) + wb 

or 

X(k) = (D - WL)-l[(l - w)D + wU]X(k-l) + weD - wL)-lb. (7.17) 

If we let Tw = (D -WL)-I[(1-w)D+wU] and Cw = weD -WL)-lb, the SOR technique 
has the form 

The linear system Ax = b given by 

4X1 + 3X2 = 24, 

3Xl + 4X2 - X3 = 30, 

- X2 + 4X3 = -24, 

(7.18) 

has the solution (3, 4, -5Y. The Gauss-Seidel method and the SOR method with w = 1.25 
will be used to solve this system, using xeo) = (1, 1, 1)1 for both methods. For each k = 
1,2, ... , the equations for the Gauss-Seidel method are 

(k) _ -075 (k-l) + 6 
Xl - • x2 ' 

xy) = -0.75x;k) + 0.25xjk-l) + 7.5, 

xik
) = 0.25xik

) - 6, 

and the equations for the SOR method with w = 1.25 are 

xik
) = -0.25xik

-
1
) - 0.9375xY-I) + 7.5, 

xy) = -0.9375x}k) - 0.25xY-I) + 0.3125xY-I) + 9.375, 

xy) = 0.3125xY) - 0.25xY-1) - 7.5. 

The first seven iterates for each method are listed in Tables 7.3 and 7.4. For the iterates 
to be accurate to seven decimal places, the Gauss-Seidel method requires 34 iterations, as 
opposed to 14 iterations for the over-relaxation method with w = l.25. • 
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Thble 7.3 Gauss-Seidel 

k o 1 2 3 4 5 6 7 

1 5.250000 3.1406250 3.0878906 3.0549316 3.0343323 3.0214577 3.0134110 
I 3.812500 3.8828125 3.9267578 3.9542236 3.9713898 3.9821186 3.9888241 
1 -5.046875 -5.0292969 -5.0183105 -5.0114441 -5.0071526 -5.0044703 -5.0027940 

Thble 7.4 SOR with U) = 1.25 

k 0 1 2 3 4 5 6 7 
(k) 

Xl 1 6.312500 2.6223145 3.1333027 2.9570512 3.0037211 2.9963276 3.0000498 
(k) x2 1 3.5195313 3.9585266 4.0102646 4.0074838 4.0029250 4.0009262 4.0002586 

X(k) 
3 1 -6.6501465 -4.6004238 -5.0966863 -4.9734897 -5.0057135 -4.9982822 -5.0003486 

Theorem 7.24 

Theorem 7.25 

Theorem 7.26 

EXAMPLE 4 

The obvious question to ask is how the appropriate value of U) is chosen. Although no 
complete answer to this question is known for the general n x n linear system, the following 
results can be used in certain situations. 

(Kahan) 
If ail i= 0, for each i = 1, 2, ... , n, then p (Tw) > IU) - 11. This implies that the SOR 
method can converge only if 0 < U) < 2.. • 

The proof of this theorem is considered in Exercise 13. The proof of the next two 
results can be found in [Or2, pp. 123-133]. These results will be used in Chapter 12. 

(Ostrowski-Reich) 
If A is a positive definite matrix and 0 < U) < 2, then the SOR method converges for any 
choice of initial approximate vector x(O) • • 

If A is positive definite and tridiagonal, then p (Tg) = [p (Tj ) f < 1, and the optimal choice 
of U) for the SOR method is 

2 
U) = . 

1 + )1 - [p(Tj)F 

With this choice of U), we have p(Tw) = U) - 1. 

The matrix 

A= 
4 3 o 
3 4 -1 

4 o -1 
, 

given in Example 3, is positive definite and tridiagonal, so Theorem 7.26 applies. Since 

• 
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I 
4 o o 

o 
o -3 0 

-3 0 1 
o 

-0.75 
o 

-0.75 0 

we have 

so 

Thus, 

and 

o 1 
4 

o 0 1 
4 

o 

-A 
-0.75 
o 

1 0 

-0.75 
-A 

0.25 

-

o 
0.25 

-A 
, 

det(Tj - AI) = -A(A 2 
- 0.625). 

2 
-=---r;:==~~ ~ 1.24. 
1 + y'l - 0.625 

o 0.25 
0.25 0 

This explains the rapid convergence obtained in Example 1 when using w = 1.25. • 

We close this section with Algorithm 7.3 for the SOR method. 

SOR 

To solve Ax = b given the parameter wand an initial approximation X(D): 

I N PUT the number of equations and unknowns n; the entries aij, 1 < i, j < n, of the 
matrix A; the entries bi , 1 < i < n, of b; the entries X 0;, 1 ~ i < n, of XO = X(D): the 
parameter w; tolerance TOL; maximum number of iterations N. 

OUTPUT the approximate solution XI, ... , Xn or a message that the number of iterations 
was exceeded. 

Step 1 Set k = 1. 

Step 2 While (k < N) do Steps 3-6. 

Step 3 For i = 1, ... , n 

Step 4 If Ilx - XOII < TOL then OUTPUT (XI, ... , x n ); 

(The procedure was successful.) 
STOP. 
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Step 5 Set k = k + 1. 

Step 6 For i = 1, ... , n set X Oi = Xi. 

Step 7 OUTPUT (,Maximum number of iterations exceeded'); 
(The procedure was successful.) 
STOP. 

E X ERe I S ESE T 7.3 
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• 

1. Find the first two iterations of the Jacobi method for the following linear systems, using 
x W) = 0: 

a. 3xI - X2 + X3 = 1. 

3xI + 6X2 + 2X3 = O. 

3xI + 3X2 + 7X3 = 4. 

C. lOx I + 5X2 

5xI + IOx2 - 4X3 

4X2 + 8X3 -

-6 - , 

= 25, 

X4 = -11, 

- X3 + 5X4 = -11. 

e. 4xI + X2 + X3 + 
• 

-Xl - 3X2 + X3 + X4 

X5 = 6. 

= 6. 

-6 - , 

2X2 - X3 + X4 + 4xs = 6. 

f. 4xI - X2 X4 

-XI + 4X2- X3 X5 

=0 , 
= 5, 

X2 + 4X3 X6 = 0, 

-XI +4X4 - x, =6 , 

d. 

X4 + 4xs - X6 = -2, 

- X5 + 4X6 = 6. 

2. Repeat Exercise 1 using the Gauss-Seidel method. 

=9 • 
-X1 + 10x2 - 2X3 = 7, 

2X2 + 10x3 = 6. 

4Xl + X2 - X3 + X4 = -2, 

Xl + 4X2 - X3 - X4 = -1, 

-Xl- X2 + 5X3 + X4 = 0, 

Xl - X2 + X3 + 3X4 = 1. 

3. Use the Jacobi method to solve the linear systems in Exercise 1, with TOL = 10-3 in the toe 
norm. 

4. Repeat Exercise 3 using the Gauss-Seidel Algorithm. 

5. Find the first two iterations of the SOR method with w = 1.1 for the following linear systems, 
using x(O) = 0: 

a. 3Xl - X2 + X3 = 1. 

3xI + 6X2 + 2X3 = 0, 

3Xl + 3X2 + 7X3 = 4. 

b. lOx 1 - X2 = 9, 

-Xl + IOx2 - 2X3 = 7, 

- 2X2 + IOx3 = 6. 
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C. lOXI + 5X2 = 6, d. 4XI + X2 - X3 + X4 = -2, 

5XI + lOx2 - 4X3 = 25, Xl + 4X2- X3 - X4 = -I, 

e. 

f. 

4X2 + 8X3 - X4 = -11, 

- X3 + 5X4 = -11. 

4XI + X2 + X3 + Xs = 6, 

-Xl - 3X2 + X3 + X4 = 6, 

2XI + X2 + 5X3- X4 - Xs = 6, 

-Xl - X2 - X3 + 4X4 = 6, 

2X2 - X3 + X4 + 4xs = 6. 

4XI - X2 

-Xl + 4X2- X3 

X2 + 4X3 

-Xl 

X2 

X4 = 0, 

Xs = 5, 

X6 = 0, 

+4X4 - Xs = 6, 

X4 + 4xS - X6 = -2, 

- Xs +4X6 = 6. 

6. Repeat Exercise 1 using w = 1.3. 

-XI- X2 + 5X3 + X4 = 0, 

XI- X2 + X3 + 3X4 = 1. 

7. Use the SOR method with w = 1.2 to solve the linear systems in Exercise 5 with a tolerance 
TOL = 10-3 in the 100 norm. 

S. Determine which matrices in Exercise 5 are tridiagonal and positive definite. Repeat Exercise 
7 for these matrices using the optimal choice of w. 

9. The linear system 

has the solution (I, 2, -I)'. 

a. Show that p(Tj ) = V; > 1. 

2XI - X2 + X3 = -I, 

2Xl + 2x2 + 2X3 = 4, 

-XI-X2+ 2x3=-5 

b. Show that the Jacobi method with x(O) = 0 fails to give a good approximation after 25 
i terati ons. 

c. Show that p(Tg) = ~. 
d. Use the Gauss-Seidel method with x(O) 

system to within lO-s in the 100 norm. 
o to approximate the solution to the linear 

10. The linear system 

Xl +2X2-2x3 =7, 

Xl + x2 + x3 = 2, 

has the solution (1,2, -I)'. 

a. Showthatp(Tj ) =0. 

b. Use the Jacobi method with x(O) = 0 to approximate the solution to the linear system to 
within lO-s in the 100 norm. 

c. Show that p(Tg) = 2. 

d. Show that the Gauss-Seidel method applied as in part (b) fails to give a good approxima
tion in 25 iterations. 
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11. a. Prove that 

and 

where T is an n x n matrix with II Til < I and 

X(k) = TX(k-l) + c, k = 1,2, ... , 

with x(O) arbitrary, C E JR", and x = Tx + c. 

b. Apply the bounds to Exercise I, when possible, using the 100 norm. 

12. Show that if A is strictly diagonally dominant, then IITjlloo < 1. 

13. Prove Theorem 7.24. [Hint: If AI, ... ,An are eigenvalues of Tw, then det Tw = n~ I Ai. Since 
det D-I = det(D - wL)-1 and the determinant of a product of matrices is the product of the 
determinants of the factors, the result follows from Eq. (7.17).] 

14. Suppose that an object can be at anyone of n + 1 equally spaced points Xo, XI .... ,Xn • When 
an object is at location Xi, it is equally likely to move to either Xi_lor Xi+1 and cannot directly 
move to any other location. Consider the probabilities {Pi }~ 0 that an object starting at location 
Xi will reach the left endpoint Xo before reaching the right endpoint X n . Clearly, Po = 1 and 
Pn = O. Since the object can move to Xi only from Xi-lor Xi+1 and does so with probability ; 
for each of these locations, 

a. Show that 

I I --2 
0: . . . . . . . . . . . . . {) 

• • 
• 

• • 

PI 
I -
2 

• 
• 
• 
• 

1 --
2 1 I • 

• --
2 • • 

• • 
• • 

• • 

P2 0 ~'. -L 1. 
• 

• • 
• • • 

• • 

• 
• 

• • • • • • • • • • • • • • • 
• • 
• • 

• 
() • 

• 

• 
• 

• 
• • • • • • • • • • • • • 

Pn- I ° 
• • • • 

• • 
• I 

• 
• • . 1 • 
• • - - --

2 • 2 • • 

• • • • o· . . . . . . . . . . . . :0 1 --
2 1 

b. Solve this system using n = 10,50, and 100. 

c. Change the probabilities to Ci and 1 - Ci for movement to the left and right, respectively, 
and derive the linear system similar to the one in part (a). 

d. Repeat part (b) with Ci = ~. 

15. Use all the applicable methods in this section to solve the linear system Ax = b to within 10-5 

in the 100 norm, where the entries of A are 

ai,j = 

2i, when j = i and i = 1, 2, ... , 80, 

0.5i, 

0.25i, 

when 
j = i + 2 and i = I, 2, ... , 78, 

j = i - 2 and i = 3, 4, ... , 80, 

j = i + 4 and i = I, 2, ... , 76, 
when 

j = i - 4 and i = 5, 6, ... ,80, 

0, otherwise, 

and those of b are bi = Jr, for each i = I, 2, .. , , 80. 
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16. Suppose that A is a positive definite. 

a. Show that we can write A = D - L - V, where D is diagonal with dii > 0 for each 
I < i < nand L is lower triangular. Further, show that D - L is nonsingular. 

b. Let Tg = (D - L)-IV and P = A - T:ATg. Show that P is symmetric. 

c. Show that Tg can also be written as T~ = I - (D - L)-I A. 

d. Let Q = (D - L)-I A. Show that Tg = I - Q and P = Q'[AQ-I - A + (Q')-I A1Q. 

e. Show that P = Q' D Q and P is positive definite. 

f. Let A be an eigenvalue of Tg with eigenvector x =1= O. Use part (b) to show that x' Px > 0 
implies that I A I < 1. 

g. Show that Tg is convergent and prove that the Gauss-Seidel method converges. 

17. Extend the method of proof in Exercise 16 to the SOR method with 0 < w < 2. 

18. The forces on the bridge truss described in the opening to this chapter satisfy the equations in 
the following table: 

Joint Horizontal Component 

-FI + if II + 12 = 0 

-V;/I+114=O 
@ -12+15 =0 

@ -114-15=0 

Vertical Component 

v; /I - F2 = 0 

-V;fI-f3+i/4=0 
h - 10.000 = 0 

U4- F3=0 

This linear system can be placed in the matrix form 

-I 0 0 .j2 I 0 0 0 2 

0 -1 0 .j2 0 0 0 0 Fl 0 
2 

F2 0 
0 0 -I 0 0 0 I 0 -

2 F3 0 
0 0 0 .j2 0 -1 1 0 11 0 -- -

2 2 

0 0 0 0 -I 0 0 I fz 0 

0 0 0 0 0 1 0 0 h 10,000 

14 0 
0 0 0 .j2 0 0 ../3 0 Is 0 --

2 2 

0 0 0 0 0 0 _../3 -1 
2 

a. Explain why the system of equations was reordered. 

b. Approximate the solution of the resulting linear system to within 10-2 in the 100 norm 
using as initial approximation the vector all of whose entries are Is and (i) the Gauss-
Seidel method, (ii) the Jacobi method, and (iii) the SOR method with w = 1.25. 

7.4 Error Bounds and Iterative Refinement 

It seems intuitively reasonable that if x is an approximation to the solution x of Ax = b 
and the residual vector r = b - Ax has the property that IIrll = lib - Axil is small, then 
Ilx - xII would be small as well. This is often the case, but certain systems, which occur 
frequently in practice, fail to have this property. 
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Figure 7.7 

Theorem 7.27 
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The linear system Ax = b given by 

1 2 
1.0001 2 

3 
3.0001 
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has the unique solution x = (l, l)t. The poor approximation x = (3,0)1 has the residual 
vector 

r = b - Ax = 3 
3.0001 

1 
1.0001 

2 
2 

3 
o 

o 
-0.0002 ' 

so Ilrll DC = 0.0002. Although the norm of the residual vector is small, the approximation 
x = (3,0)1 is obviously quite poor; in fact, Ilx - xlloo = 2. • 

The difficulty in Example 1 is explained quite simply by noting that the solution to the 
system represents the intersection of the lines 

II: XI + 2X2 = 3 and 12 : 1.0001xI + 2X2 = 3.0001. 

The point (3, 0) lies on II, and the lines are nearly parallel. This implies that (3. 0) also 
lies close to 12 , even though it differs significantly from the solution of the system, given 
by the intersection point (1, J). (See Figure 7.7.) 

1 (3, -0.0001) 

Example 1 was clearly constructed to show the difficulties that can and, in fact, do~ 
arise. Had the lines not been nearly coincident, we would expect a small residual vector to 
imply an accurate approximation. 

In the general situation, we cannot rely on the geometry of the system to give an 
indication of when problems might occur. We can, however, obtain this infoIInation by 
considering the norms of the matrix A and its inverse. 

Suppose that x is an approximation to the solution of Ax = b, A is a nonsingular matrix, 
and r is the residual vector for X. Then for any natural norm, 
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and if x i= 0 and b i= 0, 

Ilx - xII < IIAII'IIA-I/I"r/l. 
/I xII - IIbll 

(7.19) 

• 
Proof Since r = b - Ai = Ax - Ai and A is nonsingular, x - x = A -Ir. Theorem 7.11 
in Section 7.1 implies that 

Ilx - xII = II A-Irll < II A-III· IIrll. 

Moreover, since b = Ax, we have /lb/l < /lA/I '/lx/l, so I/llxll < /lAll/lib/l and 

/Ix - xII 
---< 

II x II -
IIAII '/lA-I/I 

Ilb/l Ilrll· • • • 

The inequalities in Theorem 7.27 imply that /lA-I/I and /lA /I. /I A-III provide an indica
tion of the connection between the residual vector and the accuracy of the approximation. 
In general, the relative error Ilx - x/l//lx/l is of most interest, and, by Inequality (7.19), 
this error is bounded by the product of II A /I . II A -1/1 with the relative residual for this ap
proximation, IIr/l/lih/l. Any convenient norm can be used for this approximation; the only 
requirement is that it be used consistently throughout. 

Dejinition 7.28 The condition number of the nons in gular matrix A relative to a nOlln II . /I is 

EXAMPLE 2 

K(A) = IIAII . IIA-11I. • 
WitlJ this notation, the inequalities in Theorem 7.27 become 

Ilx - xii < K(A) Ilrll 
- /lA/I 

and 

Ilx - i/l < K(A) Ilrll . 
/lx/l - /lh/l 

For any nonsingular matrix A and natural norm II . II, 

1 = /I 1/1 = /I A . A -1/1 < /I A /I . /I A -I II = K (A). 

A matrix A is well-conditioned if K (A) is close to 1, and is ill-conditioned when K (A) is 
significantly greater than 1. Conditioning in this context refers to the relative security that 
a small residual vector implies a correspondingly accurate approximate solution. 

The matrix for tlJe system considered in Example 1 was 

1 2 
A = 1.0001 2 ' 
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which has IIA 1100 = 3.0001. This norm would not be considered large. However, 

A-I = -10000 
5000.5 

10000 
-5000 ' 

so 
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and for the infinity norm, K (A) = (20000)(3.0001) = 60002. The size of the condition 
number for this example should certainly keep us from making hasty accuracy decisions 
based on the residual of an approximation. -

In Maple the condition number Koo can be computed as follows: 

>with(linalg); 
>A:=matrix(2,2, [1,2,1.0001,2J); 
>cond(A); 

60002.00000 

Although the condition number of a matrix depends totally on the norms of the matrix 
and its inverse, in practice the calculation of the inverse is subject to roundoff error and 
is dependent on the accuracy with which the calculations are performed. If the operations 
involve arithmetic with t digits of accuracy, the approximate condition number for the 
matrix A is the nOIIn of the matrix times the norm of the approximation to the inverse of 
A, which is obtained using t-digit arithmetic. In fact, this condition number also depends 
on the method used to calculate the inverse of A. 

If we assume that the approximate solution to the linear system Ax = b is being 
determined using t-digit arithmetic and Gaussian elimination, it can be shown (see [FM, 
pp. 45-47]) that the residual vector r for the approximation x has 

IIrll ~ lO-tllAII ·lIxll· (7.20) 

From this approximation, an estimate for the effective condition number in t-digit 
arithmetic can be obtained without having to invert the matrix A. In actuality, this approxi
mation assumes that all the arithmetic operations in the Gaussian elimination technique are 
performed using t-digit arithmetic but that the operations needed to determine the resid
ual are done in double-precision (that is, 2t-digit) arithmetic. This technique does not add 
significantly to the computational effort and eliminates much of the loss of accuracy in
volved with the subtraction of the nearly equal numbers that occur in the calculation of the 
residual. 

The approximation for the t-digit condition number K(A) comes from consideration 
of the linear system 

Ay = r. 

The solution to this system can be readily approximated since the multipliers for the Gaus
sian elimination method have already been calculated. In fact y, the approximate solution 
of Ay = r, satisfies 

and 

- A-I A-I (b A-) A-Ib A-IA- -Y ~ r = - x = - x = x - x; 

x ~ x + y. 

(7.21) 
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So Y is an estimate of the error produced when x approximates the solution x to the original 
system. Equations (7.20) and (7.21) imply that 

lijill ~ Ilx-xll = IIA-Irll < IIA-III·llrll ~ IIA-III (lO-IIIAII'lIxll) = lO- t llxIIK(A). 

This gives an approximation for the condition number involved with solving the system 
Ax = b using Gaussian elimination and the t-digit type of arithmetic just described: 

The linear system given by 

3.3330 
2.2220 
1.5611 

15920 
16.710 
5.1791 

has the exact solution x = (l, 1, 1 r. 

K(A)~ IIYlllOl. 
II x II 

-10.333 
9.6120 
1.6852 

15913 
28.544 
8.4254 

(7.22) 

Using Gaussian elimination and five-digit rounding arithmetic leads successively to 
the augmented matrices 

and 

3.3330 
o 
o 

3.3330 
o 
o 

15920 
-10596 
-7451.4 

15920 
-10596 

o 

-10.333 
16.501 
6.5250 

• 15913 
10580 

· -7444.9 

• 

• 

• 

-10.333 . 
16.501 

15913 
: -10580 
• 

-5.0790 . -4.7000 
• 

The approximate solution to this system is 

so 

x = (1.2001,0.99991,0.92538)1. 

The residual vector corresponding to x is computed in double precision to be 

r = b - Ax 

-

15913 
28.544 
8.4254 

15913 
28.544 
8.4254 

3.3330 15920 
2.2220 16.710 
1.5611 5.1791 

15913.00518 
28.26981086 
8.611560367 

-10.333 
9.6120 
1.6852 

1.2001 
0.99991 
0.92538 

-0.00518 
0.27412914 

-0.186160367 
, 

Ilrlloo = 0.27413. 

The estimate for the condition number given in the preceding discussion is obtained 
by first solving the system Ay = r for y: 

• 
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3.3330 15920 -10.333 
2.2220 16.710 9.6120 
1.5611 5.1791 1.6852 

YI 
Y2 
Y3 

--
-0.00518 

0.27413 
-0.18616 

459 

• 

This implies that y - (-0.20008, 8.9987 x 10-5 , 0.074607)t. Using the estimate in 
Eq. (7.22) gives 

K(A) R:: 10511yll00 = 10
5
(0.20008) = 16672. 

IIxli oo 1.2001 
(7.23) 

To detennine the exact condition number of A, we first must construct A -I. Using 
five-digit rounding arithmetic for the calculations gives the approximation: 

A-I = 
-1.1701 X 10-4 

6.2782 X 10-5 

-8.6631 X 10-5 

-1.4983 X 10-1 

1.2124 X 10-4 

1.3846 X 10-1 

8.5416 X 10-1 

-3.0662 X 10-4 

-1.9689 X 10-1 

Theorem 7.11 implies that II A -11100 = 1.0041 and II A 1100 = 15934. 
As a consequence, the ill-conditioned matrix A has 

K(A) = (1.0041)(15934) = 15999. 

• 

The estimate in (7.23) is quite close to K (A) and requires considerably less computa
tional effort. 

Since the actual solution x = (I, I, I)t is known for this system, we can calculate both 
• 

IIx - xll oo = 0.2001 and IIx - ill oo = 0.2001 = 0.2001. 
Ilxli oo 1 

The error bounds given in Theorem 7.27 for these values are 

Ilx - xl < K A) IIrlloo = (15999)(0.27413) = 0.27525 
100 - (IiAlioo 15934 

and 

.c....llx_x--::-I1..:..:..oo IIrlloo _ (15999)(0.27413) _ 0 2 561 
- < K (A) - - . 7 . 

IIxlioo - IIbll oo 15913 • 
In Eq. (7.21), we used the estimate y ~ x - x, where y is the approximate solution 

to the system Ay = r. In general, x + y is a more accurate approximation to the solution 
of the linear system Ax = b than the original approximation x. The method using this 
assumption is called iterative refinement, or iterative improvement, and consists of per
forming iterations on the system whose right-hand side is the residual vector for successive 
approximations until satisfactory accuracy results. 

If the process is applied using t -digit arithmetic and if K 00 (A) ~ 1 ()'l, then after k 
iterations of iterative refinement the solution has approximately the smaller of t and k(t -q) 
correct digits. If the system is well-conditioned, one or two iterations will indicate that the 
solution is accurate. There is the possibility of significant improvement on ill-conditioned 
systems unless the matrix A is so ill-conditioned that Koo(A) > lOt. In that situation, 
increased precision should be used for the calculations. 
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Algorithm 7.4 implements the Iterative Refinement technique. 

Iterative Refinement 

To approximate the solution to the linear system Ax = b: 

I N PUT the number of equations and unknowns n; the entries aij, 1 < i, j < n of the 
matrix A; the entries bi , 1 :::: i < n of b; the maximum number of iterations N; tolerance 
TOL; number of digits of precision t. 

OUTPUT the approximation xx = (XXj, ... , xXn)t or a message that the number of 
iterations was exceeded, and an approximation COND to Koo(A). 

Step 0 Solve the system Ax = b for Xl, ... , Xn by Gaussian elimination saving the 
multipliers m ji, j = i + 1, i + 2, ... , n, i = 1, 2, ... , n - 1 and noting row 
interchanges. 

Step 1 Set k = 1. 

Step 2 While (k :::: N) do Steps 3-9. 

Step 3 For i = 1,2, ... , n (Calculate r.) 

n 

setri = b i - LaijXj. 

j=l 

(Perform the computations in double-precision arithmetic.) 

Step 4 Solve the linear system Ay = r by using Gaussian elimination in the same 
order as in Step o. 

Step 5 

Step 6 

For i = 1, ... , n ·set XXi = Xi + Yi. 

II y II 00 
If k = 1 then set COND = lOt. 

II xx \I 00 

Step 71f IIx - xxII 00 < TOL then OUTPUT (xx); 
OUTPUT (COND); 

Step 8 Set k = k + 1. 

(The procedure was successful.) 
STOP. 

Step 9 For i = 1, ... , n set Xi = XXi. 

Step 10 OUTPUT (,Maximum number of iterations exceeded'); 
OUTPUT (COND); 
(The procedure was unsuccessful.) 
STOP. • 

If t-digit arithmetic is used, a recommended stopping procedure in Step 7 is to iterate 
untiIIYi(k) I < 10-1

, for each i = 1,2, ... , n. 
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In Example 3 we found the approximation to the problem we have been considering, using 
five-digit arithmetic and Gaussian elimination, to be 

x(l) = (1.2001,0.99991,0.92538)1 

and the solution to Ay = r(1) to be 

yCI) = (-0.20008,8.9987 x 10-5 ,0.074607)1. 

By Step 5 in this algorithm, 

X(2) = x(l) + y(1) = (1.0000,1.0000,0.99999)1, 

and the actual error in this approximation is 

IIx-x(2)1100 = I x 10-5 . 

Using the suggested stopping technique for the algorithm, we compute r(2) = b - Ax(2) 

and solve the system Ay (2) = r (2), which gives 

Since lIy(2) 1100 ::S 10-5 , we conclude that 

x(3) = X(2) + y(2) = 0.0000, 1.0000, 1.0000)1 

is sufficiently accurate, which is certainly correct. • 
Throughout this section it has been assumed that in the linear system Ax = b, A and b 

can be represented exactly. Realistically, the entries aij and h j will be altered or perturbed 
by an amount 8aij and db j , causing the linear system 

(A + oA)x = b + ob 

to be solved in place of Ax = b. Nonnally, if IIoAII and IIobll are small (on the order of 
10-1

), the t-digit arithmetic should yield a solution x for which IIx - xII is correspondingly 
small. However, in the case of ill-conditioned systems, we have seen that even if A and 
b are represented exactly, rounding errors can cause IIx - xII to be large. The following 
theorem relates the perturbations of linear systems to the condition number of a matrix. 
The proof of this result can be found in [Or2, p. 33]. 

Theorem 7.29 Suppose A is nonsingular and 

The solution x to (A + oA)x = b + ob approximates the solution x of Ax = b with the 
error estimate 

IIx - xII K (A) IIA II 
~~-< ~--~~~--~ 

IIxll - IIAII - K(A)IIOAII 
!lobll lIoA II 
lib" + "All 

• (7.24) 

• 
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The estimate in inequality (7.24) states that if the matrix A is well-conditioned (that 
is, K (A) is not too large), then small changes in A and b produce correspondingly small 
changes in the solution x. If, on the other hand, A is iII-conditioned, then small changes in 
A and b may produce large changes in x. 

The theorem is independent of the particular numerical procedure used to solve Ax = 
b. It can be shown, by means of a backward error analysis (see [Will] or [WiI2]), that 
if Gaussian elimination with pivoting is used to solve Ax = b in t-digit arithmetic, the 
numerical solution x is the actual solution of a linear system: 

(A + oA)x = b, where lIoAlioo < f(n)lOl-t max la;j\ 
I, J ,k 

Wilkinson found in practice that fen) ~ n and, at worst, fen) < 1.01 (n 3 + 3n2). 

EX ERe I S ESE T 7.4 

1. Compute the condition numbers of the following matrices relative to II . II 00' 

a. 

c. 

e. 

I I 
2 3 
I I 
3 4 

1 2 
1 . ()()()() 1 2 

1 -1 -1 
o 1-1 
o o -I 

b. 

d. 

f. 

3.9 1.6 
6.8 2.9 

1.003 58.09 
5.550 321.8 

0.04 0.01 
0.2 0.5 
1 2 

-0.01 
-0.2 

4 

2. The following linear systems Ax = b have x as the actual solution and i as an approximate 
solution. Using the results of Exercise 1, compute IIx - ill oo and Koo(A) IIbli:t~~"" 

a. 
111 
i XI + 3X2 = 63' 
I I I 
3XI + 4 X2 = 168' 

1 l' 
x= ---

7' 6 ' 

x = (0.142, -0.166)'. 

C. Xl + 2X2 = 3, 

1.000lXI + 2X2 = 3.0001, 

x=(l,I)', 

x = (0.96, 1.02)'. 

b. 3.9xI + 1.6x2 = 5.5, 

6.8xI +2.9x2 = 9.7, 

x=(l,I)'. 

x = (0.98, 1.1)'. 

d. 1.003XI + 58.09x2 = 68.12, 

5.550XI + 321.8x2 = 377.3, 

x = (10, I)', 

x= (-IO. 1)'. 
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e. XI-X2-x3=2rr, 

X2 - X3 = 0, 

- X3 = 1r. 

f. O.04XI + O.Olx2 - O.Olx3 = 0.06, 

O.2XI + 0.5X2 - 0.2X3 = 0.3, 

Xl+ 2X2+ 4x3=11, 
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x = (0, -rr, -rr)', 

i = (-0.1, -3.15, -3.14)'. 

x = (1.827586,0.6551724,1.965517)', 

i = (1.8,0.64, 1.9)' . 
• 

3. The linear system 

1 2 Xl 

1.0001 2 X2 

3 
3.0001 

has solution (1, I)'. Change A slightly to 

and consider the linear system 

1 
0.9999 

1 2 
0.9999 2 ' 

2 
2 

-- 3 
3.0001 

Compute the new solution using five-digit rounding arithmetic, and compare the actual error 
to the estimate (7.24). Is A ill-conditioned? 

4. The linear system Ax = b given by 

1 
1.00001 

2 
2 

3 ~ 

= 3.00001 J 
has solution (1, 1)'. Use seven-digit rounding arithmetic to find the solution of the perturbed 
system 

1 
1.000011 

2 
2 

-- 3.00001 
3.00003 ' 

and compare the actual error to the estimate (7.24). Is A ill-conditioned? 

S. a. Use single precision on a computer to solve the following linear system using the Gaus
sian Elimination with Backward Substitution Algorithm 6.1. 

1 1 1 1 1 
-Xl - -X2 - -X3 - -X4 - -Xs = 1 
33333 

1 1 1 1 
-X2 - -X3 - -X4 - -Xs = 0 
3 3 3 3 

1 1 1 
-X3 - -X4 - -Xs = -1 
3 3 3 

1 1 
-X4 - -Xs = 2 
3 3 

1 
-Xs = 7 
3 

b. Compute the condition number of the matrix for the system relative to II . II 00' 

c. Find the exact solution to the linear system. 
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6. The n x n Hilbert matrix H(n) defined by 

I 
H(~) = --

'J i + j - 1 ' 
1 < i, j < n, 

is an ill-conditioned matrix that arises in solving the normal equations for the coefficients of 
the least-squares polynomial (see Example 1 of Section 8.2). 

a. Show that 

and compute K oo(H(4). 

b. Show that 

25 
-300 

[H(5)r l = 1050 
-1400 

630 

and compute K oo(H(5). 

c. Solve the linear system 

16 
-120 

240 
-140 

-300 
4800 

-18900 
26880 

-12600 

-120 
1200 

-2700 

240 
-2700 

6480 
1680 -4200 

1050 
-18900 

-140 
1680 

-4200 
2800 

-1400 
26880 

79380 -117600 
-117600 

56700 

1 
o 
o 

179200 
-88200 

, 

630 
-12600 

56700 , 
-88200 

44100 

using five-digit rounding arithmetic, and compare the actual error to that estimated in 
(7.24). 

7. Show that if B is singular, then 

1 
--< 
K(A) -

IIA - BII 

II A II 
• 

[Hint: There exists a vector with Ilxll = 1, such that Bx = O. Derive the estimate using 
IIAxl1 > Ilxll /IIA-III.) 

8. Using Exercise 7, estimate the condition numbers for the following matrices: 

1 2 
a. 

1.0001 2 
b. 

3.9 1.6 
6.8 2.9 

9. Use four-digit rounding arithmetic to compute the inverse H-1 of the 3 x 3 Hilbert matrix H, 
A A 

and then compute H = (H-I)-I. Determine IIH - Hlloo. 
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7.5 The Conjugate Gradient Method 

Theorem 7.30 

Theorem 7.31 

The conjugate gradient method of Hestenes and Stiefel [HS] was originally developed as 
a direct method designed to solve an n x n positive definite linear system. As a direct 
method it is generally inferior to Gaussian elimination with pivoting since both methods 
require n steps to determine a solution, and the steps of the conjugate gradient method are 
more computationally expensive than those in Gaussian elimination. 

However, the conjugate gradient method is very useful when employed as an itera
tive approximation method for solving large sparse systems with nonzero entries occurring 
in predictable patterns. These problems frequently arise in the solution of boundary-value 
problems. When the matrix has been preconditioned to make the calculations more effec
tive, good results are obtained in only about .,fii steps. Employed in this way, the method 
is preferred over Gaussian elimination and the previously-discussed iterative methods. 

Throughout this section we assume that the matrix A is positive definite. We will use 
the inner product notation 

(7.25) 

where x and y are n-dimensional vectors. We will also need some additional standard 
results from linear algebra. A review of this material is found in Section 9.1 . 

The next result follows easily from the properties of transposes (see Exercise 12). 

For any vectors x, y, and z and any real number a, we have 

(i) (x, y) = (y, x); 

(ii) (ax, y) = (x, ay) = a (x, y); 

(iii) (x + z, y) = (x, y) + (z, y); 

(iv) (x, x) > 0; 

(v) (x, x) = 0 if and only if x = o. • 
When A is positive definite, (x, Ax) = Xl Ax > 0 unless x = O. Also, since A is 

symmetric, we have Xl Ay = Xl Ny = (Axry, so in addition to the results in Theorem 
7.30, we have for each x and y, 

(x, Ay) = (Ax, y). (7.26) 

. 

The following result is a basic tool in the development of the conjugate gradient 
method. 

The vector x* is a solution to the positive definite linear system Ax = b if and only if x* 
• • • mmmllzes 

g(x) = (x, Ax) - 2(x, b). • 
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Proof Let x and v =1= 0 be fixed vectors and t a real number variable. We have 

so 

g(x + tv) = (x + tv, Ax + tAv) - 2(x + tv, b) 

= (x, Ax) + t(v, Ax) + t(x, Av) + t2(v, Av) - 2(x, b) - 2t(v, b) 

= (x, Ax) - 2(x, b) + 2t(v, Ax) - 2t(v, b) + t 2 (v, Av), 

g(x + tv) = g(x) + 2t(v, Ax - b) + t 2(v, Av). 

Since x and v are fixed, we can define the quadratic function h in t by 

h(t) = g(x + tv). 

(7.27) 

Then h assumes a minimal value when h'(t) = 0, because its t 2 coefficient, (v, Av), is 
positive. Since 

h'(t) = 2(v, Ax - b) + 2t(v, Av), 

the minimum occurs when 

A (v, Ax - b) (v, b - Ax) 
t=- =----, 

(v, Av) (v, Av) 

and, from Equation (7.27), 

A (v,b-Ax) 
h(t) = g(x) - 2 (v, b - Ax) + 

(v, Av) 

= g(x) _ (v, b - Ax)2. 
(v, Av) 

(v, b - Ax) 

(v, Av) 

2 

(v, Av) 

So, for any vector v =1= 0, we have g(x + tv) < g(x) unless (v, b - Ax) = 0, in which case 
g(x) = g(x + tv). This is the basic result we need to prove Theorem 7.31. 

Suppose x* satisfies Ax* = b. Then (v, b - Ax*) = 0 for any vector v, and g(x) 
cannot be made any smaller than g(x*). Thus, x* minimizes g. 

On the other hand, suppose that x* is a vector that minimizes g. Then for any vector 
v, we have g(x* + tv) ~ g(x*). Thus, (v, b - Ax*) = O. This implies that b - Ax* = 0 
and, consequently, that Ax* = b. • • • 

To begin the conjugate gradient method, we choose x, an approximate solution to 
Ax* = b, and v =1= 0, which gives a search direction in which to move away from x to 
improve the approximation. Let r = b - Ax be the residual vector associated with x and 

(v, b - Ax) (v, r) 
t - - -'----'-

- (v, Av) - (v, Av) . 

If r =1= 0 and if v and r are not orthogonal, then x + tv- gives a smaller value for g than g(x) 
and is presumably closer to x* than is x. This suggests the following method. 

Let xeD) be an initial approximation to x· , and let v(l) =1= 0 be an initial search direction. 
For k = 1,2,3, ... , we compute 
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(V(k) , b - Ax(k-l)) 

tk = (v(k), A V(k)) , 

X(k) = X(k-I) + tk V(k) 

and choose a new search direction V(k+I). The object is to make this selection so that the 
sequence of approximations {X(k)} converges rapidly to x*. 

To choose the search directions, we view g as a function of the components of x = 
(XI, X2, ... ,xn)t. Thus, 

n n n 

g(XI, XZ, ... ,Xn ) = (x, Ax) - 2(x, b) = L L QijXjX j - 2 L xjbj. 

i=1 j=1 i=} 

Taking partial derivatives with respect to the component variables Xk gives 

Therefore, the gradient of g is 

Vg(x) = 
ag ag ag t 

-::-=-(x), (x), ... , (x) = 2(Ax - b) = -2r, 
ax} aX2 aXn 

where the vector r is the residual vector for x. 
From multivariable calculus, we know that the direction of greatest decrease in the 

value of g(x) is the direction given by -V g(x); that is, in the direction of the residual r. 
The method that chooses 

is called the method of steepest descent. Although we will see in Section 10.4 that this 
method has merit for nonlinear systems and optimization problems, it is not used for linear 
systems because of slow convergence. 

An alternative approach uses a set of nonzero direction vectors {v(l), ... , v(n)} that 
satisfy 

(v(i), Av(j») = 0, if i =1= j. 

This is called an A-orthogonality condition, and the set of vectors {v(l) , ... ,v(n)} is said 
to be A-orthogonal. It is not difficult to show that a set of A-orthogonal vectors associated 
with the positive definite matrix A is linearly independent. (See Exercise 13(a).) This set 
of search directions gives 

and X(k) = X(k-l) + tk v(k) . 

The following theorem shows that this choice of search directions gives convergence 
in at most n-steps, so as a direct method it produces the exact solution, assuming that the 
arithmetic is exact. 
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Let {ViI), ... , yin)} be an A-orthogonal set of nonzero vectors associated with the positive 
definite matrix A, and let XeD) be arbitrary. Define 

for k = I, 2, ... , n. Then, assuming exact arithmetic, Ax(n) = b. • 
Prool Since, for each k = I, 2, ... , n, 

we have 

Ax(n) = Ax(n-l) + tnAv(n) 

= (Ax(n-2) + tn-I Av(n-I») + tnAv(n) 

• 
• 
• 

= Ax(D) + tl Av(1) + tzA v(2) + ... + tn A yen) , 

and subtracting b from this result yields 

We now take the inner product of both sides with the vector V(k) and use the properties of 
inner products and the fact that A is symmetric to obtain 

(Ax(n) - b, V(k)} = (AX(D) - b, V(k)} + tl (Av(!), V(k)} + ... + tn (Av(n), V(k») 

= (AX(D) - b, V(k)} + tdv(1), AV(k)} + ... + tn (v(n), AV(k»). 

The A-orthogonality property gives, for each k, 

(7.28) 

However, 

(V(k), A V(k)} 
, 

so 

tdV(k), AV(k») 

= (v(k), b - Ax(k-!)) 

= (V(k), b - Ax(O) + AX(D) - Ax(!) + ... _ Ax(k-2) + Ax(k-2) - AX(k-I») 

= (V(k) , b - Ax(D») + (v(k), Ax(D) _ Ax(1») + ... + (v(k), Ax(k-2) _ Ax(k-l»). 
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But for any i, 

XCi) = X(i-I) + tiV(i) and Ax(i) = AX(i-l) + tiAv(i), 

so 

Thus, 

tk(V(k), Av(k») = (V(k), b - Ax(D») - tl(v(k), Av(l») - ... - tk_l(V(k), AV(k-I»). 

Because of the A-orthogonality, (V(k), Av(i)) = 0, for i =F k, so 

(v(k) , A V(k») tk = (v(k), b - AX(D»). 

From Eq.(7.28), 

(Ax(n) - b, v(k») = (Ax(D) - b, v(k») + (v(k), b - Ax(D») 

= (Ax(O) - b, V(k») + (b - AX(D), v(k») 

= (Ax(D) - b, V(k») - (AX(D) - b, V(k») 

= O. 
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The vector Ax(n) - b is orthogonal to the A-orthogonal set of vectors {v(l), ... , yen)}. 

From this, it follows (see Exercise 13(b) that Ax(n) - b = O. • • • 

Consider the positive definite matrix 

A= 
4 
3 

3 0 
4 -1 

o -1 4 
• 

Let v(l) = (1,0, Ol, v(2) = (-3/4,1, oy, and v(3) = (-3/7,4/7,1)1. By direct calcula
tion, 

• 

and 

4 3 
3 4 
o -1 

Thus, {v(l), v(2) , v(3)} is an A -orthogonal set . 
• 

4 
3 

3 0 
4 -1 

o -1 4 

o 
-1 

4 

3 --7 
4 -7 

1 

3 --
4 

1 = 0, 
o 

= O. 
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The linear system 

430 
3 4-1 

° -1 4 
-

24 
30 

-24 
, 

has the exact solution x* = (3,4, _5)1. To approximate this solution, let x(O) = (0,0, 0)1. 
Since b = (24,30, -24)1, we have 

so 

Thus, 

r(O) = b - Ax(O) = b = (24,30, -24)/, 

(v(l) , A v(l») = 4, 
24 

and to = = 6. 
4 

x(l) = x(O) + tov(l) = (0,0,0)1 + 6(1, 0, 0)1 = (6,0,0/. 

Continuing, we have 

and 

r(l) = b - Ax(l) = (0, 12, -24)/; 

r(Z) = b - Ax(Z) = 120 
0,0, - 7 • , 

(v(2) , r(l)) 12 48 
t - - --" 
1- (v(Z), Av(Z») - 7/4 - 7 ' 

3 
-- 1 ° 4' , 

1 6 48 
= - ° 7' 7 ' 

1 

• , 

tz = 
(v(3) , r(Z») -120/7 

(v(3) , Av(3») - -24-/-7- = -5; 

1 6 48 1 

7' 7,0 +(-5) 
3 4 

-- - 1 
7' 7' 

= (3,4, _5)/. 

Since we applied the technique n = 3 times, this is the actual solution. • 
Before discussing how to determine the A-orthogonal set, we will continue the devel

opment. The use of an A-orthogonal set {v(l), ... , v(n)} of direction vectors gives what is 
called a conjugate direction method. The following theorem shows the orthogonality of the 
residual vectors r(k) and the direction vectors v(j) . A proof of this result using mathematical 
induction is considered in Exercise 14. 

The residual vectors r(k), where k = 1,2, ... ,n, for a conjugate direction method, satisfy 
the equations 

(r(k) , v(J») = 0, for each j = 1,2, ... ,k. • 
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The conjugate gradient method of Hestenes and Stiefel chooses the search directions 
{V(k)} during the iterative process so that the residual vectors {r(k)} are mutually orthogonal. 
To construct the direction vectors {v(1), v(2), ... } and the approximations {x(l), X(2), •.. }, 

we start with an initial approximation x(O) and use the steepest descent direction r(O) = 
b - Ax(O) as the first search direction vO). 

Assume that the conjugate directions vO), . .. , V(k-l) and the approximations x(l), 
... , x(k-l) have been computed with 

X(k-l) = X(k-Z) + tk-l V(k-l) , 

where 

If x(k-l) is the solution to Ax = b, we are done. Otherwise, r(k-l) = b - AX(k-l) :j:. 0 and 
Theorem 7.33 implies that (r(k-l), v(i») = 0, for i = 1,2, ... , k - 1. We then use r(k-l) to 
generate V(k) by setting 

We want to choose Sk-l so that 

Since 

and 

(V(k-l), Av(k») = (V(k-l), Ar(k-l)) + Sk-l (V(k-l), Av(k-l»), 

we will have (V(k-l), A v(k») = 0 when 

It can also be shown that with this choice of Sk-l we have (V(k), A v(i») = 0, for each 
i = 1,2, ... , k - 2 (see [Lu, p. 245]). Thus, {v(1), ... V(k)} is an A-orthogonal set. 

Having chosen V(k), we compute 

(r(k-l) + Sk-l V(k-l), r(k-l») 

(V(k), AV(k») 

(r(k-l), r(k-l») (V(k-l), r(k-l») 

- (V(k) , A V(k») + Sk-l (V(k), A v(k») . 

By Theorem 7.33, (v(k-l), r(k-l») = 0, so 

(r(k-l) , r(k-l») 
tk - ~-::-c-~--:-:~ 

- (V(k), AV(k») • 
(7.29) 
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Thus, 

To compute r(k), we multiply by A and subtract b to obtain 

AX(k) - b = AX(k-I) - b + tkAy(k) 

or 

Thus, 

Further, from Eq. (7.29), 

so 

(y(k) , Ar(k)} (r(k) , A y(k)} 

(y(k), A y(k)} Sk = - (y(k), Ay(k)} = 

(l / tk) (r(k) , r(k)} 
-- (1/ tk)(r(k-I), r(k-I)} 

In summary, we have the formulas: 

and, for k = I, 2, ... , n, 

r(O) = b - Ax(O); y(l) = r(O); 

(r(k-I), r(k-I)} 
tk - --,.,.,------:-:-:---

- (y(k), A y(k)} • 

x(k) = x(k-l) + tky(k), 

r(k) = r(k-I) - tkAy(k). 

(r(k). r(k)} 
Sk = , 

(r(k-I), r(k-I)} 

y(k+ I) = r(k) + Sk y(k) . (7.30) 

Rather than presenting an algorithm for the conjugate gradient method using these for
mulas, we extend the method to include preconditioning.If the matrix A is ill-conditioned, 
the conjugate gradient method is highly susceptible to, rounding errors. So, although the 
exact answer should be obtained in n steps, this is not usually the case. As a direct method 
the conjugate gradient method is not as good as Gaussian elimination with pivoting. The 
main use of the conjugate gradient method is as an iterative method applied to a better-
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conditioned system. In this case an acceptable approximate solution is often obtained in 
about In steps. 

To apply the method to a better-conditioned system, we want to select a nonsingular 
conditioning matrix C so that 

is better conditioned. To simplify the notation, we will use the matrix C- t to refer to 
(C-I)t. 

Consider the linear system 

- -Ax = b, 

where x = Ctx and b = C-Ib. Then 

- -Thus, we could solve Ax = b for x and then obtain x by multiplying by C-t
• However, 

instead of rewriting equations (7.30) using r(k), V(k), ~, i(k), and Sk, we incorporate the 
preconditioning implicitly. 

Since 

we have 

r(k) = b - Ai(k) = C-Ib - (C- I AC-t)Ctx(k) = c- I (b - Ax(k) = C-Ir(k). 

Let V(k) = Clv(k) and W(k) = C-Ir(k). Then 

so 

Thus, 

and 

Further, 

and 

(r(k-I), i(k-I)) 

(V(k), A yck») 
--

(C-Ir(k-I), C-Ir(k-I») 

(CtV(k) , C-IAC-ICtV(k)) 

(W(k- O, W(k-I)) 

(v(k),Av(k») . 

-
(W(k-I) , W(k~ I») 

(ClV(k), C-I A V(k)) 

(7.31) 

(7.32) 

(7.33) 
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Continuing, 

so 

and 

(7.34) 

Finally, 

so 

(7.35) 

The preconditioned conjugate gradient method is based on using equations (7.31 )-(35) 
in the order (7.32), (7.33), (7.34), (7.31), (7.35). Algorithm 7.5 implements this procedure. 

Preconditioned Conjugate Gradient Method 

To solve Ax = b given the preconditioning matrix C- 1 and the initial approximation x(O): 

INPUT the number of equations and unknowns n; the entries aij, lSi, j < n of the 
matrix A; the entries b j' I < j < n of the vector b; the entries Yij, I < i, j S n of the 
preconditioning matrix C- 1, the entries Xi, I < i < n of the initial approximation x = x(O), 

the maximum number of iterations N; tolerance TOL. 

OUTPUT the approximate solution Xl, ... Xn and the residual rl, ... rn or a message that 
the number of iterations was exceeded. 

Step 1 Set r = b - Ax; (Compute r(O).) 
w = C-Ir; (Note: w = w(O) 

v = C-tw; (Note: v = v(l) 

E n 2 a= . IW, J= ) 

Step 2 Set k = 1. 

Step 3 While (k < N) do Steps 4-7. 

Step 4 If IIvll < TOL, then 
OU'IPUT (,Solution vector'; Xl, ... , Xn ); 

OUTPUT ('with residual'; rl, .. , ,rn); 
(The procedure was successful.) 
STOP 

Step 5 Set u = Av; (Note: u = Av(k) 
a 
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x = x + tv; (Note: x = X(k» 

r = r - tu; (Note: r = r(k» 

w = C-1r; (Note: w = w(k» 

f3 = I:j=l wJ. (Note: f3 = (W(k), W(k»)) 

Step 6 If 1.81 < TOL then 
if Ilrll < TOL then 

OUTPUT('Solution vector'; Xl, ... ,Xn ); 

OUTPUT('with residual'; rl, ... , r n ); 

(The procedure was successful.) 
STOP 

Step 7 Sets =f3/ex; (s = Sk) 

v = C-tw + sv; (Note: v = v(k+l) 

ex = f3; (Update ex.) 
k=k+1. 

Step 8 If (k > n) then 
OUTPUT ('The maximum number of iterations was exceeded.'); 
(The procedure was unsuccessful.) 
STOP. 

The next example illustrates the calculations in an easy problem. 

The linear system Ax = b given by 

= 24, 

3Xl + 4X2 - X3 = 30, 

- X2 +4X3 = -24 
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• 

has solution (3,4, _5)1 and was considered in Example 3 of Section 7.3. In that example, 
both the Gauss-Seidel method and SOR method were used. We will use the conjugate 
gradient method with no preconditioning, so C = C- 1 = I. Let x(O) = (0,0, Or. Then 

reO) = b - Ax(O) = b = (24,30, -24)1; 

w = C-1r(0) = (24,30, -24)1; 

v(!) = C-1w = (24,30, -24)1; 

ex = (w, w) = 2052. 

We start the first iteration with k = 1. Then 

u = Av(!) = (186.0,216.0, -126.0)1; 

ex 
tl = (v(1) , u) = 0.1469072165; 

x(1) = x(O) + tlV(l) = (3.525773196,4.407216495, -3.525773196)1; 
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Set 

Set 

r(\) = r(O) - tlU = (-3.32474227, -l.73195876, -5.48969072/; 

w = C- I r(1) = r(1)· , 

f3 = (w, w) = 44.19029651; 

SI = f3 = 0.02153523222; 
a 

V(2) = C-1w + Sjv(l) = (-2.807896697, -1.085901793, -6.006536293)1. 

a = f3 = 44. 1902965l. 

We are now ready to begin the second iteration. We have 

U = Av(2) = (-14.48929217, -6.760760967, -22.94024338)1; 

t2 = 0.2378157558; 

x(2) = (2.858011121,4.148971939, -4.954222164/; 

r(2) = (0.121039698, -0.124143281, -0.034139402)1; 

f3 = 0.03122766148; 

S2 = 0.0007066633163; 

v(3) = (0.1190554504, -0.1249106480, -0.03838400086)1. 

a = f3 = 0.03122766148. 

Finally, the third iteration gives 

U = Av(3) = (0.1014898976, -0.1040922099, -0.0286253554/; 

t3 = 1.192628008; 

x(3) = (2.999999998,4.000000002, -4.999999998)1; 

r(3) = (0.36 x 10-8 , 0.39 X 10-8, -0.141 X 10-8)/. 

Since X(3) is nearly the exact solution, rounding error did not significantly effect the 
result. In Example 3 of Section 7.3, the Gauss-Seidel method required 34 iterations, and the 
SOR method, with w = 1.25, required 14 iterations for an accuracy of 10-7 . It should be 
noted, however, that in this example, we are really comparing a direct method to iterative 
methods. _ 

The next example illustrates the effect of preconditioning on a poorly conditioned 
matrix. In this example and subsequently, we use D-I / 2 to represent the diagonal matrix 
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Gauss-Seidel 

SOR (w = 1.25) 

Conjugate Gradient 

Conjugate Gradient 
(Preconditioned) 
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whose entries are the reciprocals of the square roots of the diagonal entries of the coefficient 
matrix A. 

The linear system Ax = b with 

0.2 0.1 1 1 0 I 
0.1 4 -1 1 -1 2 

A= 1 -1 60 0 -2 and b= 3 
1 1 0 8 4 4 
0 -1 ...:..2 4 700 5 

has the solution 

x* = (7.859713071,0.4229264082, -0.07359223906, -0.5406430164,0.01062616286)'. 

The matrix A is symmetric and positive definite but is ill-conditioned with condition num
ber Koo(A) = 13961.71. We will use tolerance 0.01 and compare the results obtained from 
the Jacobi, Gauss-Seidel, and SOR (with w = 1.25) iterative methods and from the con
jugate gradient method with C- I = I. Then we precondition by choosing C- I as D-1/ 2 , 

the diagonal matrix whose diagonal entries are the reciprocal of the positive square roots 
of the diagonal entries of the positive definite matrix A. The results are presented in Table 
7.5. The preconditioned conjugate gradient method gives the most accurate approximation 
with the smallest number of iterations. _ 

Number 
of Iterations X(k) Ilx* - X'k) 1100 

49 (7.86277141,0.42320802, -0.07348669, 0.00305834 
-0.53975964,0.01062847)' 

15 (7.83525748,0.42257868, -0.07319124, 0.02445559 
-0.53753055,0.01060903)' 

7 (7.85152706,0.42277371, -0.07348303, 0.00818607 
-0.53978369,0.01062286)' 

5 (7.85341523,0.42298677, -0.07347963, 0.00629785 
-0.53987920,0.008628916)' 

4 (7.85968827,0.42288329, -0.07359878, 0.00009312 
-0.54063200,0.01064344)' 

The preconditioned conjugate gradient method is often used in the solution of large 
linear systems in which the matrix is sparse and positive definite. These systems must 
be solved to approximate solutions to boundary-value problems in ordinary-differential 
equations (Sections 11.3, 1104, 11.5). The larger the system, the more impressive the con
jugate gradient method becomes since it significantly reduces the number of iterations 
required. In these systems, the preconditioning matrix C is approximately equal to L in the 
Choleski factorization LV of A. Generally, small entries in A are ignored and Choleski's 
method is applied to obtain what is called an incomplete LV factorization of A. Thus, 
C-t C- I ~ A -I and a good approximation is obtained. More information about the conju
gate gradient method can be found in Kelley [Kelley]. 
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E X ERe I S ESE T 7.5 

1. The linear system 

1 5 
Xl + 2 X2 = 21' 

1 1 11 
-Xl + -X2 = -
2 3 84 

has solution (Xl, X2)' = (1/6, 1/7)'. 

a. Solve the linear system using Gaussian elimination with two-digit rounding arithmetic. 

b. Solve the linear system using the conjugate gradient method (C = C- l = l) with two
digit rounding arithmetic. 

c. Which method gives the better answer? 

d. Choose C- l = D- l / 2 . Does this choice improve the conjugate gradient method? 

2. The linear system 

O.IXl + 0.2x2 = 0.3, 

0.2Xl + 113x2 = 113.2 

has solution (Xl, X2)' = (1, 1)'. Repeat the directions for Exercise 1 on this linear system. 

3. The linear system 

has solution (1, -1, 1)'. 

1 1 5 
Xl + -X2 + -X3 = -

2 3 6' 

1 1 1 5 
-Xl + -X2 + -X3 = -
2 3 4 12' 

1 I 1 17 
-Xl + -X2 + -X3 = -
3 4 5 60 

a. Solve the linear system using Gaussian elimination with three-digit rounding arithmetic. 

b. Solve the linear system using the conjugate gradient method with three-digit rounding 
arithmetic. 

c. Does pivoting improve the answer in (a)? 

d. Repeat part (b) using C- l = D- l / 2 . Does this improve the answer in (b)? 

4. Repeat Exercise 3 using single-precision arithmetic on a computer. 

S. Perfonn only two steps of the conjugate gradient method with C = C- l = I on each of the 
following linear systems. Compare the results in parts (b), (c), (d), and (f) to those obtained in 
Exercises 1, 2, and 5 of Section 7.3. 

a. 3Xl - X2 + X3 = 1, 

-Xl + 6X2 + 2X3 = 0, 

Xl + 2X2 + 7X3 = 4. 

C. IOXl + 5X2 = 6, 

5Xl + IOx2 - 4X3 = 25, 

4X2 + 8X3- X4 = -11, 

- X3 +5X4 = -11. 

b. 

d. 

-9 - , 

-Xl + lOx2 - 2X3 = 7, 

2X2 + IOx3 = 6. 

4Xl + X2 - X3 + X4 = -2, 

Xl + 4X2 - X3 - X4 = -1, 

-Xl - X2 + 5X3 + X4 = 0, 

Xl - X2 + X3 + 3X4 = 1. 
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e. 4xI + X2 + X3 + x, = 6, 

XI + 3X2 + X3 + X4 -6 - , 

XI + X2 + 5x3 - X4 - X, = 6, 

X2 - X3 + 4X4 -6 - , 

XI X3 + 

f. 4Xl - X2 

-Xl +4X2 - X3 

- X2 

+ 4X5 = 6. 

X5 

-0 - , 

-5 - , 

X6 = 0, 

= 6, 

X4 +4xS - X6 = -2, 

- X5 + 4X6 = 6. 

6. Repeat Exercise 5 using C- I = D- l / 2 , 
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7. Repeat Exercise 5 with TOL = 10-3 in the Zoo norm, Compare the results in parts (b), (c), (d), 
and (f) to those obtained in Exercises 3, 4, and 7 of Section 7.3. 

8. Repeat Exercise 7 using C- I = D-l / 2 . 

9. Use (i) the Jacobi Method, (ii) the Gauss-Seidel method, (iii) the SOR method with w = 1.3, 
and (iv) the conjugate gradient method and preconditioning with C- 1 = D- 1/

2 to find solutions 
to the linear system Ax = b to within 10-5 in the 100 norm. 

a. 

b. 

4, when j = i and i = 1, 2, ... , 16, 

j = i + I and i = 1,2,3,5,6,7,9, 10, 11, 13, 14, 15, 

ai.j = 
j = i-I and i = 2, 3,4,6,7,8,10,11,12,14,15,16, 

-I , when 
j =i +4andi = 1,2, ... ,12, 

j = i - 4 and i = 5, 6, ... , 16, 

0, otherwise 

and 

b = (1.902207, 1.051143, 1.175689,3.480083,0.819600, -0.264419, 

ai,j = 

- 0.412789,1.175689,0.913337, -0.150209, -0.264419, 1.051143, 

1.966694,0.913337,0.819600, 1.902207)' 

4, when j = i and i = 1, 2, ... ,25, 

j = i + 1 and i = 

-1, when j = i-I and i = 

1,2,3,4,6,7,8,9,11,12,13,14, 

16,17,18,19,21,22,23,24, 

2,3,4,5,7,8,9, 10, 12, 13,14, 15, 

17,18,19,20,22,23,24,25, 

j = i + 5 and i = 1, 2, ... ,20, 

j = i - 5 and i = 6, 7, ' .. ,25, 

0, otherwise 
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and 

b = (1, 0, -1,0, 2, 1, 0, -1,0,2, 1, 0, -1, 0, 2, 1,0, -1, 0, 2, 1, 0, -1,0, 2)1 

c. 

2i, when j = i and i = 1, 2, " , , 40, 

aj,j = -1 , h 
j = i + 1 and i = 1, 2, , " , 39, 

wen 
j = i-I and i = 2, 3, , " , 40, 

0, otherwise 

and hi = 15i - 6, for each i = 1, 2, , , , , 40 

10. Solve the linear system in Exercise 12(a) and (b) of Section 7.3 using the conjugate gradient 
method with C- I = I, 

11. Let 

4 -1 

AI= 
-1 4 

0 -1 
0 0 

0 0 
-1 0 

4 -1 
-1 4 

and 0= 

, -/ = 

-1 
o 
o 
o 

o 000 
o 0 0 0 
o 0 0 0 
o 0 0 0 

Form the 16 x 16 matrix A in partitioned fonn, 

Al -/ 0 0 

A= 
-I Al -I 0 
0 -I Al -I 
0 0 -I Al 

Let b = (1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6)1. 

, 

, 

o 
-1 

o 
o 

o 
o 

-1 
o 

o 
o 
o 

-1 

a. Solve Ax = b using the conjugate gradient method with tolerance 0.05. 

, 

b. Solve Ax = b using the preconditioned conjugate gradient method with C-1 = D- I
/
2 

and tolerance 0.05. 

c. Is there any tolerance for which the methods of part (a) and part (b) require a different 
number of iterations? 

12. Use the transpose properties given in Theorem 6.13 to prove Theorem 7.30. 

13. a. Show that an A-orthogonal set of nonzero vectors associated with a positive definite 
matrix is linearly independent. 

b. Show that if {v(l), v(2), ... , v(n)} is a set of A -orthogonal nonzero vectors in lR and 
zlv(i) = 0, for each i = 1,2, .. , , n, then z = O. 

14. Prove Theorem 7.33 using mathematical induction as follows: 

a. Show that (r(l), v(l») = O. 

b. Assume that (r(k), v(j)) = 0, for each k < I and j = 1,2, ... , k, and show that this 
. I' h (1+1) (j») 0 C h' 1 2 I Imp les t at r , v =, lor eac } = , , ... , . 

c. Show that (r(l+l), V(l+l») = O. 
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7.6 Survey of Methods and Software 

In this chapter we have studied iterative techniques to approximate the solution of linear 
systems. We began with the Jacobi method and the Gauss-Seidel method to introduce the 
iterative methods. Both methods require an arbitrary initial approximation xeD) and generate 
a sequence of vectors x(Hl) using an equation of the fOIm 

X Ci+1) = TxCi ) + c. 

It was noted that the method will converge if and only if the spectral radius of the iteration 
matrix peT) < 1, and the smaller the spectral radius, the faster the convergence. Analysis 
of the residual vectors of the Gauss-Seidel technique led to the SOR iterative method, 
which involves a parameter w to speed convergence. 

These iterative methods and modifications are used extensively in the solution of lin
ear systems which arise in the numerical solution of boundary value problems and partial 
differential equations (see Chapters 11 and 12). These systems are often very large, on the 
order of 10000 equations in 10000 unknowns, and are sparse with their nonzero entries in 
predictable positions. The iterative methods are also useful for other large sparse systems 
and are easily adapted for efficient use on parallel computers. 

Almost all commercial and public domain packages that contain iterative methods 
for the solution of a linear system of equations require a preconditioner to be used with the 
method. Faster convergence of iterative solvers is often achieved by using a preconditioner. 
A preconditioner produces an equivalent system of equations that hopefully exhibits better 
convergence characteristics than the original system. The IMSL Library has the subroutine 
PCGRC, which is a preconditioned conjugate gradient method. The NAG Library has sev
eral subroutines, which are prefixed Fl1, for the iterative solution of linear systems. All 
of the subroutines are based on Krylov subspaces. Saad [Sa2] has a detailed description 
of Krylov subspace methods. The packages UNPACK and LAPACK contain only direct 
methods for the solution of linear systems; however, the packages do contain many subrou
tines that are used by the iterative solvers. The public domain packages IML++, !TPACK, 
SLAP, and Templates, contain iterative methods. MATLAB contains several iterative meth
ods that are also based on Krylov subspaces. For example, the command x =PCG(A, b) 
executes the preconditioned conjugate gradient method to solve the linear system Ax = b. 
Some optional input parameters for PCG are, TOL a tolerance for convergence, MAXIT 
the maximum number of iterations, and M a preconditioner. 

The concepts of condition number and poorly conditioned matrices were introduced 
in Section 7.4. Many of the subroutines for solving a linear system or for factoring a ma
trix into an LU factorization include checks for ill-conditioned matrices and also give an 
estimate of the condition number. 

The subroutine SGETRF in LAPACK factors the real matrix A into an LU factor
ization and gives the row ordering for the permutation matrix P, where P A = LU. The 
subroutine SGECON gives the reciprocal of the condition number of A using the L U fac
torization computed by SGETRF. LAPACK also has subroutines to estimate the condition 
number for special matrices. For example, SPOTRF perfOIms the Choleski factorization of 
a positive definite matrix A, and SPOCON estimates the reciprocal of the condition number 
using the Choleski factorization computed by SPOTRF. 
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The IMSL Library has subroutines that estimate the condition number. For example, 
the subroutine LFCRG computes an LV factorization PA = LV of the matrix A and also 
gives an estimate of the condition number. The NAG Library has similar subroutines. 

LAPACK, UNPACK, the IMSL Library, and the NAG Library have subroutines that 
improve on a solution to a linear system that is poorly conditioned. The subroutines test 
the condition number and then use iterative refinement to obtain the most accurate solution 
possible given the precision of the computer. 

More information on the use of iterative methods for solving linear systems can be 
found in Varga [Var], Young [Y], Hageman and Young [HY], and in the recent book by 
Axelsson [Ax]. Iterative methods for large sparse systems are discussed in Barrett et al 
[Barr], Hackbusch [Hac], Kelley [Kelley], and Saad [Sa2]. 



A roximation 

T eo 
• • • 

Hooke's law states that when a force is applied to a spring constructed 

of uniform material, the length of the spring is a linear function of that 

force. We can write the linear function as F(£) = k(1 - E), where F(l) 

represents the force required to stretch the spring I units, the constant E 

represents the length of the spring with no force applied, and the constant 

k is the spring 

I 

14 

12 

2 

• 

4 6 F 

Suppose we want to detennine the spring constant for a spring that 

has initial length 5.3 in. We apply forces of 2, 4, and 6 lb to the spring 

and find that its length increases to 7.0, 9.4, and 12.3 in., respectively. 

A quick examination shows that the points (0,5.3), (2,7.0), (4,9.4), and 

(6,12.3) do not quite lie in a straight line. Although we could simply use 

one random pair of these data points to approximate the spring constant, 

it would seem more reasonable to find the line that best approximates 
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all the data points to determine the constant. This type of approxima

tion will be considered in this chapter, and this spring application can be 

found in Exercise 7 of Section 8.1. 

The study of approximation theory involves two general types of problems. One prob
lem arises when a function is given explicitly, but we wish to find a "simpler" type of 
function, such as a polynomial, that can be used to detemtine approximate values of the 
given function. The other problem in approximation theory is concerned with fitting func
tions to given data and finding the "best" function in a certain class to represent the data. 

Both problems have been touched upon in Chapter 3. The Taylor polynomial of degree 
n about the number Xo is an excellent approximation to an (n + 1 )-times differentiable func
tion f in a small neighborhood of Xo. The Lagrange interpolating polynomials, or, more 
generally, osculatory polynomials, were discussed both as approximating polynomials and 
as polynomials to fit certain data. Cubic splines were also discussed in that chapter. In this 
chapter, limitations to these techniques are considered, and other avenues of approach are 
discussed. 

8.1 Discrete Least Squares Approximation 

Thble 8.1 

Consider the problem of estimating the values of a function at nontabulated points, given 
the experimental data in Table 8.1. 

Xi Yi Xi Yi 

1 1.3 6 8.8 
2 3.5 7 10.1 
3 4.2 8 12.5 
4 5.0 9 13.0 
5 7.0 10 15.6 

Figure 8.1 shows a graph of the values in Table 8.1. From this graph, it appears that the 
actual relationship between x and y is linear. The likely reason that no line precisely fits the 
data is because of errors in the data. So it is unreasonable to require that the approximating 
function agree exactly with the data. In fact, such a function would introduce oscillations 
that were not originally present. For example, the ninth degree interpolating polynomial on 
the data shown in Figure 8.2 is obtained in Maple using the commands 

>p:=interp([1,2,3,4,5,6,7,8,9,10] , 
[1.3,3.5,4.2,5.0,7.0,8.8,10.1,12.5,13.0,15.6] ,x); 

>plot({p},x=1. .10); 

This polynomial is clearly a poor predictor of infollnation between a number of the data 
points. A better approach would be to find the "best" (in some sense) approximating line, 
even if it does not agree precisely with the data at any point. 

--""_. -" --- --- , 
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Let a\Xi + ao denote the ith value on the approximating line and Yi be the ith given Y
value. The problem of finding the equation of the best linear approximation in the absolute 
sense requires that values of ao and a\ be found to minimize 
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This is commonly called a minimax problem and cannot be handled by elementary tech-
• mques. 

Another approach to determining the best linear approximation involves finding values 
of ao and al to minimize 

10 

EI (ao, al) = L Iy, - (alx, + ao)l· 
i=1 

This quantity is called the absolute deviation. To minimize a function of two variables, we 
need to set its partial derivatives to zero and simultaneously solve the resulting equations. 
In the case of the absolute deviation, we need to find au and al with 

and 

The difficulty is that the absolute-value function is not differentiable at zero, and we may 
not be able to find solutions to this pair of equations. 

The least squares approach to this problem involves determining the best approxi
mating line when the error involved is the sum of the squares of the differences between 
the y-values on the approximating line and the given y-values. Hence, constants ao and a] 
must be found that minimize the least squares error: 

10 

E2(ao, a]) = L [Yi - (alxi + ao)f. 
i=1 

The least squares method is the most convenient procedure for determining best linear 
approximations, but there are also important theoretical considerations that favor it. The 
minimax approach generally assigns too much weight to a bit of data that is badly in 
error, whereas the absolute deviation method does not give sufficient weight to a point 
that is considerably out of line with the approximation. The least squares approach puts 
substantially more weight on a point that is out of line with the rest of the data but will 
not allow that point to completely dominate the approximation. An additional reason for 
considering the least squares approach involves the study of the statistical distribution of 
error. (See [Lar, pp. 463-481].) 

The general problem of fitting the best least squares line to a collection of data 
{(Xi, Yi )};" ] involves minimizing the total error, 

m 

E = E2(ao, ad = L [Yi - (alxi + ao)]2 , 
i= ] 

with respect to the parameters ao and al. For a minimum to occur, we need 

• 

and 
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These equations simplify to the normal equations: 

m m m m m 

ao . m + al LXi = L Yi and ao LXi +al LX; = LXiYi. 
i=l i=l i=l i=l i=1 

The solution to this system of equations is 

m m m m 

LX; LYi - LXiYi LXi 
i=l ,=1 i=l i=l ao = -'---''----'---'-----'--'----'----'.:::2-

m m 
(8.1 ) 

m LX; LXi 
i=l i=1 

and 
m m m 

m LXiYi - LXi LYi 
i=l i=l i=1 (8.2) al = -----------=-2· 

m m 

m LX; - LXi 
i=l i=l 

Consider the data presented in Table 8.1. To find the least squares line approximating this 
data, extend the table and sum the columns, as shown in the third and fourth columns of 
Table 8.2. 

Xi Yi X2 
I Xi Yi P(Xi) = 1.538Xi - 0.360 

1 1.3 1 1.3 1.18 
2 3.5 4 7.0 2.72 
3 4.2 9 12.6 4.25 
4 5.0 16 20.0 5.79 
5 7.0 25 35.0 7.33 
6 8.8 36 52.8 8.87 
7 10.1 49 70.7 10.41 
8 12.5 64 100.0 11.94 
9 13.0 81 117.0 13.48 

10 15.6 100 156.0 15.02 

55 81.0 385 572.4 E = L~O 1 (Yi - P(Xi»2 "'" 2.34 

The nOImal equations (8.1) and (8.2) imply that 

a = 385(81) - 55(572.4) = -0.360 
o 10(385) _ (55)2 

and 

10(572.4) - 55(81) = 1.538 
10(385) - (55)2 ' 
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Figure 8.3 
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so P(x) = 1.538x - 0.360. The graph of this line and the data points are shown in Figure 
8.3. The approximate values given by the least squares technique at the data points are in 
Table 8.2. • 

y 

16 

14 

12 

10 

8 y = 1.538x - 0.360 

6 

4 

2 

246 8 10 x 

The general problem of approximating a set of data, { (Xi, Yi) I i = I, 2, .... m }, with 
an algebraic polynomial 

of degree n < m - 1, using the least squares procedure is handled in a similar manner. We 
choose the constants ao, aI, ... , an to minimize the least squares error 

m 

E2 = })Yi - Pn (x;)2 
i=1 

m m m 

= LY; - 2 L Pn(Xi)Yi + L(Pn(Xi»2 
i=1 i=1 i=1 

m m n m n 2 

= Ly;-2L Lajx/ Yi+ L Lajx/ 
i=1 i=1 j=O i=1 j=O 

m 

X l L "+k 
I . 

i=1 
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As in the linear case, for E to be minimized it is necessary that a E / aa j = 0, for each 
j = 0,1, ... , n. Thus, for each j, 

• 

aE m n m 

" j "" j+k 0= . = -2 ~ YiXj + 2 ~ ak ~ xi . 
aaJ i=1 k=O i=1 

This gives n + 1 nonnal equations in the n + 1 unknowns a j, 

for each j = 0, 1, . . . , n. (8.3) 

It is helpful to write the equations as follows: 

m m m m m 

ao I>? + a! LX/ +a2 Lx1 + ... +an LX; = LYix?, 
i=! i=! i=! i=l i=! 

m m m m m "1 "2 "3 "n+l" 1 ao ~Xi + al ~Xi + a2 ~Xi + ... + an ~Xi = ~ y,x, , 
i=! i=! i=1 i=1 ;=1 

• 
• 
• 

m m m m m 

" n + "n+1 + "n+2 + + "2n " n aO~xi al~xi a2~xi ... an~X; =~YiX;, 

i=l i=! i==! i=1 i=1 

These normal equations have a unique solution provided that the Xi are distinct (see 
Exercise 14). 

Fit the data in Table 8.3 with the discrete least squares polynomial of degree 2. For this 
problem, n = 2, m = 5, and the three normal equations are 

• 
I 

x· I 

1 

o 
1.0000 

5aO + 2.5al + 1.875a2 = 8.7680, 

2.5ao + 1.875a! + 1.5625a2 = 5.4514, 

1.875ao + 1.5625a! + 1.3828a2 = 4.4015. 

2 

0.25 
1.2840 

3 

0.50 
1.6487 

4 

0.75 
2.1170 

5 

1.00 
2.7183 

We can solve this system using a CAS. In Maple, we first define the equations 

>eql:=5*aO+2.5*al+l.875*a2=8.7680; 
>eq2:=2.5*aO+l.875*al+l.5625*a2=5.4514; 
>eq3:=1.875*aO+l.5625*al+1.3828*a2=4.4015; 
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To solve the system we enter 

>solve({eql,eq2,eq3},{aO,al,a2}); 

which gives, with Digits: "'5 ; 

ao = 1.0051, al = 0.86468, and a2 = 0.84316. 

Thus, the least squares polynomial of degree 2 fitting the preceding data is P2 (x) = 
1.0051 + 0.86468x + 0.84316x2

, whose graph is shown in Figure 8.4. At the given values 
of Xi we have the approximations shown in Table 8.4. 

The total error, 

5 

E2 = L(Yi - P(Xi»2 = 2.74 x 10-4
, 

i=1 

is the least that can be obtained by using a polynomial of degree at most 2. • 

Y 

2 

1 Y = 1.0051 + 0.86468x + 0.84316x2 

0.25 0.50 0.75 1.00 x 

• 1 2 3 4 5 I 

Xi 0 0.25 0.50 0.75 1.00 

Yi 1.0000 1.2840 1.6487 2.1170 2.7183 
P(Xi) 1.0051 1.2740 1.6482 2.1279 2.7129 

Yi - P(Xi) -0.0051 0.0100 0.0004 -0.0109 0.0054 

Maple has a function called fit in the stats library to compute discrete least squares 
approximations. We can compute the approximation in Example 2 using the Maple code 

, 



• 

8.1 Discrete Least Squares Approximation 

>with(stats) 
>xvals::[O,O.25,O.5,O.75,l] ; 
>yvals::[l,l.284,l.6487,2.117,2.7183] ; 
>z::fit[leastsquare[[x,y] ,y:a*x~2 + b*x + c, {a,b,c} ]] 

( [xvals, yvals] ) ; 

Maple returns the result 

z := Y = .8436571429x2 + .864182857lx + 1.005137143 

To obtain an approximation y(1.7), we enter 

>evalf(subs(x: 1.7,z»; 

to get Y = 4.912417143. 
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Occasionally it is appropriate to assume that the data are exponentially related. This 
requires the approximating function to be of the form 

(8.4) 

or 

(8.5) 

for some constants a and b. The difficulty with applying the least squares procedure in a 
situation of this type comes from attempting to minimize 

m 

E = L(Yi - beaXi )2, in the case ofEq. (8.4), 
;=1 

or 

m 

E = L(Yi - bxf)2, in the case ofEq. (8.5). 
i=1 

The nonnal equations associated with these procedures are obtained from either 

and 

vE m 
0= = 2 L(Yi - beaXi)(-bxieaXi), in the case ofEq. (8.4); 

va i=1 

or 

vE ~ a a 
0= ab = 2 L.,.(Yi - bXi )(-Xi ) 

.=1 
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and 

(JE m 
0= = 21)Yi - bxf)( -b(lnxi)xf), in the case of Eq. (8.5). 

(Ja i=l 

No exact solution to either of these systems in a and b can generally be found. 
The method that is commonly used when the data are suspected to be exponentially 

related is to consider the logarithm of the approximating equation: 

lny = lnb + ax, in the case ofEq. (8.4), 

and 

In Y = In b + a In x, in the case of Eq. (8.5). 

In either case, a linear problem now appears, and solutions for In b and a can be obtained 
by appropriately modifying the nOllnal equations (8.1) and (8.2). 

However, the approximation obtained in this manner is not the least squares approx
imation for the original problem, and this approximation can in some cases differ signif
icantly from the least squares approximation to the original problem. The application in 
Exercise 13 describes such a problem. This application will be reconsidered as Exercise 
7 in Section 10.3, where the exact solution to the exponential least squares problem is 
approximated by using methods suitable for solving nonlinear systems of equations. 

Consider the collection of data in the first three columns of Table 8.5. 

• 
lnYi x 2 

Xi In Yi I Xi Yi I 

1 1.00 5.10 1.629 1.0000 1.629 
2 1.25 5.79 1.756 1.5625 2.195 
3 1.50 6.53 1.876 2.2500 2.814 
4 1.75 7.45 2.008 3.0625 3.514 
5 2.00 8.46 2.135 4.0000 4.270 

7.50 9.404 11.875 14.422 

If Xi is graphed with In Yi, the data appear to have a linear relation, so it is reasonable 
to assume an approximation of the fOlln 

Y = beaJC or In Y = In b + ax. 

Extending the table and summing the appropriate columns gives the remaining data in 
Table 8.5. 

Using the nOllnal equations (8.1) and (8.2), 

(5)(14.422) - (7.5)(9.404) 
a = = 0.5056 

(5)(11.875) - (7.5)2 
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and 

01.875)(9.404) - 04.422)(7.5) 
Inb = = 1.l22. 

(5)(11.875) - (7.5)2 

Since b = el.l 22 = 3.071, the approximation assumes the form 

y = 3.071eo.5056x, 

which, at the data points, gives the values in Table 8.6. (See Figure 8.5.) • 
Dible 8.6 • 3.071 e°.5056xi I k Yi , 

I 1.00 5.10 5.09 
2 1.25 5.79 5.78 
3 1.50 6.53 6.56 
4 1.75 7.45 7.44 
5 2.00 8.46 8.44 

Figure 8.5 

Y 

9 

8 

7 

6 

Y = 3.071e°.5056x 

5 

0.250.500.75 1.00 1.25 1.501.752.00 x 

E X ERe I S ESE T 8.1 

1. Compute the linear least squares polynomial for the data of Example 2. 

2. Compute the least squares polynomial of degree 2 for the data of Example 1, and compare the 
total error E for the two polynomials. 
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3. Find the least squares polynomials of degrees 1, 2, and 3 for the data in the following table. 
Compute the error E in each case. Graph the data and the polynomials. 

1.0 
1.84 

1.1 1.3 
1.96 2.21 

1.5 1.9 2.1 
2.45 2.94 3.18 

4. Find the least squares polynomials of degrees 1, 2, and 3 for the data in the following table. 
Compute the error E in each case. Graph the data and the polynomials. 

S. Given the data: 

Xi 4.0 
Yi 102.56 

4.2 
113.18 

Xi 0 0.15 0.31 
Yi 1.0 1.004 1.031 

4.5 
130.11 

4.7 
142.05 

5.1 
167.53 

0.5 
1.117 

5.5 
195.14 

0.6 0.75 
1.223 1.422 

5.9 
224.87 

6.3 
256.73 

6.8 
299.50 

a. Construct the least squares polynomial of degree 1, and compute the error. 

b. Construct the least squares polynomial of degree 2, and compute the error. 

c. Construct the least squares polynomial of degree 3, and compute the error. 

7.1 
326.72 

d. Construct the least squares approximation of the form beax , and compute the error. 

e. Construct the least squares approximation of the form bxa , and compute the error. 

6. Repeat Exercise 5 for the following data. 

Xi 

Yi 

0.2 
0.050446 

0.3 
0.098426 

0.6 
0.33277 

0.9 
0.72660 

1.1 
1.0972 

1.3 
1.5697 

1.4 
1.8487 

1.6 
2.5015 

7. In the lead example of this chapter, an experiment was described to determine the spring 
constant k in Hooke's law: 

F(/) = k(l- E). 

The function F is the force required to stretch the spring I units, where the constant E = 5.3 
in. is the length of the unstretched spring. 

a. Suppose measurements are made of the length I, in inches, for applied weights F(l), in 
pounds, as given in the following table. 

F(/) I 

2 7.0 
4 9.4 
6 12.3 

Find the least squares approximation for k. 
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b. Additional measurements are made, giving more data: 

F(l) I 

3 8.3 
5 11.3 
8 14.4 

10 15.9 

Compute the new least squares approximation for k. Which of (a) or (b) best fits the total 
experimental data? 

8. The following list contains homework grades and the final-examination grades for 30 numeri
cal analysis students. Find the equation of the least squares line for this data, and use this line 
to determine the homework grade required to predict minimal A (90%) and D (60%) grades 
on the final. 

Homework Final Homework Final 

302 45 323 83 
325 72 337 99 
285 54 337 70 
339 54 304 62 
334 79 319 66 
322 65 234 51 
331 99 337 53 
279 63 351 100 
316 65 339 67 
347 99 343 83 
343 83 314 42 
290 74 344 79 
326 76 185 59 
233 57 340 75 
254 45 316 45 

9. The following table lists the college grade-point averages of 20 mathematics and computer sci
ence majors, together with the scores that these students received on the mathematics portion 
of the ACT (American College Testing Program) test while in high school. Plot these data, and 
find the equation of the least squares line for this data. 

ACT Grade-point ACT Grade-point 
score average score average 

28 3.84 29 3.75 
25 3.21 28 3.65 
28 3.23 27 3.87 
27 3.63 29 3.75 
28 3.75 21 1.66 
33 3.20 28 3.12 
28 3.41 28 2.96 
29 3.38 26 2.92 
23 3.53 30 3.10 
27 2.03 24 2.81 
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10. The following set of data, presented to the Senate Antitrust Subcommittee, shows the compar
ative crash-survivability characteristics of cars in various classes. Find the least squares line 
that approximates these data. (The table shows the percent of accident-involved vehicles in 
which the most severe injury was fatal or serious.) 

Average Percent 
Type Weight Occurrence 

1. Domestic luxury regular 4800 Ib 3.1 
2. Domestic intermediate regular 3700 Ib 4.0 
3. Domestic economy regular 3400 Ib 5.2 
4. Domestic compact 2800 Ib 6.4 
5. Foreign compact 1900 Ib 9.6 

11. To determine a relationship between the number of fish and the number of species of fish in 
samples taken for a portion of the Great Barrier Reef, P. Sale and R. Dybdahl [SO] fit a linear 
least squares polynomial to the following collection of data, which were collected in samples 
over a 2-year period. Let x be the number of fish in the sample and y be the number of species 
in the sample. 

x y x y x Y 

13 11 29 12 60 14 
15 10 30 14 62 21 
16 11 31 16 64 21 
21 12 36 17 70 24 
22 12 40 13 72 17 
23 13 42 14 100 23 
25 13 55 22 130 34 

Determine the linear least squares polynomial for these data. 

12. To determine a functional relationship between the attenuation coefficient and the thickness of 
a sample of taconite, V. P. Singh lSi] fits a collection of data by using a linear least squares 
polynomial. The following collection of data is taken from a graph in that paper. Find the 
linear least squares polynomial fitting these data. 

Thickness (em) 

0.040 
0.041 
0.055 
0.056 
0.062 
0.071 
0.071 
0.Q78 
0.082 
0.090 
0.092 

Attenuation coefficient (dB/em) 

26.5 
28.1 
25.2 
26.0 
24.0 
25.0 
26.4 
27.2 
25.6 
25.0 
26.8 
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Thickness (cm) Attenuation coefficient (dB/cm) 

0.100 24.8 
0.105 27.0 
0.120 25.0 
0.123 27.3 
0.130 26.9 
0.140 26.2 

13. In a paper dealing with the efficiency of energy utilization of the larvae of the modest sphinx 
moth (Pachysphinx modesta), L. Schroeder [Schrl] used the following data to determine a 
relation between W, the live weight of the larvae in grams, and R, the oxygen consumption 
of the larvae in milliliterslhour. For biological reasons, it is assumed that a relationship in the 
form of R = b wa exists between W and R. 

a. Find the logarithmic linear least squares polynomial by using 

In R = In b + a In W. 

b. Compute the error associated with the approximation in part (a): 

37 

E = L(Ri - bWt)2. 
i=1 

c. Modify the logarithmic least squares equation in part (a) by adding the quadratic term 
c(ln Wi )2, and determine the logarithmic quadratic least squares polynomial. 

d. Determine the formula for and compute the error associated with the approximation in 
part (c). 

W R w R w R w R w R 

0.017 0.154 0.Q25 0.23 0.020 0.181 0.020 0.180 0.025 0.234 
0.087 0.296 0.111 0.357 0.085 0.260 0.119 0.299 0.233 0.537 
0.174 0.363 0.211 0.366 0.171 0.334 0.210 0.428 0.783 1.47 
1.11 0.531 0.999 0.771 1.29 0.87 1.32 1.15 1.35 2.48 
1.74 2.23 3.02 2.01 3.04 3.59 3.34 2.83 1.69 1.44 
4.09 3.58 4.28 3.28 4.29 3.40 .5.48 4.15 2.75 1.84 
5.45 3.52 4.58 2.96 5.30 3.88 4.83 4.66 
5.96 2.40 4.68 5.10 5.53 6.94 

14. Show that the normal equations (8.3) resulting from discrete least squares approximation yield 
a symmetric and nonsingular matrix and hence have a unique solution. [Hint: Let A = (aij), 

where 

and XI, X2, .•. ,Xm are distinct with n < m - 1. Suppose A is singular and that c I- 0 is such 
that c' Ac = O. Show that the nth-degree polynomial whose coefficients are the coordinates of 
c has more than n roots, and use this to establish a contradiction.] 
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8.2 Orthogonal Polynomials and Least Squares Approximation 

Figure 8.6 

The previous section considered the problem of least squares approximation to fit a collec
tion of data. The other approximation problem mentioned in the introduction concerns the 
approximation of functions. . 

Suppose f E C[a, b] and that a polynomial Pn(x) of degree at most n is required that 
will minimize the error 

b 

[f(x) - Pn(x)f dx. 
a 

To determine a least squares approximating polynomial; that is, a polynomial to min
imize this expression, let 

n 

Pn(x) = anxn + an_]Xn- 1 + ... + alx + ao = L akxk , 
k=O 

and define, as shown in Figure 8.6, 

b n 2 

E=E(ao,a], ... ,an)= f(x)- Lakxk dx. 
a k=O 

y 

I(x) 

n 

Pn(x) = I akxk 
k=O 

n 1 

(I(X) - I akxkr 
k=O 

a b x 

The problem is to find real coefficients ao, aI, ... , an that will minimize E. A neces
sary condition for the numbers ao, a], ... , an to minimize E is that 

aE = 0, for each j = 0, I, ... , n. 
aa' J 
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Since 

E= 

we have 

b n b 

[/(x)f dx - 2 I>k xk I(x) dx + 
a k=O a 

3E 

3a· ] 

b n 

= -2 xi I(x) dx + 2 I:>k 
a k=O 

Hence, to find Pn (x), the (n + 1) linear normal equations 

n b b 

b 2 

dx, 
a 

b 

x i +k dx. 
a 

Lak xi+k dx = xll(x) dx, for each j = 0, 1, ... , n, (8.6) 
k=O a a 

must be solved for the (n + 1) unknowns a i. The normal equations always have a unique 
solution provided IE C[a, b]. (See Exercise 15.) 

Find the least squares approximating polynomial of degree 2 for the function I (x) 

sinnx on the interval [0,1]. The nonnal equations for P2(x) = a2x2 + alx + ao are 

1 I 1 1 

ao 1 dx + a1 x dx + a2 x 2 dx = sin n x dx, 
0 0 0 0 

I 1 I I 

ao x dx + a1 x 2 dx + a2 x 3 dx = x sin n x dx, 
0 0 0 0 

1 I 1 1 

ao x 2 dx + a1 x 3 dx + a2 x 4 dx = x 2 sinnx dx. 
0 0 0 0 

Performing the integration yields 

1 I I n 2 - 4 
-an + -a1 + -a2 = --::--. 
3 4 5 n 3 

These three equations in three unknowns can be solved to obtain 

12n2 - 120 720 - 60n 2 

ao = -----;:--- ~ -0.050465 and al = -a2 = ~ 4.1225l. n 3 n 3 

Consequently, the least squares polynomial approximation of degree 2 for I (x) = sin n x 

on [0, 1] is P2 (x) = -4.12251x 2 + 4.12251x - 0.050465. (See Figure 8.7 on page 500.) 

• 
Example 1 illustrates the difficulty in obtaining a least squares polynomial approxi

mation. An (n + 1) x (n + 1) linear system for the unknowns ao, ... , an must be solved, 
and the coefficients in the linear system are of the fOIIll 

a 

b bi+k+1 _ a i +k+1 
x i +k dx = -----

J+k+l ' 
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y 

I(x) = sin 7TX 

0.8 

0.6 

0.4 

0.2 

0.2 0.4 0.6 0.8 1.0 x 

a linear system that does not have an easily computed numerical solution. The matrix in the 
linear system is known as a Hilbert matrix, which is a classic example for demonstrating 
roundoff error difficulties. (See Exercise 6 of Section 7.4.) 

Another disadvantage is similar to the situation that occurred when the Lagrange poly
nomials were first introduced in Section 3.1. The calculations that were performed in ob
taining the best nth-degree polynomial, Pn(x), do not lessen the amount of work required 
to obtain Pn+, (x), the polynomial of next higher degree. 

A different technique to obtain least squares approximations will now be considered. 
This turns out to be computationally efficient, and once Pn (x) is known, it is easy to deter
mine Pn+1 (x). To facilitate the discussion, we need some new concepts. 

The set offunctions {tPo, ... , tPn} is said to be linearly independent on [a, b] if, whenever 

COtPO(X)+CltP,(X)+"'+CntPn(X) =0, for all X E [a,b], 

we have Co = C1 = ... = Cn = 0. Otherwise the set of functions is said to be linearly 
dependent. -

If tP j (x) is a polynomial of degree j, for each j = 0, 1, ... ,n, then {tPo, ... ,tPn} is linearly 
independent on any interval [a, b]. -

Prool Suppose Co, ... 'Cn are real numbers for which 

P(x) = cotPo(x) + C1tP, (x) + ... + cntPn(x) = 0, for all x E [a, b]. 

The polynomial P(x) vanishes on [a, b], so it must be the zero polynomial, and the co
efficients of all the powers of x are zero. In particular, the coefficient of xn is zero. Since 
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Cn<Pn(x) is the only term in P(x) that contains xn, we must have Cn = 0 and 

n-I 

P(x) = L:'>j<Pj(x). 
j=O 

501 

In this representation of P(x), the only term that contains a power of x,,-I is 
Cn-l<Pn-1 (x), so this term must also be zero and 

n-Z 

P(x) = L:'>j<Pj(x). 
j=O 

In like manner, the remaining constants Cn-2, Cn -3, ... , CI, Co are all zero, which implies 
that {<Po, <PI, ... , <Pn} is linearly independent. • • • 

Let <PO (x ) = 2, <PI (x) = x - 3, and <Pz(x) = xZ + 2x + 7. By Theorem 8.2, {<Po, <PI, <P2} is 
linearly independent on any interval [a, bJ. Suppose Q(x) = ao+alx+azxz. We will show 
that there exist constants Co, CI, and Cz such that Q(x) = co<Po(x) + CI<PI (x) + C2<P2(X). 
First note that 

and 

Hence, 

1 
Q(x)=ao 2 <Po (x) 

-
1 3 
-an + -al -
2 2 

13 
2 az 

-7 

<Po(x) + [al - 2az] <PI (x) + az<pz(x), 

so any quadratic polynomial can be expressed as a linear combination of <Po (x ), <PI (x), and 
<Pz (x). • 

The situation illustrated in Example 2 holds in a much more general setting. Let On 
be the set of aU polynomials of degree at most n. The following result is used extensively 
in many applications of linear algebra. Its proof is considered in Exercise 13. 

If {<Po (x ), <PI (x), ... , <Pn (x)} is a collection of linearly independent polynomials in nn' 
then any polynomial in On can be written uniquely as a linear combination of <Po(x), 
<PI (x), ... , <Pn(x). • 
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To discuss general function approximation requires the introduction of the notions of 
weight functions and orthogonality. 

An integrable function w is called a weight function on the interval I if w (x) > 0, for all 
x in I, but w (x) ¢ ° on any subinterval of I. • 

The purpose of a weight function is to assign varying degrees of importance to ap
proximations on certain portions of the interval. For example, the weight function 

1 
w (x) = -;::::.==;;: 

-J1 - x 2 

places less emphasis near the center of the interval ( -1, I) and more emphasis when Ix I is 
near I (see Figure 8.8). This weight function is used in the next section. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-1 

w(x) 

1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1 x 

Suppose {¢o, ¢!, ... , ¢n} is a set of linearly independent functions on [a, b l, w is a 
weight function for [a, b], and, for f E C[a, b], a linear combination 

n 

p(x) = L::>k¢k(X) 
k=O 

is sought to minimize the error 

b n 2 

w(x) f(x) - :~:~>k¢k(X) dx. 
a k=O 

This problem reduces to the situation considered at the beginning of this section in the 
special case when w(x) == 1 and <Pk(X) = xk, for each k = 0, 1, ... , n. 

The normal equations associated with this problem are derived from the fact that for 
each j = 0, 1, ... , n, 

aE 
0= =2 

aa' J 

b 

w(x) 
n 

f(x) - ~::>k<Pk(X) <Pj(x) dx. 
k=O a 
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The system of normal equations can be written 

b n b 

W(X)!(X)<pj(X) dx = I:ak W(X)<Pk(X)<Pj(X) dx, for j = 0, I, ... , n. 
Q k=O a 

If the functions <Po, <PI, ... , <Pn can be chosen so that 

a 

then the normal equations reduce to 

b 

Ci j > 0, 

b 

when j 1= k, 

when j = k, 

w(x)!(x)<pj(x) dx = aj w(x)[<pj(x)f dx = ajCij, 
a Q 

for each j = 0, I, ... , n, and are easily solved to give 

I b 

w(x)!(x)<pj(x) dx. 

(8.7) 

Hence the least squares approximation problem is greatly simplified when the functions 
<Po, <PI, ... , <Pn are chosen to satisfy the orthogonality condition in Eq. (8.7). The remainder 
of this section is devoted to studying collections of this type. 

{<PO, <PI, ... , <Pn} is said to be an orthogonal set of functions for the interval [a. b] with 
respect to the weight function W if 

a 

when j 1= k, 

when j = k. 

If, in addition, Cik = I for each k = 0, I, ... , n, the set is said to be orthonormal. -

This definition, together with the remarks preceding it, produces the following theo-
rem. 

If {<Po, ... , <Pn} is an orthogonal set of functions on an interval [a, b] with respect to the 
weight function w, then the least squares approximation to! on [a, b] with respect to W is 

n 

P(x) = L ak<Pk(x), 
k=O 

where, for each k = 0, I, ... , n, 

t W(X)<Pk(X)!(X) dx I 
ak = =-f: W(X)[<Pk(X)]2 dx Cik a 

b 

W(X)<Pk(X)!(X) dx. -
Although Definition 8.5 and Theorem 8.6 allow for broad classes of orthogonal func

tions, only orthogonal sets of polynomials will be considered. The next theorem, which is 
based on the Gram-Schmidt process, describes how to construct orthogonal polynomials 
on [a, b] with respect to a weight function w. 
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The set of polynomial functions {<Po, <PI, ... , <Pn} defined in the following way is orthogo
nal on [a, b] with respect to the weight function w. 

<Po (x) = 1, <Pl(x)=x-B1, for each x in [a,b], 

where 

1: xw(x)[<pO(X)]2 dx 
B1 = b ' 

fa w(x)[<po(x)]2 dx 

and when k > 2, 

<Pk(X) = (x - Bd<pk-l (x) - Ck<Pk-2(X), for each x in [a, b], 

where 

t XW(X)[tPk_l(X)]2 dx Bk - ~a~ ______ _ 

- 1: w(x) [tPk-l (x)]2 dx 

and 

t XW(X)tPk-l (X)tPk-2(X) dx 
Ck = a b . 

fa W(X)[tPk-2(X)]2 dx 
• 

Theorem 8.7 provides a recursive procedure for constructing a set of orthogonal poly
nomials. The proof of this theorem follows by applying mathematical induction to the 
degree of the polynomial tPn (x). 

For any n > 0, the set of polynomial functions {<Po, ... , tPn} given in Theorem 8.7 is 
linearly independent on [a, b] and 

b 

w(x)tPn(X)Qk(X) dx = 0, 
a 

for any polynomial Qk(X) of degree k < n. • 
Proof Since <Pn (x) is a polynomial of degree n, Theorem 8.2 implies that {tPo, ... , tPn} 
is a linearly independent set. 

Let Qk(X) be a polynomial of degree k. By Theorem 8.3 there exist numbers 
Co, . . . , Ck such that 

Thus, 

a 

k 

Qk(X) = I>jtPj(x). 
j=O 

b k 

w(x) Qk (x)tPn (x) dx = I>j 
j=O a 

b k 

w(x)tPj(x)<Pn(x) dx = I>j . ° = 0, 
j=O 

since tPn is orthogonal to tP j for each j = 0, I, ... , k. • • • 
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The set of Legendre polynomials, {Pn(x)}, is orthogonal on [-1, 1] with respect to the 
weight function w(x) = 1. The classical definition of the Legendre polynomials requires 
that Pn (1) = 1 for each n, and a recursive relation is used to generate the polynomials 
when n ::: 2. This normalization will not be needed in our discussion, and the least squares 
approximating polynomials generated in either case are essentially the same. 

Using the recursive procedure of Theorem 8.7 with Po(x) == 1 gives 

J\xdx 
B\ = - = 0 and p\(x) = (x - B\)Po(x) = x. 

J~\ dx 

Also, 

so 

1 2 1 
P2 (x) = (x - B2 )P\ (x) - C2 Po(x) = (x - O)x - 3" . 1 = x - 3· 

The higher-degree Legendre polynomials shown in Figure 8.9 are derived in the same 
manner. Although the integration can be tedious, it is not difficult with a CAS. For example, 
the Maple command int used to compute the integrals B3 and C3: 

>B3:=int(x*(x-2-1/3)-2,x=-1 .. 1)/int«x-2-1/3)-2,x=-1 .. 1); 
>C3:=int(x*(x-2-1/3)*x,x=-1 .. 1)/int(x-2,x=-1 .. 1); 

1 

P2(X) 

0.5 
P3(x) 

P4(x) 

Ps(x) 

1 x 

-0.5 

-1 



506 C HAP T E R 8 • Approximation Theory 

gives B3 = 0 and C3 = l~' Thus, 

43 1 4 3 3 
P3(X) = XP2(X) - Pl(X) = x - -x - -x = x - -x. 

15 3 15 5 

The next two Legendre polynomials are P4(x) = x4 - ~x2 + is and Ps(x) = x s - 19° x 3 + 
s 2Tx. • 

The Legendre polynomials were mentioned in Section 4.7, where their roots were used 
as the nodes in Gaussian quadrature. 

E X E R CIS ESE T 8.2 

1. Find the linear least squares polynomial approximation to f (x) on the indicated interval if 

a. f(x) = x 2 + 3x + 2, [0, 1]; h. f(x) = x 3 • [0.2]; 

1 
c. f(x) = -, [1,3]; d. f(x) = eX, [0.2]; 

x 
1 1 . 

e. f(x) = 2 cosx + 3 sm2x, [0,1]; f. f(x)=xlnx, [1,3]. 

2. Find the least squares polynomial approximation of degree two to the functions and intervals 
in Exercise 1. 

3. Find the linear least squares polynomial approximation on the interval [-I, 1] for the follow
ing functions. 

a. f(x)=x 2 -2x+3 b. f(x)=x 3 

c. 

e. 

1 
f(x) = x + 2 

11. 
f(x) = 2 cosx + 3 sm2x 

d. f(x) = eX 

f. f(x) = In(x + 2) 

4. Find the least squares polynomial approximation of degree 2 on the interval [-1, I J for the 
functions in Exercise 3. 

5. Compute the error E for the approximations in Exercise 3. 

6. Compute the error E for the approximations in Exercise 4. 

7. Use the Gram-Schmidt process to construct l/>o(X), 1/>1 (x), 1/>2(X), and 1/>3 (x) for the following 
intervals. 

a. [0, 1] h. [0, 2] c. [1,3] 

8. Repeat Exercise 1 using the results of Exercise 7. 

9. Repeat Exercise 2 using the results of Exercise 7. 

10. Obtain the least squares approximation polynomial of degree 3 for the functions in Exercise I 
using the results of Exercise 7. 

11. Use the Gram-Schmidt procedure to calculate L 1, L 2 , and L30 where {Lo(x), Lj(x), L 2 (x). 
L3 (x)} is an orthogonal set of polynomials on (0, (0) with respect to the weight functions 
w(x) = e-X and Lo(x) = 1. The polynomials obtained from this procedure are called the 
Laguerre polynomials. 
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12. Use the Laguerre polynomials calculated in Exercise 11 to compute the least squares polyno
mials of degree one, two, and three on the interval (0, 00) with respect to the weight function 
w (x) = e-X for the following functions: 

a. I(x) = x 2 b. I(x) = e-X c. I(x) = x 3 d. I(x) = e- 2x 

13. Suppose {4>0, 4>1 , ... ,4>n} is any linearly independent set in nn' Show that for any element 
Q E nn' there exist unique constants Co, CI •... ,Cn , such that 

n 

Q(x) = L ck4>k(X). 
k=O 

14. Show that if {4>0, 4>10 ... , 4>n} is an orthogonal set of functions on [a, b] with respect to the 
weight function w, then {4>0, 4>1, ... , 4>n} is a linearly independent set. 

15. Show that the normal equations (8.6) have a unique solution. [Hint: Show that the only solution 
for the function I(x) = 0 is aj = 0, j == 0, I, ... , n. Multiply Eq. (8.6) by aj, and sum over 

all j. Interchange the integral sign and the summation sign to obtain J:[P(x)]2dx = O. Thus, 
P (x) = 0, so a j = 0, for j = 0, ... , n. Hence, the coefficient matrix is nonsingular, and there 
is a unique solution to Eq. (8.6).] 

8.3 Chebyshev Polynomials and Economlzation of Power Series 

The Chebyshev polynomials {Tn (x)} are orthogonal on (-1, 1) with respect to the weight 
function w(x) = (l-X2)-1/2 . Although they can be derived by the method in the previous 
section, it is easier to give their definition and then show that they satisfy the required 

orthogonality properties. 
For x E [-1, 1], define 

Tn(x) = cos[narccosx], foreachn > O. (8.8) 

It is not obvious from this definition that for each n, Tn (x) is a polynomial in x, but we will 

now show that it is. First note that 

To(x) = cosO = 1 and TI(x) = cos (arccos x) = x. 

For n > 1, we introduce the substitution e = arccos x to change this equation to 

Tn(8(x» = Tn(e) = cos(ne), where 8 E [0,11']. 

A recurrence relation is derived by noting that 

Tn+1 (e) = cos(n8) cos e - sin(ne) sin e 

and 

Tn-I (e) = cos(n8) cos e + sin(nO) sin e. 

Adding these equations gives 

Tn+1 (e) = 2 cos(nO) cos e - Tn-I (0). 
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Returning to the variable x, we have, for n > 1, 

Tn+I(X) = 2xcos(narccosx) - Tn-I(x) 

or 

(8.9) 

Since To (x ) = 1 and TI (x) = x, the recurrence relation implies that Tn (x) is a polynomial 
of degree n with leading coefficient 2n-l, when n ::: 1. 

and 

The next three Chebyshev polynomials are 

T2(x) = 2xTJ(x) - To(x) = 2x2 - 1, 

T3(x) = 2xT2(x) - TI(x) = 4x3 - 3x, 

The graphs of T1 , T2, T3. and T4 are shown in Figure 8.10. 
To show the orthogonality of the Chebyshev polynomials, consider 

I Tn(x)Tm(x) dx = 
-I Jl-x2 

-1 

I cos(n arccos x) cos(rn arccos x) d 
X. 

-I JI - x 2 

1 

1 x 

-1 
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Reintroducing the substitution 0 = arccos x gives 

1 
dO = - dx 

JI-x2 

and 

o 1 Tn(x)Tm(x) 
-r.==:;;:- dx = -

-1 .Jl-x2 
cos(nO) cos(m() dO = cos(nO) cos(me) de. 

:If o 

Suppose n =f:. m. Since 

1 
cos(nO) cos(mO) = 2[cos(n + m)() + cos(n - m)()], 

we have 

:If I 
cos((n + m)() dO + -

0 2 0 

:If 

cos((n - m)() de 

:If 

1 . ( I = 2 sm( n + m)() + sin((n - m)() 
(n + m) 2(n - m) 0 

= o. 
By a similar technique, it can be shown that when n = m, 

509 

1 [Tn(x)]2 7f 
--;::=:::::;;: dx = -, for each n > I. 

-1 ../1 - x 2 2 
(8.10) 

The Chebyshev polynomials are used to minimize approximation error. We will see 
how they are used to solve two problems of this type: 

1. an optimal placing of interpolating points to minimize the error in Lagrange inter
polation; 

2. a means of reducing the degree of an approximating polynomial with minimal 
loss of accuracy. 

The next result concerns the zeros and extreme points of Tn. 

The Chebyshev polynomial Tn (x) of degree n 2:: 1 has n simple zeros in [-I, I] at 

2k -I 
2n 7f , 

-Xk = cos for each k = 1,2, ... , n. 

Moreover, Tn (x) assumes its absolute extrema at 

-/ 
xk = cos 

k7f 
for each k = 0, 1, ... ,n. • n 

Prool If we let 

-
Xk = cos 

2k -I 
--7f 

2n ' 
for k = 1,2, ... , n, 
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then 

Tn(Xk) = cos(n arccosxk) = cos n arccos cos 
2k -1 
---IT 

2n 

2k - 1 
= cos IT 

2 
= 0, 

and each Xk is a distinct zero of Tn. Since Tn (X) is a polynomial of degree n, all zeros of 
Tn (x) must be of this form. 

To show the second part, first note that 

I d n sin(n arccos x) 
Tn (X) = [cos(narccosx)] = , 

dx .Jl - x 2 

and that, when k = 1, 2, ... , n - 1, 

• 
I I klT' , , 

n sm n arccos cos 

Tn'(xk
') = " "" n I I nsin(klT) -----'7=.========!--'-'- - ---;-:---,- = 0. 

;- / klT - 2 

1 - cos 
• sm 

n 
_ " n /_ 

Since Tn (x) is a polynomial of degree n, its derivative T~ (x) is a polynomial of degree 
(n - 1), and all the zeros of T~ (x) occur at these n - 1 points. The only other possibilities 
for extrema of Tn (x) occur at the endpoints of the interval [-1, 1]; that is, at x~ = 1 and at 
x~ = -1. Since for any k = 0, I, ... , n, we have 

, klT 
Tn (xk ) = cos n arccos cos 

n 
= cos(klT) = (_I)k, 

a maximum occurs at each even value of k and a minimum at each odd value. • • • 
-The monic (polynomials with leading coefficient 1) Chebyshev polynomials Tn (x) are 

derived from the Chebyshev polynomial Tn (x) by dividing by the leading coefficient 2n
-1 . 

Hence, 

-
To(x) = 1 and 

- 1 
Tn (x) = 1 Tn (x), for each n > 1. 2n -

(8.11 ) 

The recurrence relationship satisfied by the Chebyshev polynomials implies that 

and (8.12) 

.... ..... .......... -
The graphs of TJ, T2, T3, T4, and T5 are shown in Figure 8.11. - -

Because Tn (x) is just a multiple of Tn(x), Theorem 8.9 implies that the zeros of Tn (x) 
also occur at 

-
Xk = cos 

2k -1 
2n IT , for each k = 1, 2, ... , n, 
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1 

x 

-1 

-
and the extreme values of Tn (x), for n > 1, occur at 

-/ 
xk = cos 

kn 
n 

, with for each k = 0, 1, 2, ... , n. (8.13) 

Let nn denote the set of all monic polynomials of degree n. The relation expressed -in Eq. (8.13) leads 19 an important minimization property that distinguishes Tn (x) from the 
other members of nn' 

-The polynomials of the fOIm Tn (x), when n 2: I, have the property that 

-Moreover, equality can occur only if Pn - Tn. 

Proof Suppose Pn (x) E nn and 

1 
max /Pn(x)/:S 2 I 

XE[-I,I] n-

- -

-
= max /T,,(x)/. 

XE(-I,l] 

• 

Let Q = T" - Pn. Since Tn(x) and Pn(x) are both monic polynomials of degree n, Q(x) -
is a polynomial of degree at most (n - O. Moreover, at the extreme points of T,,(x), 
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Since 

we have 

Q(x~) ~ 0, when k is odd and Q(x~) 2: 0, when k is even. 

Since Q is continuous, the Intel mediate Value Theorem implies that the polynomial Q(x) 

has at least one zero between xj and xj+I' for each j = 0,1, '" ,n - 1. Thus, Q has at 
least n zeros in the interval [-1, 1]. But the degree of Q (x) is less than n, so Q == O. This -implies that Pn == Tn. • • • 

This theorem can be used to answer the question of where to place interpolating 
nodes to minimize the error in Lagrange interpolation. Theorem 3.3 applied to the in
terval [-1, 1] states that, if xo, . " ,Xn are distinct numbers in the interval [-I, I] and if 
f E Cn+1 [-1, 1], then, for each x E [-1, 1], a number Hx) exists in (-1, 1) with 

I(n+l)(~(x» 
I(x) - P(x) = (x - xo)(x - Xl) ... (x - X n), 

(n + I)! 
where P (x) is the Lagrange interpolating polynomial. Generally, there is no control over 
~(x), so to minimize the error by shrewd placement of the nodes xo, ... ,xn , we find 
xo, ... ,Xn to minimize the quantity 

I(x - xo)(x - Xl) •.. (x - xn)1 

throughout the interval [-1, 1]. 
Since (x - xo)(x - xd ... (x - xn) is a monic polynomial of degree (n + 1), we have 

just seen that the minimum is obtained when 

-
(x - xo)(x - xd··· (x ~ xn) = Tn+l(x). 

The maximum value of I(x - xo)(x - Xl) ... (x - xn)1 is smallest when Xk is chosen -to be the (k + l)st zero of Tn+l, for each k = 0, 1, ... , n; that is, when Xk is 

_ 2k+ 1 
Xk+l = cos 2(n + 1) lr. 

-Since maxxEf-I,I] I Tn+l (x) I = 2-n, this also implies that 

~ = max I(x - xd'" (x - xn+I)1 ~ max I(x - xo)··· (x - xn)l, 
2n XEf-I,!] XEf-I,I] 

for any choice of xo, Xl, ... ,Xn in the interval [-1, 1]. The next corollary follows from 
this discussion. 

Corollary B.17 If P(x) is the interpolating polynomial of degree at most n with nodes at the roots of 
Tn+l (x), then 

1 
max I/(x) - P(x)l.:5 2n( + 1)1 max If(n+I)(x)l, foreachf E Cn+ I [-I, I]. • 

XE[-I.I] n . XE[-I,I] 
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This technique for choosing points to minimize the interpolating error is extended to 
a general closed interval [a, b] by using the change of variables 

x = ~[(b - a)x +a +b] 

to transforIU the numbers Xk in the interval [-1, 1] into the corresponding number Xk in the 
interval [a, b], as shown in the next example. 

Let f(x) = xeX on [0, 1.5]. Two interpolation polynomials of degree at IUost three will be 
constructed. First, the equally spaced nodes Xo = 0, XI = 0.5, Xz = 1, and X3 = 1.5 are 
used to give 

Lo(x) = -1.3333x3 + 4. OOOOx 2 - 3.6667x + 1, 

LI (x) = 4.0000x3 - 1O.OOOx2 + 6.0000x, 

L2(X) = -4.0000x3 + 8.0000x2 - 3.0000x, 

L3(X) = 1.3333x3 - 2.000x2 + 0.66667x. 

For the values listed in the first two columns of Table 8.7, the first polynomial is given by 

P3(X) = 1.3875x3 + 0.057570x2 + 1.2730x. 

f(x) = xe" - f(i) = xe' x x 

Xo = 0.0 0.00000 Xo = 1.44291 6.10783 
Xl = 0.5 0.824361 Xl = 1.03701 2.92517 

X2 = 1.0 2.71828 X2 = 0.46299 0.73560 

X3 = 1.5 6.72253 X3 = 0.05709 0.060444 

For the second interpolating polynomial, shift the zeros Xk = cos«2k + 1)/8)n, for -k = 0, 1,2,3, of T4 from [-1, 1] to [0, 1.5], using the linear transfOlIllation 

Xk = ~ [(1.5 - O)Xk + (1.5 + 0)] = 0.75 + 0.75xk 

to obtain 

Xo = 1.44291, XI = 1.03701, X2 = 0.46299, and X3 = 0.05709. 

The Lagrange coefficient polynomials for this set of nodes are then computed as: 

Lo(x) = 1.8142x3 - 2.8249x2 + 1.0264x - 0.049728, 

LI (x) = -4.3799x3 + 8.5977x2 
- 3.4026x + 0.16705, 

L2(x) = 4.3799x3 - 11.112x2 + 7.1738x - 0.37415, 

L 3(x) = -1.8142x3 + 5.3390x2 - 4.7976x + 1.2568. 
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. The functional values required for these polynomials are given in the last two columns 
of Table 8.7. The interpolation polynomial of degree at most 3 is 

P3(X) = 1.3811x3 + 0.044652x2 + 1.3031x - 0.014352. 

For comparison, Table 8.8 lists various values of x, together with the values of -f(x), P3(X), and P3(x). It can be seen from this table that, although the error using P3 (x) -is less than using P3 (x) near the middle of the table, the maximum error involved with -using P3(x), 0.0180, is considerably less than when using P3(X), which gives the error 
0.0290. (See Figure 8.12.) • 

- -
x f(x) = xeX P3(X) Ixex 

- P3(x)1 P3(x) Ixex 
- P3(x)1 

0.15 0.1743 0.1969 0.0226 0.1868 0.0125 
0.25 0.3210 0.3435 0.0225 0.3358 0.0148 
0.35 0.4967 0.5121 0.0154 0.5064 0.0097 
0.65 1.245 1.233 0.012 1.231 0.014 
0.75 1.588 1.572 0.016 1.571 0.Ql7 
0.85 1.989 1.976 0.013 1.974 0.Ql5 
1.15 3.632 3.650 0.Ql8 3.644 0.012 
1.25 4.363 4.391 0.028 4.382 0.019 
1.35 5.208 5.237 0.029 5.224 0.016 

y 

6 

5 

4 

3 

2 

1 

0.5 1.0 1.5 x 

Chebyshev polynomials can also be used to reduce the degree of an approximating 
polynomial with a minimal loss of accuracy. Because the Chebyshev polynomials have a 
minimum maximum-absolute value that is spread uniformly on an interval, they can be 



EXAMPLE 2 

8.3 Chebyshev Polynomials and Economlzation of Power Series 515 

used to reduce the degree of an approximation polynomial without exceeding the error 
tolerance. 

Consider approximating an arbitrary nth-degree polynomial 

Pn(x) = anxn + an_lXn- 1 + ... + alX + ao 

on [-1, I] with a polynomial of degree at most n - 1. The object is to choose Pn - I (x) in 
nn-l so that 

is as small as possible. 

max IPn(x) - Pn-1(x)1 
xe[-l,l] 

We first note that (Pn(x)- Pn- I (x»/an is a monic polynomial of degreen, so applying 
Theorem 8.10 gives 

I 1 
max -(Pn(x) - Pn-I(x» ::: 2n - 1 ' 

xe[-l,l] an 

Equality occurs precisely when 

1 -
-(Pn(x) - Pn-I(X» = Tn(x). 
an 

This means that we should choose 

-
Pn-I(x) = Pn(x) - anTn(x), 

and with this choice we have the minimum value of 

max IPn(x) - Pn-l(x)1 = Ian I max 
xe[-I,I] xe[-I,I] 

The function f (x) = eX is approximated on the interval [-1, 1] by the fourth Maclaurin 
polynomial 

which has truncation error 

e 
< ~ 0.023, 
- 120 

for - 1 < x < 1. - -

Suppose that an error of 0.05 is tolerable and that we would like to reduce the degree 
of the approximating polynomial while staying within this bound. . 

The polynomial of degree 3 or less that best uniformly approximates P4 (x) on [-1, 1] 
• 
IS 

_ x 2 x 3 x4 1 
P3(X) = P4(X) - a4T4(x) = 1 + x + 2 + '6 + 24 - 24 

191 13 2 1 3 
= 192 + x + 24 x + (/ . 
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With this choice, we have 

Adding this error bound to the bound for the Maclaurin truncation error gives 

0.023 + 0.0053 = 0.0283, 

which is still within the permissible error of 0.05. 
The polynomial of degree 2 or less that best uniformly approximates P3 (x) on [-1, 1] 

• 
IS 

1 -
P2(X) = P3(X) - (jT3(X) 

191 13 2 1 3 1 3 3 191 9 13 2 

= 192+ x +24x +(jx -6(x -4x )=192+8 x +24x . 

However, 

which when added to the already accumulated error bound of 0.0283 exceeds the tol
erance of 0.05. Consequently, the polynomial of least degree that best approximates eX on 
[ -1, 1] with an error bound of less than 0.05 is 

191 13 2 1 3 
P3(X) = 192 +x + 24x + (jx . 

Table 8.9lists the function and the approximating polynomials at various points in [-1, 1]. 
Note that the tabulated entries for P2 are well within the tolerance of 0.05, even though the 
error bound for P2 (x) exceeded the tolerance. _ 

x P4(X) P3(x) P2(X) leX - P2(x)1 

-0.75 0.47237 0.47412 0.47917 0.45573 0.01664 
-0.25 0.77880 0.77881 0.77604 0.74740 0.03140 

0.00 1.00000 1.00000 0.99479 0.99479 0.00521 
0.25 1.28403 1.28402 1.28125 1.30990 0.02587 
0.75 2.11700 2.11475 2.11979 2.14323 0.02623 

E X ERe I S ESE T 8.3 
-1. Use the zeros of T3 to construct an interpolating polynomial of degree 2 for the following 

functions on the interval [-1, 1]. 

a. f(x) = ~ b. f(x) = sin x 

c. f(x) = In(x + 2) d. f(x) = x4 
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2. 
3. 

4. 
5. 

Find a bound for the maximum error of the approximation in Exercise Ion the interval [-1, 1]. -Use the zeros of T4 to construct an interpolating polynomial of degree 3 for the functions in 
Exercise 1. 

Repeat Exercise 2 for the approximations computed in Exercise 3. 
-Use the zeros of 1:1 and transformations of the given interval to construct an interpolating 

polynomial of degree 2 for the following functions. 

1 
a. I(x) = -, [1,3] 

x 
b. I(x) = e-x , [0,2] 

c. 
1 1 

I(x) = 2 cos x + 3 sin2x, [0, 1] d. I(x)=xlnx, [1,3] 

6. Find the sixth Madaurin polynomial for xex , and use Chebyshev economization to obtain a 
lesser-degree polynomial approximation while keeping the error less than 0.01 on [-1, 1]. 

7. Find the sixth Maclaurin polynomial for sinx, and use Chebyshev economization to obtain a 
lesser-degree polynomial approximation while keeping the error less than 0.01 on [-1, 1]. 

8. Show that for any positive integers i and j with i > j, we have T;(x)Tj(x) = ~[T;+j(x) + 
Ti_j(x)]. 

9. Show that for each Chebyshev polynomial Tn (x), we have 

11 [Tn(x)]2 dx = Jf . 

-1 ",II - x 2 . 2 

8.4 Rational Function Approximation 

The class of algebraic polynomials has some distinct advantages for use in approximation: 

1. there are a sufficient number of polynomials to approximate any continuous func-
tion on a closed interval to within an arbitrary tolerance; 

2. polynomials are easily evaluated at arbitrary values; and 

3. the derivatives and integrals of polynomials exist and are easily determined. 

The disadvantage of using polynomials for approximation is their tendency for oscil
lation. This often causes error bounds in polynomial approximation to significantly exceed 
the average approximation error, since error bounds are detenuined by the maximum ap
proximation error. We now consider methods that spread the approximation error more 
evenly over the approximation interval. These techniques involve rational functions. 

A rational function r of degree N has the form 

r(x) = p(x), 
q(x) 

where p(x) and q(x) are polynomials whose degrees sum to N. 
Since every polynomial is a rational function (simply let q(x) == 1), approximation 

by rational functions gives results that are no worse than approximation by polynomials. 
However, rational functions whose numerator and denominator have the same or nearly 
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the same degree generally produce approximation results superior to polynomial methods 
for the same amount of computation effort. (This statement is based on the assumption 
that the amount of computation effort required for division is approximately the same as 
for multiplication.) Rational functions have the added advantage of permitting efficient 
approximation of functions with infinite discontinuities near, but outside, the interval of 
approximation. Polynomial approximation is generally unacceptable in this situation. 

Suppose r is a rational function of degree N = n + m of the form 

that is used to approximate a function I on a closed interval I containing zero. For r to 
be defined at zero requires that qo =1= O. In fact, we can assume that qo = I, for if this is 
not the case we simply replace p(x) by p(x)/qo and q(x) by q(x)/qo. Consequently, there 
are N + 1 parameters ql, Q2, ... , qm, Po, PI, ... , Pn available for the approximation of I 
by r. 

The Pade approximation technique, which is the extension of Taylor polynomial 
approximation to rational functions, chooses the N + I parameters so that I(k) (0) = r(k) (0), 
for each k = 0, I, ... , N. When n = N and m = 0, the Pade approximation is just the 
Nth Maclaurin polynomial. 

Consider the difference 

p(x) 
I(x) - rex) = I(x) - q(x) = 

I(x)q(x) - p(x) 

q(x) 

",m 1 ",n 1 
I(x) L...I=oqi X - L...i=O PiX -

q(x) 
, 

and suppose I has the Maclaurin series expansion I (x) = 2:::0 aixi. Then 

(8.14) 

The object is to choose the constants ql, Q2, ... , qm and Po, PI, ... , Pn so that 

I(k) (0) - r(k) (0) = 0, for each k = 0, I, ... , N. 

In Section 2.4 (see, in particular, Exercise 10) we found that this is equivalent to I - r 
having a zero of multiplicity N + I at x = O. As a consequence, we choose ql, Q2, ... , qm 
and Po, PI, ... , Pn so that the numerator on the right side of Eq. (8.14), 

(8.15) 

has no terms of degree less than or equal to N. 
To simplify notation, we define Pn+1 = P,,+2 = ... = PN = 0 and qm+1 = qm+2 = 

... = qN = O. We can then express the coefficient of xk in expression (8.15) as 

k 

L aiqk-i - Pk· 
1=0 

So, the rational function for Pade approximation results from the solution of the N + I 
linear equations 
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k 

Laiqk-i=Pb k=O,l, ... ,N 
i=O 

in the N + 1 unknowns ql, q2,···, qm, Po, PI,···, Pn· 

The Maclaurin series expansion for e-x is 

00 (_I)i . 
~ x'. 
~ ., 
.0 l. 1= 

To find the Pade approximation to e-x of degree 5 with n = 3 and m = 2 requires choosing 
Po, PI, P2, P3, ql, and q2 so that the coefficients of xk for k = 0, 1, ... ,5 are zero in the 

• expreSSIOn 

Expanding and collecting tenns produces 

1 1 1 1 
x 5 : -120 + 24 ql - 6q2 = 0; x 2 : - - ql + q2 = P2; 

2 

x4 : 
1 1 1 

x I : -- 6 ql +2 q2 =0; -1 +ql 
24 

x3 : 
1 1 

xO: --+ -ql- q2 = P3; 1 
6 2 

To solve the system in Maple, we use the following commands: 

>eql:=-l+ql=pl; 
>eq2:=1/2-ql+q2=p2; 
>eq3:=-1/6+1/2*ql-q2=p3; 
>eq4:=1/24-1/6*ql+l/2*q2=0; 
>eq5:=-1/120+1/24*ql-l/6*q2=0; 
>solve({eql,eq2,eq3,eq4,eq5},{ql,q2,pl,p2,p3}); 

• • glvmg 

= PI; 

= Po· 

3 3 1 2 1 
Po = 1, PI = - 5' P2 = 20' P3 = - 60' ql = 5' and q2 = 20· 

x e -x Ps(x) le-x 
- Ps(x)1 rex) le-x - r(x)1 

0.2 0.81873075 0.81873067 8.64 x 10-8 0.81873075 7.55 x 10-9 

0.4 0.67032005 0.67031467 5.38 x 10-6 0.67031963 4.11 x 10-7 

0.6 0.54881164 0.54875200 5.96 x 10-5 0.54880763 4.00 x 10-6 

0.8 0.44932896 0.44900267 3.26 x 10-4 0.44930966 1.93 x 10-5 

1.0 0.36787944 0.36666667 1.21 x 10-3 0.36781609 6.33 x 10-5 
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So the Pade approximation is 

Table 8.10 lists values of rex) and P5(X), the fifth Maclaurin polynomial. The Pade 
approximation is clearly superior in this example. _ 

Maple can also be used directly to compute a Pade approximation. We first compute 
the Maclaurin series with the call 

>series(exp(-x) ,x); 

to obtain 

1 2 1 3 1 4 
1 - x + -x - -x +-x 

2 6 24 

The Pade approximation with n = 3 and m = 2 is computed using the command 

>g:=convert(%,ratpoly,3,2); 

where the % refers to the result of the preceding calculation, namely, the series. The result 
• 
IS 

We can then compute, for example, g(0.8) by entering 

>evalf(subs(x=O.8,g)); 

to get .4493096647. 

• 

Algorithm 8.1 implements the Pade approximation technique. 

Pade Rational Approximation 

To obtain the rational approximation 

for a given function 1 (x ): 

INPUT nonnegative integers m and n. 

OUTPUT coefficients qo, ql, ... , qm and Po, PI, ... , Pn· 

Step 1 

Step 2 

Set N = m +n. 

. 1(i)(0) 
For I = 0, 1, ... , N set ai = . , . 

l. 
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(The coefficients of the Maclaurin polynomial are ao, ... ,aN, which could be 
input instead of calculated.) 

Step 3 Set qo = 1; 
Po = ao· 

Step 4 For i = 1,2, ... , N do Steps 5-10. (Set up a linear system with matrix B.) 

Step 5 For j = 1, 2, ... , i-I 
if j < n then set bi ,} = O. 

Step 6 If i ~ n then set bi,i = 1. 

Step 7 For j = i + 1, i + 2, ... , N set bi ,} = O. 

Step 8 For j = 1, 2, ... , i 
if j ::s m then set bi,n+ j = -ai - j. 

Step 9 For j = n + i + 1, n + i + 2, ... , N set bi,j = O. 

Step 10 Set bi,N+I = ai· 

(Steps 11-22 solve the linear system using partial pivoting.) 

Step 11 For i = n + 1, n + 2, ... , N - 1 do Steps 12-18. 

Step 12 Let k be the smallest integer with i ::s k < Nand Ibk,i 1 = maXi <j SN Ib j,i I· 
(Find pivot element.) 

Step 13 If bk,i = 0 then OU'IPUT ("The system is singular "); 
STOP. 

Step 14 If k =f: i then (Interchange row i and row k.) 
for j = i, i + 1, ... , N + 1 set 

beopy = bi •j ; 

bi,j = bk,j; 
bk,j = beopy. 

Step 15 For j = i + 1, i + 2, ... , N do Steps 16-18. (Perform elimination.) 

Step 16 
b . 

S 
j,l 

etxm = . 
b .. 

I, I 

Step 17 For k = i + 1, i + 2, ... , N + 1 
set bi,k = bi,k - xm . bi,k. 

Step 18 Set b j,i = O. 

Step 19 If bN,N = 0 then OU'IPUT ('The system is singular"); 
STOP. 

Step 20 

Step 21 

bN,N+1 
If m > 0 then set qm = -=..:..~..:.. 

bN,N 
(Start backward substitution.) 

. bi,N+1 - "£7 HI bi,jqj-n 
For I = N - 1, N - 2, ... , n + 1 set qi-n = , 

b· 1,1 
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Step 22 For i = n, n - 1, ... , 1 set Pi = bi.N+ I - 'L7 n+1 bi,)q )-I!' 

Step 23 OUTPUT (qo, ql, ... , qm, Po, PI, ... , Pn); 
STOP. (The procedure was successful.) • 

It is interesting to compare the number of arithmetic operations required for calcula
tions of P5(X) and rex) in Example 1. Using nested multiplication, P5(x) can be expressed 
as 

Ps(x) = 
I I 

-120 x + 24 
I 

x--
6 

I 
x+- x-I x+l. 

2 

Assuming that the coefficients of I, x, x 2 , x 3 , x4, and x 5 are represented as decimals, 
a single calculation of P5(X) in nested form requires five multiplications and five addi
tions/subtractions. 

Using nested multiplication, rex) is expressed as 

((-tkx + ~)x - Dx + I 
rex) = ( I 2) , 

2(jx + 5 x + I 
so a single calculation of r (x) requires five multiplications, five additions/subtractions, and 
one division. Hence, computational effort appears to favor the polynomial approximation. 
However, by reexpressing rex) by continued division, we can write 

or 

1- 3 x + l.x 2 - ..!..x3 
rex) = 5 20 60 

1+2x+..!..x2 
5 20 

_~x3 + 3x2 - 12x + 20 
- --~~~-----------

x 2 + 8x + 20 
I 17 (_152 x _280) 

= --x + + 3 3 
3 3 x 2 + 8x + 20 

1 I 7 _ .:.;15;:.=2 

= - -3 x + 3 + -,-_...::.3----,,
x2 +8x+20 
x+(35/19) 

I 17 _ 152 
r (x) = - 3 x + 3 + -,-___ ...=:3 __ ---,:-. 

+ 117 + 3125/361 
X 19 (x+(35/19)) 

(8.16) 

Written in this fOlm, a single calculation of rex) requires one multiplication, five ad
ditions/subtractions, and two divisions. If the amount of computation required for division 
is approximately the same as for multiplication, the computational effort required for an 
evaluation of P5(x) significantly exceeds that required for an evaluation of rex). 

Expressing a rational function approximation in a fOlm such as Eq. (8.16) is called 
continued-fraction approximation. This is a classical approximation technique of current 
interest because of the computational efficiency of this representation. It is, however, a 

-

-~ 
• -

.. 

-, 
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specialized technique that we will not discuss further. A rather extensive treatment of this 
subject and of rational approximation in general can be found in [RR, pp. 285-322]. 

Although the rational-function approximation in Example 1 gave results superior to 
the polynomial approximation of the same degree, the approximation has a wide variation 
in accuracy. The approximation at 0.2 is accurate to within 8 x 10-9 , while at 1.0 the 
approximation and the function agree only to within 7 x 10-5 . This accuracy variation is 
expected because the Pade approximation is based on a Taylor polynomial representation 
of e-x

, and the Taylor representation has a wide variation of accuracy in [0.2, 1.0j. 
To obtain more uniformly accurate rational-function approximations we use Cheby

shev polynomials, a class that exhibits more uniform behavior. The general Chebyshev 
rational-function approximation method proceeds in the same manner as Pade approxima
tion, except that each xk teIIn in the Pade approximation is replaced by the kth-degree 
Chebyshev polynomial Tk (x). 

Suppose we want to approximate the function f by an Nth-degree rational function r 
written in the form 

Writing f (x) in a series involving Chebyshev polynomials as 

00 

f(x) = I>kTk(X) 
k=O 

• gIves 

or 

(8.17) 

The coefficients ql, q2, ... , qm and Po, PI, ... , Pn are chosen so that the numerator on the 
right-hand side of this equation has zero coefficients for Tk(x) when k = 0, 1, ... , N. This 
implies that the series 

(aoTo(x) + aIT,(x) + ... )(To(x) + qITI(x) + ... + qmTm(x» 

- (PoTo(x) + PITI(x) + ... + PnTn(x» 

has no terms of degree less than or equal to N. 
Two problems arise with the Chebyshev procedure that make it more difficult to im

plement than the Pade method. One occurs because the product of the polynomial q (x) and 
the series for f(x) involves products of Chebyshev polynomials. This problem is resolved 
by making use of the relationship 

(8.18) 



524 

EXAMPLE 2 

C HAP T E R 8 • Approximation Theory 

(See Exercise 8 of Section 8.3.) The other problem is more difficult to resolve and involves 
the computation of the Chebyshev series for f (x). In theory, this is not difficult for if 

00 

f(x) = L akTk(X), 
k=O 

then the orthogonality of the Chebyshev polynomials implies that 

1 
ao =-

7T 

I f(x) 2 
J':===;;: dx and ak = -

-I ~1 - x 2 7T 

I f(x)Tk(X) 
dx, 

-I ~1-x2 
where k > 1. 

Practically, however, these integrals can seldom be evaluated in closed form, and a 
numerical integration technique is required for each evaluation. 

The first five telms of the Chebyshev expansion for e-x are 

-Ps(x) = 1.266066To(x) - 1.130318TI(x) + 0.271495T2(x) - 0.044337T3(X) 

+ 0.005474T4(x) - 0.000543Ts(x). 

To determine the Chebyshev rational approximation of degree 5 with n = 3 and m = 2 
requires choosing Po, PI, P2, P3, qJ, and q2 so that for k = 0, 1, 2, 3, 4, and 5, the 
coefficients of Tk (x) are zero in the expansion 

-
Ps(x)[To(x) + ql TI (x) + q2T2(X)] - [Po To (x) + PI TI (x) + P2T2(X) + P3 T3(X)]. 

Using the relation (8.18) and collecting tenns gives the equations 

To: 1.266066 - 0.565159ql + 0.1357485q2 = Po, 

TI : -1.130318 + 1.401814ql - 0.587328q2 = PI, 

T2 : 0.271495 - 0.587328ql + 1.268803q2 = P2, 

T3 : -0.044337 + 0.138485ql - 0.565431q2 = P3, 

T4 : 0.005474 - 0.022440ql + 0.135748q2 = 0, 

Ts : -0.000543 + 0.002737ql - 0.022169q2 = O. 

The solution to this system produces the rational function 

1.055265To(x) - 0.613016TI (x) + 0.077478T2(X) - 0.004506T3(X) 
rT(x) = . 

To(x) + 0.378331 TI (x) + 0.022216T2(x) 

We found at the beginning of Section 8.3 that 

To(x) = 1, TI(x) = x, T2(X) = 2X2 - 1, T3(X) = 4x 3 
- 3x. 

Using these to convert to an expression involving powers of x gives 

0.977787 - 0.599499x + 0.154956x2 - O.018022x 3 

r (x)-----~~~~~~~~~~~~~----
T - 0.977784 + O.378331x + 0.044432x2 . 
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Table 8.11 lists values of rr(x) and, for comparison purposes, the values of rex) obtained 
in Example I. Note that the approximation given by r (x) is superior to that of rr (x) for x = 
0.2 and 0.4, but that the maximum error for rex) is 6.33 x 10-5 compared to 9.13 x 10-6 

for rr (x). • 

x e-X rex) !e-X 
- r(x)! rT(x) !e-X 

- rT(X)! 

0.2 0.81873075 0.81873075 7.55 x 10-9 0.81872510 5.66 x 10-6 

0.4 0.67032005 0.67031963 4.11 x 10-7 0.67031310 6.95 x 10-6 

0.6 0.54881164 0.54880763 4.00 x 10-6 0.54881292 1.28 x 10-6 

0.8 0.44932896 0.44930966 1.93 x 10-5 0.44933809 9.13 x 10-6 

1.0 0.36787944 0.36781609 6.33 x 10-5 0.36787155 7.89 x 10-6 

The Chebysh~v approximation can be generated using Algorithm 8.2. 

Chebyshev Rational Approximation 

To obtain the rational approximation 

for a given function f (x): 

I N PUT nonnegative integers m and n. 

OUTPUT coefficients qo, ql, ... , qm and Po, PI, ... , Pn. 

Step 1 Set N = m + n. 
:rr 

Step 2 
2 

Setao =-
1f 0 

f(cos() d(); (The coefficient ao is doubled for computational 
efficiency. ) 

For k = 1,2, ... , N + m set 

2 :rr 

f (cos () cos k() d(). 

(The integrals can be evaluated using a numerical integration procedure or the 
coefficients can be input directly.) 

step 3 Set qo = 1. 

step 4 For i = 0, 1, ... , N do Steps 5-9. (Set up a linear system with matrix B.) 

Step 5 For j = 0, 1, ... , i 
if j ::::: nthen set bj,j = O. 

Step 6 If i :5 n then set bi,i = 1. 

Step 7 For j = i + 1, i + 2, ... , n set bj,j = O. 

Step 8 For j = n + 1, n + 2, ... , N 
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if i i= 0 then set bi,j = -; (ai+j-n + ali-j+nl) 

else set bi,) = -~aj_n' 

Step 9 If i i= 0 then set bi.N+I = ai 

elsesetbi ,N+I = ~ai' 

(Steps 10-21 solve the linear system using partial pivoting.) 

Step 70 For i = n + 1, n + 2, ... , N - 1 do Steps 11-17. 

Step 11 Let k be the smallest integer with i :::: k < Nand 
Ibk,iI = maxi<j<N Ibj,d. (Find pivot element.) 

Step 12 If bk,i = 0 then OUTPUT ("The system is singular"); 
STOP. 

Step 13 If k i= i then (Interchange row i and row k.) 
for j = i, i + 1, ... , N + 1 set 

beopy = bi •j ; 

bi,j = bk,j; 

bk,j = beapy· 

Step 14 For j = i + 1, i + 2, ... , N do Steps 15-17. (Perform elimination,) 

b· 
S 

J,l 
et xm = . 

b I , I 
Step 15 

Step 16 For k = i + 1, i + 2, ... , N + 1 
set b· k = b· k - xm . b· k· j, j, I, 

Step 17 Set bj,i = O. 

Step 18 If bN,N = 0 then OUTPUT ("The system is singular"); 
STOP. 

Step 19 
bN,N+l 

If m > 0 then set qm = . (Start backward substitution.) 
bN,N 

. bi,N+I - '£7 i+1 bi,jqj-n 
For I = N - 1, N - 2, ... , n + 1 set q i -n = -----'--'-'-'----'----..:....-. 

b I • I 
Step 20 

Step 21 For i = n, n - I, ... , 0 set Pi = bi.N+I - '£7 n+1 bi,jqj-n' 

Step 22 OUTPUT (qO, ql, ... , qm, Po, PI, ... , Pn); 
STOP. (The procedure was successful.) • 

We can obtain both the Chebyshev series expansion and the Chebyshev rational ap
proximation using a CAS. For example, to make the Chebyshev polynomials accessible to 

Maple, we enter the command 

>withCorthopoly,T); 
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The procedure to compute the Chebyshev series as an approximation is 

>g: =numapprox [chebyshevJ (exp(-x),x,O.OOOOOl); 

where the third parameter specifies the required accuracy. The result is 

g := 1.266065878 T(O, x) - 1.130318208 T(1, x) + .2714953396 T(2, x) 

- .04433684985 T(3, x) + .005474240442 T(4, x) 

- .0005429263119 T(5, x) + .00004497732296 T(6, x) 

- .3198436462 10-5 T(7, x) 

and we can evaluate g(0.8) using 

>evalf(subs(x=O.8,g»; 

to obtain .4493288893. 
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To get the Chebyshev rational approximation we start again with the Chebyshev series 

>restart; 
>numapprox[chebyshevJ (exp(-x),x,O.OOOOOl); 

as before and then enter 

>g:=convert(%,ratpoly,3,2); 

resulting in 

g := (1.050531166 T(O, x) - .6016362122 T(1, x) + .07417897149 T(2, x) 

- .004109558353 T(3, x»/(T(O, x) + .3870509565 T(l, x) 

+ .02365167312 T(2, x» 

Since we have cleared Maple's memory, we need to reenter the command 

>with(orthopoly,T); 

so we can evaluate g(0.8) by 

>evalf(subs(x=O.8,g»; 

to get .4493317579. 
The Chebyshev method does not produce the best rational function approximation 

in the sense of the approximation whose maximum approximation error is minimal. The 
method can, however, be used as a starting point for an interative method known as the sec
ond Remes' algorithm that converges to the best approximation. A discussion of the tech
niques involved with this procedure and an improvement on this algorithm can be found in 
[RR, pp. 292-305], or in [Po, pp. 90-92]. 
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E X ERe I S ESE T 8.4 

1. Determine all degree 2 Pade approximations for I (x) == e2x. Compare the results at Xi == 0.2i, 
for i == 1,2,3,4,5, with the actual values I(xj). 

2. Determine all degree 3 Pade approximations for f(x) == x In(x + 1). Compare the results at 
Xi == 0.2i, for i == 1,2,3,4,5, with the actual values I(xj). 

3. Determine the Pade approximation of degree 5 with n == 2 and m == 3 for I (x) == eX. Compare 
the results at Xi == 0.2i, for i == 1,2, 3, 4, 5, with those from the fifth Maclaurin polynomial. 

4. Repeat Exercise 3 using instead the Pade approximation of degree 5 with n == 3 and m = 2. 
Compare the results at each Xj with those computed in Exercise 3. 

5. Determine the Pade approximation of degree 6 with n == m == 3 for I (x) = sin x. Compare 
the results at Xi == O.li, for i == 0, 1, ... ,5, with the exact results and with the results of the 
sixth Maclaurin polynomial. 

6. Determine the Pad6 approximations of degree 6 with (a) n = 2,m = 4 and (b) n = 4, m = 2 
for I(x) == sinx. Compare the results at each Xj to those obtained in Exercise 5. 

7. Table 8.10 lists results of the Pade approximation of degree 5 with n == 3 and m = 2, the fifth 
Maclaurin polynomial, and the exact values of I(x) == e-x when Xi == 0.2i, for i = 1,2,3, 
4, and 5. Compare these results with those produced from the other Pade approximations of 
degree five. 

a. n == 0, m == 5 

c. n = 3, m == 2 

b. n == 1, m == 4 

d. n == 4, m == 1 

8. Express the following rational functions in continued-fraction form: 

a. 

c. 

x 2 + 3x + 2 
x 2 - X + 1 

2x3 - 3x2 + 4x - 5 

x 2 +2x +4 

b. 

d. 

4x2 + 3x -7 

2x3 +x2 
- x + 5 

2x3 +x2 -x +3 

3x3 + 2x2 - X + 1 

9. Find all the Chebyshev rational approximations of degree 2 for f(x) = e-X
• Which give the 

best approximations to I(x) == e-X at x == 0.25,0.5, and I? 

10. Find all the Chebyshev rational approximations of degree 3 for I (x) == cos x. Which give the 
best approximations to I(x) == cos x at x == 11'/4 and 11' /3? 

11. Find the Chebyshev rational approximation of degree 4 with n == m == 2 for I(x) == sinx. 
Compare the results at Xi == O.li, for i == 0, 1,2,3,4,5, from this approximation with those 
obtained in Exercise 5 using a sixth-degree Pad6 approximation. 

12. Find all Chebyshev rational approximations of degree 5 for I (x) == eX . Compare the results at 
Xi == 0.2i, for i == -1,2,3,4,5, with those obtained in Exercises 3 and 4. 

13. To accurately approximate I(x) == eX for inclusion in a mathematical library, we first restrict 
the domain of I. Given a real number x, divide by In.Jill to obtain the relation 

x==M.ln00+s, 

where M is an integer and s is a real number satisfying lsi < ~ In.Jill. 

a. Show that eX == eS . lOM/ 2 • 
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b. Construct a rational function approximation for eS using n = m = 3. Estimate the error 
when 0 < lsi < ~ In../fO. 

e. Design an implementation of eX using the results of part (a) and (b) and the approxima
tions 

~ = 0.8685889638 and ,fiO = 3.162277660. 
In 10 

14. To accurately approximate sin x and cos x for inclusion in a mathematical library, we first 
restrict their domains. Given a real number x, divide by n to obtain the relation 

n 
Ixl = Mn + s, where M is an integer and lsi < 2' 

a. Show that sinx = sgn(x)· (_I)M . sins. 

b. Construct a rational approximation to sin s using n = m = 4. Estimate the error when 
o < lsi < n/2. 

e. Design an implementation of sin x using parts (a) and (b). 

d. Repeat part (c) for cos x using the fact that cos x = sin(x + n /2). 

8.S Trigonometric Polynomial Approximation 

The use of series of sine and cosine functions to represent arbitrary functions had its be
ginnings in the 1750s with the study of the motion of a vibrating string. This problem was 
considered by Jean d' Alembert and then taken up by the foremost mathematician of the 
time, Leonhard Euler. But it was Daniel Bernoulli who first advocated the use of the in
finite sums of sine and cosines as a solution to the problem, sums that we now know as 
Fourier series. In the early part of the 19th century, Jean Baptiste Joseph Fourier used these 
series to study the flow of heat and developed quite a complete theory of the subject. 

The first observation in the development of Fourier series is that, for each positive 
integer n, the set of functions {¢o, ¢), ... ,¢zn-d, where 

and 

1 
¢o(x) = 2' 

¢k (x) = cos kx, for each k = 1, 2, . .. ,n, 

¢n+k (x) = sin kx, for each k = 1, 2, . .. ,n - I, 

is an orthogonal set on [-n, n] with respect to w(x) = 1. This orthogonality follows 
from the fact that, for every integer j, the integrals of sin j x and cos j x over [ - n, n J are 
0, and we can rewrite products of sine and cosine functions as sums by using the three 
trigonometric identities 
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sin tl sin t2 = ~ [COS(t1 - t2) - COS(t1 + t2)], 

1 
cos tl cos t2 = 2 [COS(t1 - t2) + COS(t1 + t2)], (8.19) 

1 
sin tl cos t2 = 2 [sin(tl - t2) + sin(tl + t2)]. 

Let 'Tn denote the set of all linear combinations of the functions 4>0,4>1, ... ,4>2n-l. 
This set is called the set of trigonometric polynomials of degree less than or equal to n. 
(Some sources also include an additional function in the set, ¢J2n(X) = sinnx.) 

For a function fEe [ - Jr, Jr], we want to find the continuous least squares approxi
mation by functions in 'Tn in the form 

n-I 
Sn(x) = ao + an cosnx + L)ak coskx + bk sinkx). 

2 k=1 

Since the set of functions {¢Jo, ¢JI, . .. ,¢J2n _ d is orthogonal on [-Jr, Jr] with respect to 
w(x) = 1, it follows from Theorem 8.6 that the appropriate selection of coefficients is 

1 IT 

ak =- f(x) coskx dx, for each k = 0, 1, 2, ... ,n, 
Jr -IT 

and 

1 1< 

bk =- f(x) sinkx dx, for each k = 1, 2, ... ,n - l. 
Jr -Tr 

The limit of Sn (x) when n -+ 00 is called the Fonrier series of f. Fourier series 
are used to describe the solution of various ordinary and partial-differential equations that 
occur in physical situations. 

To deteIllline the trigonometric polynomial from 'Tn that approximates 

f(x) = lxi, for - Jr < X < Jr, 

requires finding 

1 IT 1 0 1 IT 2 IT 

ao =- Ixl dx = -- xdx+ - xdx =- xdx=Jr, 
Jr -Tr Jr -IT Jr 0 Jr 0 

1f IT 1 2 2 
ak =- Ixl coskx dx = - x cos kx dx = 2 [( _1)k - 1] , 

Jr Jr Jrk -IT 0 

for each k = 1,2, ... ,n, and 

1 
bk =- Ixl sinkx dx = 0, for each k = 1, 2, ... , n - 1. 

Jr -IT 

That the bk's are all 0 follows from the fact that g(x) = Ix I sin kx is an odd function for 
each k, and the integral of any odd function over any interval of the form [-Q, a] is O. 
(See Exercises 13 and 14.) The trigonometric polynomial from 'Tn approximating f is, 
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therefore, 

li 2 n (_1)k - 1 
Sn(x) = - + - L 2 coskx. 

2 li k=l k 

The first few trigonometric polynomials for I(x) = Ixl are shown in Figure 8.13. 

y 

7T Y = xl 

7T 4 4 
Y = S3(X) = "2 - 7T cos X - 97T cos 3x 

7T 4 
Y = St(X) = S2(x) ="2 - 7T cosx 

2 
7T 

y = So(x) = -- ~ -
7T 

-,,--,' ,--

7T --- 7T - 7T x 
2 2 

The Fourier series for I is 

rc 2 2:00 (_l)k - 1 
Sex) = lim Sn(x) = - + - 2 coskx. 

n-+oo 2 li k 
k=! 

Since I cos kx I < 1, for every k and x, the series converges, and S (x) exists for all real 
numbers x. • 

There is a discrete analog that is useful for the discrete least squares approximation 
and the interpolation of large amounts of data. 

Suppose that a collection of 2m paired data points {(x j' Yj) }}m 0 ! is given, with the first 
elements in the pairs equally partitioning a closed interval. For convenience, we assume 
that the interval is [-li, rc], so, as shown in Figure 8.14, 

Xj = -li + for each j = 0, 1, ... , 2m - l. (8.20) 

If it is not [-li, JT], a simple linear transformation could be used to translate the data into 
this form. 
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-4 -3 -2 -1 0 1 2 3 4 , -, , , ~ , , ,- , • 
-1T = Xo Xm 1T = X2m 

The goal in the discrete case is to determine the trigonometric polynomial Sn (x) in Tn 
that will minimize 

2m-I 

E(Sn) = L [Yj - Sn(Xj)f. 
j=O 

To do this we need to choose the constants ao, a I, . .. , an, bl , b2, . .. , bn- I so that 

2m-I 

E(Sn) = L 
j=O 

n-I 
Yj - ~ + an cosnx) + L(ak cosh) + bk sinhj) 

2 k=1 
(8.21) 

• • • 
IS ammmlUm. 

The detellnination of the constants is simplified by the fact that the set {¢D, ¢I, ... , 
¢2n-l} is orthogonal with respect to summation over the equally spaced points {x j } r 0 I in 
[-rr, rr J. By this we mean that for each k =I- I, 

2m-I 

L ¢k(Xj)¢/(Xj) = o. 
j=O 

To show this orthogonality, we use the following lemma. 

If the integer r is not a multiple of 2m, then 

2m-I 

L cosrxj = 0 and 
j=O 

Moreover, if r is not a multiple of m, then 

2m-I 

L (cosrxj)2 = m and 
j=O 

2m-I 

L sinrxj = O. 
)=0 

2m-I 

L (sinrxj)2 = m. 
j=O 

(8.22) 

• 

Prool Euler's Formula states that if;2 = -1, then for every real number z, we have 

• 

e'z = cosz + i sinz. (8.23) 

Applying this result gives 

2m-I 2m-I 2m-I 2m-I 

L cosrxj +i L sinrxj = L (cosrxj +isinrxj) = L eirxj
. 

j=O j=O j=O j=O 
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But 

so 

2m-I 2m-I 2m-I L cosrXj + i L sinrxj = e-inr L eirjrr/m. 
j=O j=O j=O 

2m-I 

Since L eirj1r/m is a geometric series with first term 1 and ratio einr/m :j: 1, we have 
j=o 

2m-I , , 1 _ (e inr/m)2m 1 _ e2inr 
'"' e,,)rr/m = = . 
L...., 1 - einr/m 1 _ eirrr /m 
)=0 

But e2irrr = cos 2nr + i sin 2nr = 1, so 1 - e2irrr = 0 and 

2m-I 2m-I 2m-I 

L cosrxj + i L sinrxj = e-irrr L eirjrr/m = O. 
j=O j=O j=O 

This implies that both 

2m-I 2m-I 

L cosrxj = 0 and 
j=O 

L sinrxj = O. 
j=O 

If r is not a mUltiple of m, these sums imply that 

2m-I 2m-I I L (cosrxj)2 = L - (1 +cos2rxj) 
, 0 '_n 2 
)= )=v 

1 
-

2 

and, similarly, that 

2m-I 2m-I 

L 1 + L cos2rxj 
j=O j=O 

2m-I 

L (sinrxj)2 = m. 
j=O 

1 
= -(2m + 0) = m 

2 

• • • 

We can now show the orthogonality stated in (8.22). Consider, for example, the case 

2m-I 2m-I 

L ¢Jk(Xj)¢Jn+/(Xj) = L (cos kXj) (sin IXj). 
j=O j=O 

Since 
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and (l + k) and (I - k) are both integers that are not multiples of 2m, Lemma 8.12 implies 
that 

2m-1 1 2m-1 2m-1 

L (coskx)(sinlxj) = - L sin(l + k)x) + L sin(l- k)x) 
. 0 2 . 0 . 0 J= J= J= 

1 
= - (0 + 0) = o. 

2 

This technique is used to show that the orthogonality condition is satisfied for any pair 
of the functions and is used to produce the following result. 

The constants in the summation 

n-I 

ao '"' Sn(x) = - + an cosnx + ~(ak coskx + bk sinkx) 
2 k=1 

that minimize the least squares sum 

are 

and 

2m-1 

E(ao,···, an, bl ,·.·, bn- I ) = L (YJ - Sn(Xj»2 
j=O 

1 2m-1 

ak=- LYjcoskx), foreachk=O,l, ... ,n, 
m . 0 J= 

1 2m-1 

h = - L Y j sinkx j, for each k = 1, 2, ... , n - 1. 
m . 0 J= 

• 

The theorem is proved by setting the partial derivatives of E with respect to the ak's 
and the bk's to zero, as was done in Sections 8.1 and 8.2, and applying the orthogonality to 
simplify the equations. For example, 

so 

2m-1 2m-1 

0= L Yj sinkxj - L Sn(Xj) sinkxj 
j=O )=0 

2m-I 2m-I· 2m-I 

- '"' y. sin kx· - ao '"' sin kx· - a '"' sin kx . cos nx . ~J ] 2~ ] n~ ] ] 
)=0 )=0 j=O 

n-I 2m-I n-I 2m-I 2m-I 

- Lal L sinkxj COSIXj - Lbl L sinkxj sinlxj - bk L (sinkxj)2. 
1=1 j=O 1=1. }=O j=O 

1# 
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The orthogonality implies that all but the first and last sums on the right side are zero, 
and Lemma 8.12 states the final sum is m. Hence 

1 2m-l 

bk = - L Yj sinkx j . 
m . 0 

J= 

Let f(x) = X4 - 3x 3 + 2x2 - tanx(x - 2). To find the discrete least squares approximation 
S3(X) for the data {(Xj, Yj) }~=o' where x j = j /5 and Yj = f(xj), requires a transfollnation 
from [0, 2] to [-7r, 7r]. This linear transfollnation is 

Zj = 7r(Xj - 1), 

and the transfonned data is of the fonll 

The least squares trigonometric polynomial is, consequently, 

2 
ao ~ b . S3(Z) = - + a3 cos3z + ~(ak coskz + k smkz) , 
2 k=l 

where 

9 
1 (Z') ak = - L f 1 + --1.. coskzj, 
5 j=O 7r 

for k = 0, 1, 2, 3, 

and 

9 
1 (Z') bk = - L f 1 + --1.. sinkz j , 

5 j=O 7r 
fork = 1,2. 

Evaluating these sums produces the approximation 

x 

0.125 
0.375 
0.625 
0.875 
1.125 
1.375 
l.625 
1.875 

S3(Z) = 0.76201 + 0.77177 cos Z + 0.017423 cos 2z + 0.0065673 cos3z 

- 0.38676 sin Z + 0.047806 sin 2z, 

f(x) S3(X) If(x) - S3(x)1 

0.26440 0.24060 2.38 x 10-2 

0.84081 0.85154 l.07 x 10-2 

l.36150 l.36248 9.74 x 10-4 

1.61282 1.60406 8.75 x 10-3 

1.36672 1.37566 8.94 x 10-3 

0.71697 0.71545 l.52 x 10-3 

0.07909 0.06929 9.80 x 10-3 

-0.14576 -0.12302 2.27 x 10-2 
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and converting back to the variable x gives 

S3(X) = 0.76201 + 0.77177 COS7r(x - 1) + 0.017423 cos 21T(X - 1) 

+ 0.0065673 COS 37r(x -1) - 0.38676sin1T(x -1) + 0.047806 sin 21T(X - 1). 

Table 8.12 lists values of I(x) and S3(X), • 

E X ERe I S ESE T 8.5 

1. Find the continuous least squares trigonometric polynomial Sz(x) for f(x) = x 2 on [-:rr, :rrJ. 

2. Find the continuous least squares trigonometric polynomial Sn(x) for f(x) = x on [-:rr, Jr]. 

3. Find the continuous least squares trigonometric polynomial S3(X) for f(x) = eX on [-Jr, :rr]. 

4. Find the general continuous least squares trigonometric polynomial Sn (x) for f (x) = eX on 
[-1T,1T]. 

5. Find the general continuous least squares trigonometric polynomial Sn (x) for 

f( 
0, if - 1T < X :::: 0, 

x) = 
I, ifO<x<1T. 

6. Find the general continuous least squares trigonometric polynomial Sn(x) in for 

f 
-I, if-:rr<x<O. 

(x) = 
1 , if 0 :::: x :::: :rr. 

7. Detennine the discrete least squares trigonometric polynomial Sn (x) on the interval [-Jr, Jr J 
for the following functions, using the given values of m and n: 

a. f(x)=cos2x, m=4,n=2 

b. f(x) =cos3x, m =4,n =2 

c. f(x) = sin ~x + 2cos ~x, m = 6, n = 3 

d. f(x) = xZcosx, m = 6, n = 3 
8. Compute the error E(Sn) for each of the functions in Exercise 7. 

9. Detennine the discrete least squares trigonometric polynomial S3(X), using m = 4 for f(x) = 
c cos 2x on the interval [-1T, 1TJ. Compute the elIor E(S3)' 

10. Repeat Exercise 9 using m = 8. Compare the values of the approximating polynomials with 
the values of f at the points ~j = -1T + 0.2j:rr, for 0 :::: j < 10. Which approximation is 
better? 

11. Let f (x) = 2 tan x - sec 2x, for 2 :::: x :::: 4. Determine the discrete least squares trigonometric 
polynomials Sn (x), using the values of n and m as follows, and compute the error in each case. 

a. n = 3, m = 6 b. n = 4, m = 6 

12. a. Detennine the discrete least squares trigonometric polynomial S4(X), using m = 16, for 
f(x) = x 2 sin x on the interval [0, 1]. 

b. Compute J; S4(X) dx. 

c. Compare the integral in part (b) to fol x 2 sin x dx. 

13. Show that for any continuous odd function f defined on the interval [-a, a J, we have . ra f(x) dx = O. 
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14. Show that for any continuous even function I defined on the interval [-a, a], we have ra I(x) dx = 2j; I(x) dx. 

15. Showthatthefunctionst/>o(x) = l/2,Q>I(X) = COSX, ... ,Q>n(x) = cosnx,Q>n+l(X) = sinx, 
... , cf>"ln-l (x) = sin(n - l)x are orthogonal on [-Jr, Jr] with respect to w(x) = 1. 

16. In Example 1 the Fourier series was detennined for I(x) = Ixl. Use this series and the 
assumption that it represents I at zero to find the value of the convergent infinite series 
L:O(1/(2k + 1)2). 

8.6 Fast Fourier Transfollns 

In the second half of Section 8.5, we determined the form of the discrete least squares 
polynomial of degree n on the 2m-l data points {(Xj, Yj)};mil l

, wherexj = -JT+(J /m)JT, 
for each j = 0, 1, , .. , 2m - 1. 

The interpolatory trigonometric polynomial in 'Tm on these 2m data points is almost 
the same as the least squares polynomial. This is because the least squares trigonometric 
polynomial minimizes the error term 

2m-I 

E(Sm) = L (Yj - Sm(Xj»)2, 
j=O 

and for the interpolatory trigonometric polynomial, this error is 0, hence minimized, when 
the Sm(Xj) = Yj, for each j = 0,1, ... ,2m - 1. A modification is needed to the form 
of the polynomial, however, if we want the coefficients to assume the same fOlm as in the 
least squares case. In Lemma 8.12 we found that if r is not a multiple of m, then 

2m-I 

L (cosrxj)2 = m. 
j=O 

Interpolation requires computing instead 

2m-I 

L (coSmXj)2, 
j=O 

which (see Exercise 8) has the value 2m. This requires the interpolatory polynomial to be 
written as 

ao + am cos mx ~ . 
Sm(X) = + L.)ak coskx + bk smkx), 

2 k=1 

(8.24) 

if we want the form of the constants ak and bk to agree with those of the discrete least 
squares polynomial; that is, where 

1 2m - I 

ak = - L Yj coskxj, for each k = 0,1, ... , m, 
m . 0 

J= 

(8.25) 
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and 

1 2m-l 

bk = - L Y j sin kx j for each k = 1, 2, ... , m - 1. 
m .0 J= 

(8.26) 

The interpolation of large amounts of equally spaced data by trigonometric polyno
mials can produce very accurate results. It is the appropriate approximation technique in 
areas involving digital filters, antenna field patterns, quantum mechanics, optics, and in 
numerous simulation problems. Until the middle of the 1960s, however, the method had 
not been extensively applied due to the number of arithmetic calculations required for the 
determination of the constants in the approximation. The interpolation of 2m data points by 
the direct-calculation technique requires approximately (2m? multiplications and (2m)2 
additions. The approximation of many thousands of data points is not unusual in areas 
requiring trigonometric interpolation, so the direct methods for evaluating the constants 
require multiplication and addition operations numbering in the millions. The roundoff 
error associated with this number of calculations generally dominates the approximation. 

In 1965 a paper by J. W Cooley and J. W Thkey in the journal Mathematics of Com
putation [CT] described a different method of calculating the constants in the interpolat
ing trigonometric polynomial. This method requires only 0 (m log2 m) multiplications and 
o (m log2 m) additions, provided m is chosen in an appropriate manner. For a problem 
with thousands of data points, this reduces the number of calculations from millions to 
thousands. The method had actually been discovered a number of years before the Cooley
Tukey paper appeared but had gone largely unnoticed. ([Brigh, pp. 8-9], contains a short, 
but interesting, historical summary of the method.) 

The method described by Cooley and Tukey is known either as the Cooley-Thkey 
algorithm or the fast Fourier transform (FFT) algorithm and has led to a revolution in 
the use of interpolatory trigonometric polynomials. The method consists of organizing the 
problem so that the number of data points being used can be easily factored, particularly 
into powers of two. 

Instead of directly evaluating the constants ak and h, the fast Fourier transform pro
cedure computes the complex coefficients Ck in 

where 

2m-J 

Ck = L yje
ikrcj

/
m

, for each k = 0,1, ... , 2m - 1. 
j=O 

(8.27) 

(8.28) 

Once the constants Ck have been determined, ak and bk can be recovered. To do this 
we use Euler's Formula, 

elZ = COSz + i sinz. 

For each k = 0, 1, ... ,m, 
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1 1 1 2m-1 1 2m-1 
_q(_l)k = _Cke-i7rk = - L Yjeikrrj/me-irrk = - L Yje ik (-7r+(7r j /m» 
m m m· o m. o 

so 

]= ;= 

1 2m-I 

=- LY] 
m . 0 

]= 

cosk 

• 
Jr} 

-Jr + --'
m 

1 2m-1 

= - L Yj(coskx j + i sinkx j ), 
m . 0 ]= 

+ i sink 
• 

Jr} 
-Jr + --'

m 
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(8.29) 

For notational convenience, bo and bm are added to the collection, but both are 0 and do 
not contribute to the resulting sum. 

The operation-reduction feature of the fast Fourier transform results from calculating 
the coefficients Ck in clusters and uses as a basic relation the fact that for any integer n. 

en", = cos llJr + i sin llJr = (_l)n. 

Suppose m = 2P for some positive integer p. For each k = 0, I, ... , m - 1, 

2m-1 2m-l 2m-I 

Ck + Cm+k = L Yjeikrrjfm + L Yjei(m+k)".i/m = L Yjeik7rj/m(l + e lfi }). 

But 

j=O j~ j=O 

1 + elrr] = 
0, 

2, if j is even, 

if j is odd, 

so there are only m nonzero tenllS to be summed. If j is replaced by 2j in the index of the 
sum, we can write the sum as 

that is, 

In a similar manner, 

m-I 

C + C - 2 "y ·eikrr (2j)/m. k m+k - L..t 2] , 

j=O 

m-I 

C + - 2" Y 'e ikrrj /(m/2) k Cm+k - L..t 2] . 

j=O 

m-l 

C - C - 2eik7r / m "y. e ikrrj /(m/2) k m+k - ~ 2;+! . 
j=O 

(8.30) 

(8.31) 
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Since Ck and Cm+k can both be recovered from Eqs. (8.30) and (8.31), these relations de
termine all the coefficients Ct. Note also that the sums in Eqs. (8.30) and (8.31) are of the 
same form as the sum in Eq. (8.28), except that the index m has been replaced by m /2. 

There are 2m coefficients Co, CI, ..• , CZm-1 to be calculated. Using the basic forllluia 
(8.28) requires 2m complex multiplications per coefficient, for a total of (2m)2 operations. 
Equation (8.30) requires m complex multiplications for each k = 0,1, ... ,m - 1, and 
(8.31) requires m + 1 complex multiplications for each k = 0, 1, ... ,m - 1. Using these 
equations to compute Co, CI, ... ,C2m-1 reduces the number of complex multiplications 
from (2m)2 = 4m2 to 

m . m + m(m + 1) = 2m2 + m. 

Since the sums in (8.30) and (8.31) have the same form as the original and m is a 
power of 2, the reduction technique can be reapplied to the sums in (8.30) and (8.31). Each 
of these is replaced by two sums from j = 0 to j = (m/2) - 1. This reduces the 2m 2 

portion of the sum to 

2 -. - + -. - + 1 = m + m. [
m m m (m )] 2 

2222· 

So a total of 

(m2 + m) + m = m 2 + 2m 

complex multiplications are now needed. 
Applying the technique one more time gives us 4 sums each with m/4 terms and 

reduces the m 2 portion of this total to 

(m)2 m (m ') m2 
4 - + - - + 1 = +m 

4 4 4 2' 

for a new total of (m 2 /2) + 3m complex multiplications. Repeating the process r times 
reduces the total number of required complex multiplications to 

m2 

--=-2 + mr. 2r -

The process is complete when r = p + 1, since m = 2P and 2m = 2P+1
. As a 

consequence, after r = p+ 1 reductions of this type, the number of complex multiplications 
is reduced to 

(2P )2 
--'-1 + m (p + I) = 2m + pm + m = 3m + m log2 m = 0 (m log2 m). 2P-

Because of the way the calculations are arranged, the number of required complex ad
ditions is comparable. To illustrate the significance of this reduction, suppose we have 
m = 210 = 1024. The direct calculation would require 

(2m)2 = (2048)2 ~ 4,200,000 

calculations. The fast Fourier transform procedure reduces the number of calculations to 

3(1024) + 1024log2 1024 ~ 13,300. 
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Consider the fast Fourier transforIll technique applied to 8 = 23 data points {(x j, Y j)} }=o' 
where Xj = -rr + jrr/4, for each j = 0, 1, ... ,7. In this case 2m = 8, so m = 4 = 22 
and p = 2. 

From (8.24) we have 

where 

Define 

where 

7 

1 7 
F(x) = - L Ckeikx , 

4 j=O 

k = 0, 1,2,3,4. 

Ck = LYjeibrj
/
4

, for k = 0,1, ... ,7. 
j=O 

Then by (8.29), for k = 0, 1,2, 3,4, 

By direct calculation, the complex constants Ck are given by 

Co = Yo + YI + Y2 + Y3 + Y4 + Y5 + Y6 + Y7; 

CI = Yo + ((i + 1)/J2)YI + iyz + «i - l)/J2)Y3 - Y4 

- «i + l)/J2)Y5 - iY6 - «i - l)/J2)Y7; 

C2 = Yo + iYI - Yz - iY3 + Y4 + iY5 - Y6 - iY7; 

C3 = Yo + «i - l)/J2)YI - iyz + «i + l)/J2)Y3 - Y4 

- ((i - l)/J2)Y5 + iY6 - ((i + l)/J2)Y7; 

C4 = Yo - YI + Yz - Y3 + Y4 - Y5 + Y6 - Y7; 

C5 = Yo - ((i + l)/J2)YI + iyz - «i - l)/J2)Y3 - Y4 

+ «i + l)/J2)Y5 - iY6 + «i - l)/J2)Y7; 

C6 = Yo - iYI - Yz + iY3 + Y4 - iY5 - Y6 + iY7; 

C7 = Yo - «i - l)/J2)YI - iyz - ((i + l)/J2)Y3 '- Y4 

+ «i - l)/J2)Y5 + iY6 + «i + l)/J2)Y7' 
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Because of the small size of the collection of data points, many of the coefficients of 
the Y j in these equations are I or -1. This frequency will decrease in a larger applica
tion, so to count the computational operations accurately, mUltiplication by 1 or -1 will 
be included, even though it would not be necessary in this example. With this understand
ing, 64 multiplications/divisions and 56 additions/subtractions are required for the direct 
computation of Co, CI, ... , C7. 

To apply the fast Fourier transform procedure with r = I, we first define 

I 
do = 2 (co + C4) = Yo + Y2 + Y4 + Y6; 

1 
d l = 2 (co - C4) = YI + Y3 + Ys + Y7; 

1 
dz = 2 (CI + cs) = Yo + iY2 - Y4 - iY6; 

1 
d3 = 2 (CI - cs) = ((i + l)/h)(Yl + iY3 - Ys - iY7); 

I 
d4 = 2 (e2 + C6) = Yo - Yz + Y4 - Y6; 

1 
ds = 2 (C2 - C6) = i(YI - Y3 + Ys - Y7); 

I 
d6 = "2 (C3 + C7) = Yo - iY2 - Y4 + iY6; 

1 
d7 = 2 (C3 - C7) = ((i - l)/h)(YI - iY3 - Ys + iY7). 

We then define, for r = 2, 

1 
eo = 2 (do + d4) = Yo + Y4; 

1 
el = 2 (do - d4) = Y2 + Y6; 

1 
e2 = 2 (id1 + ds) = i(YI + Ys); 

1 
e3 = 2 (idl - ds) = i(Y3 + Y7); 

1 
e4 = 2 (dz + d6) = Yo - Y4; 

1 
es = Z(dz - d6 ) = i(Y2 - Y6); 

1 
e6 = 2 (id3 + d7) = ((i - l)/h)(YI - Ys); 

1 
e7 = 2 (i d3 - d7) = i((i - l)/h)(Y3 - Y7). 
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Finally, for r = p + 1 = 3, we define 

1 
fo = 2 (eo + e4) = Yo; 

1 
fl = 2 (eo - e4) = Y4; 

1 
h = 2(iel +es) = iY2; 

1 
f3 = 2 (iel - es) = iY6; 

1 
f4 = 2 «((i + 1)/h)e2 + e6) = ((i - l)/h)Yt; 

1 
fs = 2 «(i + l)/h)e2 - e6) = ((i -l)/h)ys; 

1 
f6 = 2 «((i - l)/h)e3 + e7) = (-(i + l)/h)Y3: 

1 
17 = 2 «(i - l)/h)e3 - e7) = (-(i + l)/h)Y7. 

The Co, ... , C7, do, ... , d7, eo, ... , e7, and fo, ... ,hare independent of the particular 
data points; they depend only on the fact that m = 4. For each m there is a unique set 
f { }2m-1 {d }2m-1 {}2m-1 d { I' }2m-1 Thi . f h k . o constants Ck k=O' k k=O ' ek k=O ' an J k k=O' S portIOn 0 t e wor IS not 

needed for a particular application. Only the calculations that follow are required: 

1. fo = Yo; /J = Y4; h = iY2; h = iY6; 

f4 = ((i - l)/V2)YI; fs = ((i - l)/V2)Y5; f6 = (-(i + 1)/V2)Y3; 

17 = (-(i + l)/V2)Y7. 

2. eo = fo + fl; el = -i(h + h); e2 = «-i + l)/.;2)(f4 + f5); 

e3 = «-i - l)/V2)(f6 + h); e4 = fo - /J; es = h - 13; 

e6 = f4 - fs; e7 = f6 - h-

3. do=eo+el; dl=-i(e2+e3); d2=e4+eS; d3=-i(e6+e7); 

d4 = eo - el; ds = e2 - e3; d6 = e4 - es; d7 = e6 - e7· 

4. co=do+dl ; cI=d2 +d3; c2=d4 +ds; c3=d6+d7; 

c4=do-dl ; CS=d2- d3; c6=d4-dS; c7=d6 -d7. 

Computing the constants co, CI, ... , C7 in this manner requires the number of opera
tions shown in Table 8.13. Note again that multiplication by 1 or -1 has been included in 
the count, even though this does not require computational effort. 

The lack of multiplications/divisions in Step 4 reflects the fact that for any m, the 
coefficients {cd~mol are computed from {dd~mol in the same manner: 
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Step Multiplications/divisions Additions/subtractions 

(I) 8 0 
(2) 8 8 
(3) 8 8 
(4) 0 8 

Total 24 24 

and 

Ck+m = d2k - d2k+ l , for k = 0, 1, ... , m - 1, 

so no complex multiplication is involved. 
In summary, the direct computation of the coefficients Co, CI, ... , C7 requires 64 mul

tiplications/divisions and 56 additions/subtractions. The fast Fourier transform technique 
reduces the computations to 24 multiplications/divisions and 24 additions/subtractions . 

• 
Algorithm 8.3 performs tht< fast Fourier transform when m = 2P for some positive 

integer p. Modifications of the technique can be made when m takes other forms. 

Fast Fourier Transfonl1 

To compute the coefficients in the summation 

1 2m - I . 1 2m- I 

- L Cke1kx = - L ck(coskx + i sinkx), where i = yCT, 
m k=O m k=O 

for the data {(Xj, Yj)}~O I where m = 2P and Xj = -JT + jJT/m for j = 0,1, ... ,2m -1: 

INPUT m, p; Yo, YI, ... ,Y2m-I· 

OUTPUT complex numbers Co, ... ,C2m-I; real numbers aD, ... ,am; hi, ... ,bm- 1. 

Step 1 Set M = m; 
q = p; 
s = e7ri / m

• 

Step 2 For j = 0, 1, ... ,2m - 1 set C j = Y j. 

Step 3 For j = 1, 2, ... ,M 

Step 4 Set K = 0; 
~o = 1. 

set~j = (1; 

~j+M ..:.. -~j. 

Step 5 For L = 1,2, ... ,p + 1 do Steps 6-12. 

Step 6 While K < 2m - 1 do Steps 7-11. 

Step 7 For j = 1,2, ... , M do Steps 8-10. 
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Step 8 Let K = kp . 2P + kp_ 1 . 2P- 1 + ... + kl . 2 + ko; 
(Decompose k.) 
set KI = Kj2q = kp . 2P- q + ... + kq+1 ·2 + kq; 

K2 = kq . 2P + kq+1 . 2P- 1 + ... + kp . 2q. 

Step 9 Set 7] = CK+M~K2; 
CK+M = CK - 7]; 

CK = CK + T}. 

Step 10 Set K = K + 1. 

Step 11 Set K = K + M. 

Step 12 Set K = 0; 
M = M12; 
q==q-l. 

Step 73 While K < 2m - 1 do Steps 14-16. 

Step 14 Let K == kp ·2P + kp_1 ·2P- 1 + ... + kl ·2 + ko; (Decompose k.) 
set j = ko . 2P + kl . 2P- 1 + ... + kp _ 1 ·2+ kp . 

Step 15 If j > K then interchange c j and Ck. 

Step 16 Set K = K + l. 

Step 17 Set ao = colm; 
am = Re(e- i1rm cm/m). 

Step 78 For j = 1, ... , m - 1 setaj = Re(e-i1rj cj/m); 
bj = Im(e-i1rjci/m). 

Step19 OUIPUT(co, ... ,C2m-l;ao, ... ,am;bl , .•• ,hm_ I ); 

STOP. 

545 

• 
Let f(x) = X4 - 3x3 + 2x2 - tanx(x - 2). To detennine the trigonometric interpolating 
polynomial of degree 4 for the data {(Xj, Yj)}}=<>, where Xj = j/4 and Yj = f(xj), 
requires a transformation of the interval [0, 2] to [-Jl', Jl']. This is given by 

Zj = Jl'(Xj - 1), 

so that the input data to Algorithm 8.3 are 

{Zj,f(I+~)}:=o· 
The interpolating polynomial in Z is 

S4(Z) = 0.761979 + 0.771841 cos Z + om 73037 cos 2z + 0.00686304 cos 3z 

- 0.000578545 cos4z - 0.386374 sinz + 0.0468750 sin 2z - 0.0113738 sin 3z. 

The trigonometric polynomial S4(X) on [0, 2] is obtained by substituting z = Jl'(x -1) 
into S4(Z). The graphs of y = f(x) and Y = S4(X) are shown in Figure 8.15. Values of 
f(x) and S4(X) are given in Table 8.14. • 
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Figure 8.15 

Table 8.14 
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y 

2 

1 

x f(x) 

0.125 0.26440 
0.375 0.84081 
0.625 1.36150 
0.875 1.61282 
l.l25 1.36672 
• 
1.375 0.71697 
1.625 0.07909 
1.875 -0.14576 

S4(X) 

0.25001 
0.84647 
1.35824 
1.61515 
1.36471 
0.71931 
0.07496 

-0.13301 

1 

y = f(x) 

y = S4(X) 

If(x) - S4(x)1 

1.44 x 10-2 

5.66 x 10-3 

3.27 x 10-3 

2.33 x 10-3 

2.02 x 10-3 

2.33 x 10-3 

4.14 x 10-3 

1.27 x 10-2 

x 

More details on the verification of the validity of the fast Fourier transforIIl procedure 
can be found in [Ham], which presents the method from a mathematical approach, or in 
[Brac], where the presentation is based on methods more likely to be familiar to engineers. 
[AHD, pp. 252-269], is a good reference for a discussion of the computational aspects of 
the method. Modification of the procedure for the case when m is not a power of 2 can 
be found in [Win]. A presentation of the techniques and related material from the point of 
view of applied abstract algebra is given in [Lau, pp. 438-465]. 

E X ERe I S ESE T 8.6 

1. Detennine the trigonometric interpolating polynomial S2(X) of degree 2 on [-Jr, Jr] for the 
following functions, and graph f(x) - S2(X): 
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a. f(x) = Jr(X - Jr) b. f(x) = X(Jr - x) 

c. f(x) = Ixi d. 
-1 

f(x) = ' 
I , 

-Jr < x < ° - -

2. Determine the trigonometric interpolating polynomial of degree 4 for f(x) = x(Jr - x) on the 
interval [ -Jr, Jr] using: 

a. Direct calculation; 

b. The Fast Fourier Transform Algorithm. 

3. Use the Fast Fourier Transform Algorithm to compute the trigonometric interpolating polyno
mial of degree 4 on [-Jr, Jr] for the following functions. 

a. f(x) = Jr(x - Jr) b. f(x) = Ixl 
c. 

4. a. 

b. 

c. 

f(x) = cos JrX - 2 sin JrX d. f(x) = x cos X2 + eX cose" 

Determine the trigonometric interpolating polynomial S4(X) of degree 4 for f(x) 
x 2 sin x on the interval [0, I]. 

. I 
Compute fo S4(X) dx. 

Compare the integral in part (b) to fol X2 sin x dx. 

5. Use the approximations obtained in Exercise 3 to approximate the following integrals, and 
compare your results to the actual values. 

a. 1: Jr(X - Jr) dx b. 1: Ixi dx 

7f " 
C. (cos JrX - 2 sin Jr x) dx d. (xcosx 2 + eX cos eX) dx 

-7f -7f 

6. Use the Fast Fourier Transform Algorithm to determine the trigonometric interpolating poly
nomial of degree 16 for f(x) = x 2 cosx on [-Jr, Jr]. 

7. Use the Fast Fourier Transform Algorithm to determine the trigonometric interpolating poly
nomial of degree 64 for f(x) = x 2cosx on [-Jr, Jr]. 

8. Use a trigonometric identity to show that L~ 0 I (cos mXj)2 = 2m. 

9. Show that Co, ... ,C2m-1 in Algorithm 8.3 are given by 

Co 1 I 1 • • • I Yo 

C[ I ~ ~2 • • • ~2m-1 
YI 

C2 1 ~2 ~4 • • • ~4m-2 
Y2 , 

• • • 
• • • • • • 
• • • • • • 

C2m-1 1 ~2m-1 ~4m-2 • • • 
~(2m_1)2 

Y2m-1 

where ~ = e"ijm. 

10. In the discussion preceding Algorithm 8.3, an example for m - 4 was explained. Define 
. vectors c, d, e, f, and y as 
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f=(fo,fl,." ,h)', 

Y=(YO,Yl,.·· ,Y7)'. 

Find matrices A, B, C, and D so that c = Ad, d = Be, e = cr, and f = Dy. 

8.7 Survey of Methods and Software 

In this chapter we have considered approximating data and functions with elementary func
tions. The elementary functions used were polynomials, rational functions, and trigono
metric polynomials. We considered two types of approximations, discrete and continuous. 
Discrete approximations arise when approximating a finite set of data with an elementary 
function. Continuous approximations are used when the function to be approximated is 
known. 

Discrete least squares techniques are recommended when the function is specified by 
giving a set of data that may not exactly represent the function. Least squares fit of data 
can take the form of a linear or other polynomial approximation or even an exponential 
fOIm. These approximations are computed by solving sets of normal equations, as given in 
Section 8.1. 

If the data are periodic, a trigonometric least squares fit may be appropriate. Because 
of the orthonoIIllality of the trigonometric basis functions, the least squares trigonomet
ric approximation does not require the solution of a linear system. For large amounts of 
periodic data, interpolation by trigonometric polynomials is also recommended. An effi
cient method of computing the trigonometric interpolating polynomial is given by the fast 
Fourier transfoIlll. 

When the function to be approximated can be evaluated at any required argument, 
the approximations seek to minimize an integral instead of a sum. The continuous least 
squares polynomial approximations were considered in Section 8.2. Efficient computation 
of least squares polynomials lead to orthonormal sets of polynomials, such as the Legendre 
and Chebyshev polynomials. Approximation by rational functions was studied in Section 
8.4, where Pade approximation as a generalization of the Maclaurin polynomial and its ex
tension to Chebyshev rational approximation were presented. Both methods allow a more 
uniform method of approximation than polynomials. Continuous least squares approxi
mation by trigonometric functions was discussed in Section 8.5, especially as it relates to 
Fourier series. 

The IMSL Library provides a number of routines for approximation. The subroutine 
RLINE gives the least squares line for a set of data points. and returns statistics such as 
means and variances. The subroutine FNLSQ computes the discrete least squares approx
imation for a user's choice of basis functions, and BSLSQ computes a least squares cubic 
spline approximation. The subroutine RATCH computes the rational weighted Chebyshev 
approximation to a continuous functions on an interval [a, b], and FFI'CB computes the 
fast Fourier transform for a given set of data in a manner similar to Algorithm 8.3. 

The NAG Library has many subroutines for function approximation. Least squares 
polynomial approximation is given in the subroutine E02ADF. This subroutine is quite 

• 
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versatile in that it computes least squares polynomials for varying degrees and gives their 
least squares errors. It uses Chebyshev polynomials to minimize roundoff error and en
hance accuracy. 

The routine E02AEF can be used to evaluate the approximation obtained by E02ADF. 
NAG also supplies the routine E02BAF to compute least squares cubic spline fits, E02GAF 
to compute the best L J linear fit, and E02GCF to compute the best Loo fit. The routine 
E02RAF computes the Pade approximation. The NAG Library also includes many routines 
for fast Fourier transfonDs, one of which is C06ECF. 

The netlib library contains the subroutine polfit.f under the package slatec to com
pute the polynomial least squares approximation to a discrete set of points. The subroutine 
pvalue.f can be used to evaluate the polynomial from polfit.f and any of its derivatives at a 
given point. 

For further information on the general theory of approxiniation theory see Powell [Po], 
Davis [Da], or Cheney [Ch]. A good reference for methods ofleast squares is Lawson and 
Hanson [LH), and information about Fourier transfonns can be found in Van Loan [Van] 
and in Briggs and Hanson [BH). 



A roximatin 

Ei enva ues 
• • • 

The longitudinal vibrations of an elastic bar of local stiffness p(x) and 

density p(x) are described by the partial differential equation 

EJ2v a av 
p(x)8t

2
(x,t) = ax p(x) ax (x, t) , 

where v(x, t) is the mean longitudinal displacement of a section of the bar 

from its equilibrium position x at time t. The vibrations can be written 

as a sum of simple harmonic vibrations: 
00 

v(x, t) = I>kUk(X) cos ';>::;'(t - to), 
k=O 

where 

If the bar has length I and is fixed at its ends, then this differential equa

tion holds for 0 < x < I and v(O) = v(l) = O. A system of these differ

ential equations is called a Sturm-Liouville system, and the numbers Ak 

are eigenvalues with corresponding eigenfunctions Uk(X). 

Suppose the bar is 1 m long with uniform stiffness p(x) = p and 

uniform density p(x) = p. To approximate U and A, let h = 0.2. Then 

Xj = O.2j, for 0 :::: j :::: 5, and we can use the centered-difference formula 

(4.5) in Section 4.1 to approximate the first derivatives. This gives the 

linear system 

2 -1 0 0 WI WI 

-1 2 -1 0 W2 P W2 P 
Aw= = -0.04-A = -0.04-AW. 

0 -1 2 -1 W3 P W3 P 

0 0 -1 2 W4 W4 
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In this system, Wj ~ u(Xj), for 1 !: j !: 4, and Wo = Ws = O. The 

four eigenvalues of A approximate the eigenvalues of the Sturm-Liouville 

system. It is the approximation of eigenvalues that we will consider in 

this chapter. A Sturm-Liouville application is discussed in Exercise 11 of 

Section 9.4. 

9.1 Linear Algebra and Eigenvalues 

Definition 9.1 

Eigenvalues and eigenvectors were introduced in Chapter 7 in connection with the conver
gence of iterative methods for approximating the solution to a linear system. To detelluine 
the eigenvalues of an n x n matrix A, we construct the characteristic polynomial 

peA) = det(A - AI) 

and then determine its zeros. Finding the detellllinant of an n x n matrix is computationally 
expensive, and finding good approximations to the roots of peA) is also difficult. In this 
chapter we will explore other means for approximating the eigenvalues of a matrix. 

In chapter 7 we found that an iterative technique for solving a linear system will con
verge if all the eigenvalues associated with the problem have magnitude less than 1. The 
exact values of the eigenvalues in this case are not of primary importance only the region 
of the complex plane in which they lie. 

Even when we need to know the eigenvalues, the fact that many of the techniques for 
their approximation are iterative implies that determining regions in which they lie is a first 
step in the direction of determining the approximation, since it provides us with the initial 
approximation that iterative methods need. 

Before considering further results concerning eigenvalues and eigenvectors, we need 
some definitions and results from linear algebra. All the general results that will be needed 
in the remainder of this chapter are listed here for ease of reference. The proofs of the 
results that are not given can be found in most standard texts on linear algebra (see, for 
example, [ND]). The first definition parallels the definition for the linear independence of 
functions described in Section 8.2. 

Let {v(l), v(2), V(3), ... , V(k)} be a set of vectors. The set is linearly independent if when
ever 

then al = az = a3 = ... = ak = O. Otherwise the set of vectors is linearly dependent. 

• 
Note that any set of vectors containing the zero vector is linearly dependent. 
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Theorem 9.2 

EXAMPLE 1 

Theorem 9.3 
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If {v(l), V(2), v(3), ... , v(n)} is a set of n linearly independent vectors in ]Rn, then any vector 

x E ]Rn can be written uniquely as 

for some collection of constants f3l , f32, ... , f3n. -
Proof Suppose that A is the matrix whose columns are the vectors vO), V(2), ... , v(n). 
Then the set {vel), v(2), ... , v(n)} is linearly independent if and only if the matrix equation 

Aa = 0 has the unique solution a = O. But by Theorem 6.16, this is equivalent to the 
matrix equation Af3 = x, having a unique solution for any vector x E ]Rn. This, in tum, 
equivalent to the statement that for any x E ]Rn, 

x = f31 v(1) + f32 V(2) + ... + f3n v(n), 

for some unique set of constants f31' f32, ... , f3n. • • • 

Any collection of n linearly independent vectors in ]Rn is called a basis for]Rn . 

Let vO) = (1,0,0)1, v(2) = (-1, 1, lY, and vO) = (0,4,2)1. If aI, a2, and a3 are numbers 

with 

then 

so 

al - a2 = 0, a2 + 4a3 = 0, and a2 + 2a3 = 0. 

Since the only solution to this system is al = a2 = a3 = 0, the set {v(l), v(2), VOl} is 
linearly independent in ]R3 and is a basis for JR.3. 

Any vector x = (XI, X2, X3)t in JR.3 can be written as 

by choosing 

• 
The next result will be used in the following section to develop the Power method for 

approximating eigenvalues. A proof of this result is considered in Exercise 8. 

If A is a matrix and AI, ... , Ak are distinct eigenvalues of A with associated eigenvectors 
x(l), X(2) , ... , X(k), then {xii), X(2), ... ,X(k)} is linearly independent. _ 



Definition 9.4 

EXAMPLE 2 

Theorem 9.5 

Definition 9.6 
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In Section 8.2 we considered orthogonal and orthonoImal sets of functions. Vectors 
with these properties are defined in a similar manner. 

A set of vectors {vO ), V(2) , ... ,v(n)} is called orthogonal if (V(i»)IV{j) = 0, for all i =fo j. 
If, in addition, (v(i)/v(i) = 1, for all i = 1,2, ... ,n, then the set is orthonormal. _ 

Since XIX = IIxll~, a set of orthogonal vectors {vO), V(2) , ... , v(n)} is orthonormal if 
and only if 

II v(i) 112 = 1, for each i = 1, 2, . .. ,n. 

The vectors v(l) - (0 4 2)1 V(2) = (-1 - 1 ~)I and V(3) - (1 - 1 1)1 form an orthog-
- '" , 5' 5 ' - 6' 6' 3 

onal set. The lz norIlls of these vectors are 

IIv(l) 112 = 2.J5, v'3O II v(2) 112 = , 
5 

As a consequence, the vectors 

U(2) = 
V(2) 

II v(2) 112 

and 

v'3O -
6 ' 

v"6 
6 ' 

and (3) .j6 IIv 112= . 
6 

, 

30 ' 15 
, 

• 

form an orthonormal set, since they inherit orthogonality from v(1), V(2), and V(3), and, in 
addition, 

-
The proof of the next result is considered in Exercise 5. 

An orthogonal set of nonzero vectors is linearly independent. -
The terIllinology in the next definition follows from the fact that the columns of an 

orthogonal matrix will fDIm an orthogonal (in fact, orthonormal) set of vectors. (See Exer
cise 6.) 

A matrix Q is said to be an orthogonal matrix if Q-l = QI. -
The permutation matrices discussed in Section 6.5 have this property, so they are or

thogonal. 
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EXAMPLE 3 

Definition 9.7 

Theorem 9.8 
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The orthogonal matrix Q fOImed from the orthonOIIllal set of vectors found in Example 2 
• 

IS 

0 vTo v'6 - 6 6 

Q = [u(1), U(2), u(3)] = 2J5 vTo _v'6 
5 30 6 • 

:Il vTo v'6 -5 15 3 

Note that 

0 -vTo .j6 0 2J5 0 
6 6 5 5 I 0 0 

QQI = 2J5 vTo _v'6 • vTo vTo vTo 0 I 0 -5 30 6 6 30 15 • 

J5 vTo v'6 v'6 _v'6 v'6 
0 0 I 

5 15 3 6 6 3 

It is also true that QI Q = /, so QI = Q-I. • 
Two matrices A and B are said to be similar if a nonsingular matrix S exists with A 
S-I BS. • 

The important feature of similar matrices is that they have the same eigenvalues. 

Suppose A and B are similar matrices with A = S-I BS and A is an eigenvalue of A with 
associated eigenvector x. Then A is an eigenvalue of B with associated eigenvector Sx. • 

Prool Suppose that x f= 0 is such that 

S-I BSx = Ax = AX. 

MUltiplying on the left by the matrix S gives 

BSx = ASX. 

Since X f= 0 and S is nonsingular, Sx f= O. Hence, Sx is an eigenvector of B corresponding 
to its eigenvalue A. • • • 

The Maple command issimilar(A,B) returns true if A and B are similar andfalse 
otherwise. 

The deteImination of eigenvalues is easy for a triangular matrix A, for in this case A is 
a solution to the equation 

n 

0= det(A - AI) = O(aii - A) 
i=1 

if and only if A = aii for some i. The next result describes a relationship, called a similarity 
transformation, between arbitrary matrices and triangular matrices. 
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Theorem 9.10 
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(Schur) 

Let A be an arbitrary matrix. A nonsingular matrix U exists with the property that 

T = U-'AU, 

where T is an upper-triangular matrix whose diagonal entries consist of the eigenvalues 
ofA. _ 

The matrix U whose existence is ensured in Theorem 9.9 satisfies the condition 
1/ Uxl12 = I/xl12 for any vector x. Matrices with this property are called unitary. Although 
we will not make use of this nonn-preserving property, it does significantly increase the 
application of Schur's Theorem. 

Theorem 9.9 is an existence theorem that ensures that the triangular matrix T exists, 
but it does not provide a constructive means for finding T, since it requires a knowledge 
of the eigenvalues of A. In most instances, the similarity transformation U is too difficult 
to determine. The following restriction of Theorem 9.9 to symmetric matrices reduces the 
complication, since in this case the transformation matrix is orthogonal. 

If A is a symmetric matrix and D is a diagonal matrix whose diagonal entries are the 
eigenvalues of A, then there exists an orthogonal matrix Q such that D = Q-l A Q -
QIAQ. -

The following corollaries to Theorem 9.10 demonstrate some of the interesting prop
erties of symmetric matrices. 

Corollary 9.11 If A is a symmetric n x n matrix then there exist n eigenvectors of A that form an orthonor-
mal set, and the eigenvalues of A are real numbers. -

Proof If Q = (qij) and D = (dij) are the matrices specified in Theorem 9.10, then 

D = Q-'AQ implies that AQ = QD. 

Let 1 < i :::: n and Vi = (q'i, q2i, ... ,qni)' be the ith column of Q. Then 

AVi = diiVi, 

and di , is an eigenvalue of A with eigenvector, Vi, the ith column of Q. Since the columns 
of Q are orthonormal, the eigenvectors of A are orthonormal. 

Multiplying this equation on the left by v~ gives 

Since v! A Vi and v! Vi are real numbers and v! Vi = I, the eigenvalue d ii = v: A Vi is a real 
number, for each i = 1,2, ... , n. • • • 

Recall from Section 6.6 that a symmetric matrix A is called positive definite if for 
all nonzero vectors x we have Xl Ax > o. The following theorem characterizes positive 
definite matrices in tenns of eigenvalues. This eigenvalue property makes positive definite 
matrices important in applications .. 
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A symmetric matrix A is positive definite if and only if all the eigenvalues of A are positive . 

• 
Proof First suppose that A is positive definite and that A is an eigenvalue of A with 
associated eigenvector x. Then 

so A > O. Hence, every eigenvalue of a positive definite matrix is positive. 
To show the converse, suppose that A is symmetric with positive eigenvalues. By 

Corollary 9.Il, A has n eigenvectors, v(1) , V(2), .•• , v(n), that fOlln an orthonormal and, by 
Theorem 9.5, linearly independent set. Hence, for any x =J:. 0 there exists a unique set of 
nonzero constants {JI, fJ2, ... , {In for which 

Multiplying by Xl A gives 

n 

Xl Ax = Xl L {Ji A vii) 

;=1 

n 

X = L {JiV(i). 
i=1 

n 
= Xl L {J;Aiv(i) 

;=1 

n n 

= LL{Jj{JiAi(V(j»IV(i). 
j=1 i=1 

But the vectors VO) , v(2), ' .• , V(n) fOllll an orthonormal set, so 

This, together with the fact that the Ai are all positive, implies that 

n n n 

xlAx= LL{Jj{JiA;(V(j»IV(i) = LA;{Jl > O. 
j=1 ;=1 ;=1 

Hence, A is positive definite. • • • 

The final result of the section concerns bounds for the approximation of eigenvalues. 

(Cerschgorln Circle) 
Let A be an n x n matrix and R; denote the circle in the complex plane with center a;; and 
radius L:J=I, laij I; that is, 

Hi 

n 

Ri = Z E e IZ-aiil:s Llaijl , 
j=l, 
H; 

where e denotes the complex plane. The eigenvalues of A are contained within R = 
U? _I R;. Moreover, the union of any k of these circles that do not intersect the remaining 
(n - k) contains precisely k (counting multiplicities) of the eigenvalues. • 
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Ploof Suppose that A is an eigenvalue of A with associated eigenvector x, where IIxlioo = 
1. Since Ax = AX, the equivalent component representation is 

n 

L aijXj = AXi, for each i = 1,2, ... ,n. 
j=1 

If k is an integer with IXkl = IIxlioo = 1, this equation, with i = k, implies that 

Thus, 

and 

n 

n 

LakjXj = AXk. 
j=1 

L akjXj = AXk - aUXk = (A - akk)xk, 
j=l. 
j# 

n 

IA - aul . IXkl = L akjXj 
J=I. 
j# 

n 

::: L lakjllxjl. 
j=l. 
j# 

Since Ix j I ::: IXk I = 1, for all j = 1, 2, ... ,n, 

n 

IA - aal < L lakjl. 
j=l. 
Hk 

Thus, A E Rb which proves the first assertion in the theorem. The second part of this 
theorem requires a clever continuity argument. A quite readable proof is contained in [Or2, 
p.48l. • • • 

For the matrix 

A= 
4 1 1 
o 2 1 

-2 0 9 
, 

the circles in the Gerschgorin Theorem are (see Figure 9.1 on page 558) 

and 

RI = {z Eel Iz - 41 :s 2}, 

R2 = {z Eel Iz - 21 ::: I}, 

R3 = {z Eel Iz - 91 ::: 2}. 
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Figure 9.1 
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Since RI and R2 are disjoint from R3, there are precisely two eigenvalues within RI U 
R2 and one within R3. Moreover, since peA) = maXI<i<3 lA.i I, we have 7 < peA) < II. 

Imaginary 

2 

1 

• 
aXIS 

Two eigenvalues One eigenvalue 

.,-I, 
I , 

I \ 

--+-f--+--+----'~+--+----<I__+-_+~I__+__ Real axis 

-1 1 ~/3 4 5 6 7 8 9 10 11 

-2 

• 

E X ERe I S ESE T 9.1 

1. Find the eigenvalues and associated eigenvectors of the following 3 x 3 matrices. Is there a set 
of three linearly independent eigenvectors? 

2 -3 6 
a. A = 0 3-4 

o 2 -3 

201 
c. A= 020 

102 

111 
e. A = 1 1 0 

101 

1 
b. A = -1 

o 0 
o 1 

-1 -1 2 

2 -1 -1 
d. A = -1 2-1 

-1 -1 2 

2 1 1 
f. A = 1 2 1 

1 1 2 

2. The matrices in Exercise 1 (c), (d), (e), and (f) are symmetric. 

3. 

a. Are any positive definite? 

b. Consider the positive definite matrices in part (a). Construct an orthogonal matrix Q for 
which Q' AQ = D, a diagonal matrix, using the eigenvectors found in Exercise 1. 

Use the Gerschgorin Circle Theorem to determine bounds for the eigenvalues of the following 
matrices. 

1 0 0 4 -1 0 
a. -1 0 1 b. -1 4 -1 

-1 -1 2 -1 -1 4 

3 2 1 4.75 2.25 -0.25 
c. 2 3 0 d. 2.25 4.75 1.25 

1 0 3 -0.25 1.25 4.75 
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-4 o 1 3 1 0 -1 1 

e. 
o -4 2 1 
1 2 -2 0 

f. 
2 2 -1 1 
o 1 3-2 

3 1 0-4 1 0 1 4 

4. Show that any four vectors in lR3 are linearly dependent. 

5. Show that a set {VI, ... , vd of k nonzero orthogonal vectors is linearly independent. 

6. Let Q be an orthogonal matrix. 

a. Show that the columns of Q form an orthogonal set of vectors. 

b. Show that II Q 112 = 1 and II Q' 112 = 1. 

7. Let {v I, . . . , v"} be a set of orthonormal nonzero vectors in JR." and x E lR". Determine the 
values of Cko for k = I, 2, ... ,n, if 

8. Show that if A is an n x n matrix with n distinct eigenvalues, then A has n linearly independent 
eigenvectors. 

9. In Exercise 25 of Section 6.6, a symmetric matrix 

1.59 
A = 1.69 

1.69 2.13 
1.31 1.72 

2.13 1.72 1.85 

was used to describe the average wing lengths of fruit flies that were offspring resulting from 
the mating of three mutants of the flies. The entry aij represents the average wing length of a 
fly that is the offspring of a male fly of type i and a female fly of type j. 

a. Find the eigenvalues and associated eigenvectors of this matrix. 

b. Use Theorem 9.12 to answer the question posed in part (b) of Exercise 25 Section 6.6. Is 
this matrix positive definite? 

10. A persymmetric matrix is a matrix that is symmetric about both diagonals; that is, an N x N 
matrix A = (ai}) is persymmetric if au = a}i = aN+I-i.N+I-}, for all i = I, 2, ... , N and 
j = I, 2, ... , N. A number of problems in communication theory have solutions that involve 
the eigenvalues and eigenvectors of matrices that are in persymmetric form. For example, the 
eigenvector corresponding to the minimal eigenvalue of the 4 x 4 persymmetric matrix 

2 -I 0 0 

A= 
-1 2 -1 0 

0 -1 2 -1 
0 0 -1 2 

gives the unit energy-channel impulse response for a given error sequence of length 2, and 
subsequently the minimum weight of any possible error sequence. 

a. Use the Gerschgorin Circle Theorem to show that if A is the matrix given above and A is 
its minimal eigenvalue, then IA - 41 = peA - 41), where p denotes the spectral radius. 

b. Find the minimal eigenvalue of the matrix A by finding all the eigenvalues A - 41 and 
computing its spectral radius. Then find the corresponding eigenvector. 

c. Use the Gerschgorin Circle Theorem to show that if A is the minimal eigenvalue of the 
matrix 
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3 -1 -1 1 

B= -1 3 -1 -1 
-1 -1 3 -1 

, 

1 -1 -1 3 

then IA - 61 = p(B - 6/). 

d. Repeat part (b) using the matrix B and the result in part (c). 

9.2 The Power Method 

The Power method is an iterative technique used to determine the dominant eigenvalue 
of a matrix that is, the eigenvalue with the largest magnitude. By modifying the method 
slightly, it can also used to detennine other eigenvalues. One useful feature of the Power 
method is that it produces not only an eigenvalue, but an associated eigenvector. In fact, the 
Power method is often applied to find an eigenvector for an eigenvalue that is deteouined 
by some other means. 

To apply the Power method, we assume that the n x n matrix A has n eigenvalues 
AI, A2, ... ,An with an associated collection of linearly independent eigenvectors {v(l), 
v(2), v(3), ... , yen)}. Moreover, we assume that A has precisely one eigenvalue, )'1, that is 
largest in magnitude, so that lAd> IA21 2: IA31 > ... > IAnl > O. 

If x is any vector in]Rn, the fact that {v(l) , V(2) , V(3), .. , , yen)} is linearly independent 
implies that constants !31 , !32, ... ,!3n exist with 

n 

X = L!3jv(j). 
j=l 

Multiplying both sides of this equation by A, A 2 , .•. , A k gives 

n n 

Ax = L!3 j A v(j) = L!3 j A j v(j) , 

j=l j=l 

n n 

A 2x = L!3jAj Av(j) = L!3jA7v(j), 
j=! j=l 

• 
• 
• 

n 

AkX = L!3jA'V(j). 
j=l 

If A~ is factored from each term on the right side of the last equation, then 

n 

Akx = A~ L{3j 
j=l 
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Since IAII > IA j I, for all j = 2, 3, ... , n, we have limk-+oo(A j I Ad = 0, and 

lim Akx = lim AtIlIVCI).) 
k-+oo k-+oo 

561 

(9.1) 

This sequence converges to 0 if IAII < 1 and diverges if IAII > 1, provided, of course. that 
III 1= O. 

Advantage can be made of the relationship expressed in Eq. (9.1) by scaling the powers 
of Akx 4I an appropriate manner to ensure that the limit in Eq. (9.1) is finite and nonzero. 
The scaling begins by choosing x to be a unit vector xCO) relative to " . "00 and choosing a 
component x CO) of xCO) with 

PO 

Let yO) = Ax CO), and define /.L (I) = y(l). Then 
PO 

Let PI be the least integer such that 

and define x(1) by 

Then 

Now define 

and 

1 1 
X(I) = y(l) = Ax(O) 

(I) (I) . 
YPI YPI 

y(2) = Ax(l) = ~l) A2x(O) 

YPI 

Let P2 be the smallest integer with 

• 

Y
(1) 
PI 

• 
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and define 

I y(2l = 1 Ax(1) = 1 A2 (0) 
(2) (2) (2) (I) X . 

YP2 YP2 YP2 YPI 

In a similar manner, define sequences of vectors {x(m)};: 0 and {y(m)};: l' and a se
quence of scalars {JL(m)}~ I inductively by 

and 

JL(m) = y(m) = AI 
Pm-l 

y(m) = Ax(m-l), 

(3 (1) "n (' I' )m(3 (j) IVpm _ 1 + L..j=2 Aj Al jV pm _ 1 

(31V~~_1 + I:j=2(AjIAdm- 1(3jvYLI 

where at each step, Pm is used to represent the smallest integer for which 

IY~:)I = lIy(m) II(X). 

, (9.2) 

By examining Eq. (9.2), we see that since IAjlAIJ < 1, for each j = 2,3, ... , n, 
limm--+ oo JL (rn) = AI, provided that x(O) is chosen so that (31 :f= O. Moreover, the sequence of 
vectors {x(rn)} ~ 0 converges to an eigenvector associated with A I that has 100 norm one. 

The Power method has the disadvantage that it is unknown at the outset whether or not 
the matrix has a single dominant eigenvalue. Nor is it known how x(O) should be chosen so 
as to ensure that its representation in terms of the eigenvectors of the matrix will contain a 
nonzero contribution from the eigenvector associated with the dominant eigenvalue, should 
it exist. 

Algorithm 9.1 implements the Power method. 

Power Method 

To approximate the dominant eigenvalue and an associated eigenvector of the n x n matrix 
A given a nonzero vector x: 

INPUT dimension n; matrix A; vector x; tolerance TOL; maximum number of itera
tions N. 

OUTPUT approximate eigenvalue j1.; approximate eigenvector x (with Ilxlloo = 1) or a 
message that the maximum number of iterations was exceeded. 

Step 1 Set k = 1. 

Step 2 Find the smallest integer P with 1 < P < n and Ixp I = Ilxll oo . 

Step 3 Set x = xlxp. 

Step 4 While (k < N) do Steps 5-11. 
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Step 5 Set y = Ax. 

Step 6 Set J,t = Yp. 

Step 7 Find the smallest integer P with 1 < P ::: n and I Y pi = II y II 00' 

Step 8 If Yp = 0 then OUTPUT ('Eigenvector', x); 
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OUTPUT (,A has the eigenvalue 0, select a new vector x and 
restart'); 

STOP. 

Step 9 Set ERR = Ilx - (y /Yp) I L,,,; 

x=y/yp' 

Step 10 If ERR < TOL then OU'IPUT (J,t, x); 

Step 11 Set k = k + 1. 

(The procedure was successful.) 
STOP. 

Step 12 OUtPUT ('The maximum number of iterations exceeded'); 
(The procedure was unsuccessful.) 
STOP. • 

Choosing, in Step 7, the smallest integer Pm for which IY~:)I = lIy(m)lloo will gen

erally ensure that this index eventually becomes invariant. The rate at which {J,t (m)} ~ I 

converges to Al is detennined by the ratios IAj/Adm , for j = 2,3, ... , n, and in partic
ular by IAdAllm. The rate of convergence is O(/Az/Allm) (see [IK, p. 148]), so there is a 
constant k such that for large m, 

, 

which implies that 

Hence, the sequence {J,t(m)} converges linearly to AI. and Aitken's ~2 procedure discussed 
in Section 2.5 can be used to speed the convergence. Implementing the ~ 2 procedure in 
Algorithm 9.1 is accomplished by modifying the algorithm as follows: 

Step 1 Set k = 1; 
JLo = 0; 
JLI = 0. 

Step 6 Set JL = Yp; 
A (JLI - JLo)2 

JL = JLo - . 
JL - 2JLI + JLo 
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Step 10 If ERR < TOL and k > 4 then OUTPUT (fl, x); 
STOP. 

Step 11 Set k == k + 1; 

lIo == III; 
III = II· 

In actuality, it is not necessary for the matrix to have distinct eigenvalues for the Power 
method to converge. If the matrix has a unique dominant eigenvalue, )'-1, with multiplicity r 
greater than 1 and v(l), V(2), ... , vCr) are linearly independent eigenvectors associated with 
A I, the procedure will still converge to AI. The sequence of vectors {x(rn)}: 0 will, in this 
case, converge to an eigenvector of Al of 100 nOlln one that depends on the choice of the 
initial vector x(O) and is a linear combination of v(l), v(2), ..• , v(r). 

The matrix 

-4 14 0 
A == -5 13 0 

-1 0 2 

has eigenvalues Al == 6, A2 = 3, and A3 == 2, so the Power method described in Algorithm 
9.1 will converge. Let x(O) == (1, 1, 1)1, then 

so 

y(l) == Ax(O) == (10,8, ll, 

and 
(I) 

x(l) == y == (1,0.8, O.IY. 
10 

Continuing in this manner leads to the values in Table 9.1, where fl(rn) represents 
the sequence generated by the Aitken's f:..2 procedure. An approximation to the domi
nant eigenvalue, 6, at this stage is fl (10) == 6.000000 with approximate unit eigenvector 
(1,0.714316, -0.249895)1. Although the approximation to the eigenvalue is correct to the 

m 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1 
12 

(1, 1, 1) 
(1, 0.8, 0.1) 
(1,0.75, -0.111) 
(1,0.730769, -0.188803) 
(1,0.722200, -0.220850) 
(1,0.718182, -0.235915) 
(1,0.716216, -0.243095) 
(1,0.715247, -0.246588) 
(1,0.714765, -0.248306) 
(1,0.714525, -0.249157) 
(1,0.714405, -0.249579) 
(1,0.714346, -0.249790) 
(1,0.714316, -0.249895) 

10 
7.2 
6.5 
6.230769 
6.111000 
6.054546 
6.027027 
6.013453 
6.006711 
6.003352 
6.001675 
6.000837 

A (m) 
f.l 

6.266667 
6.062473 
6.015054 
6.004202 
6.000855 
6.000240 
6.000058 
6.000017 
6.000003 
6.000000 

• 
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places listed, the eigenvector approximation is considerably less accurate to the true eigen
vector, (l, 0.714286, -0.25)1. • 

When A is symmetric, a variation in the choice of the vectors x(m), y(ml, and scalars 
{t (m) can be made to significantly improve the rate of convergence of the sequence 
{{t(m)}~ I to the dominant eigenvalue AI. In fact, although the rate of convergence of 
the general Power method is O(IA2/Allm), the rate of convergence of the modified pro
cedure given in Algorithm 9.2 for symmetric matrices is O(IA2/AI/2m). (See [IK, pp. 149 
ff].) Because the sequence {jt(m)} is still linearly convergent, Aitken's ,6,2 procedure can 
be applied. 

Symmetric Power Method 

To approximate the dominant eigenvalue and an associated eigenvector of the n x n sym
metric matrix A, given a nonzero vector x: 

INPUT dimension n; matrix A; vector x; tolerance TOL; maximum number of itera
tions N. 

OUTPUT approximate eigenvalue {t; approximate eigenvector x (with I/Xl/2 
message that the maximum number of iterations was exceeded. 

I) or a 

Step 1 Set k = 1; 
x = X/I/xl/2' 

Step 2 While (k < N) do Steps 3-8. 

Step 3 Set y = Ax. 

Step 4 Set {t = x/y. 

Step 5 If lIyll2 = 0, then OUTPUT (,Eigenvector', x); 
OUTPUT (' A has eigenvalue 0, select new vector x 

and restart'); 
STOP. 

Y Step 6 Set ERR = x - . , 
lIyll2 2 

X = y / lIyll2' 

Step 7 If ERR < TOL then OUTPUT ({t, x); 

Step 8 Set k = k + 1. 

(The procedure was successful.) 
STOP. 

Step 9 OUTPUT (,Maximum number of iterations exceeded'); 
(The procedure was unsuccessful.) 
STOP. • 
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EXAMPLE 2 The matrix 

4 -1 1 
A = -1 3-2 

1 -2 3 

is symmetric with eigenvalues Al = 6, A2 = 3, and A3 = 1. Table 9.2 lists the re
sults the Power method, and the results in Table 9.3 come from the Symmetric Power 
method, assuming in each case that y(O) = x(O) = (1,0,0)1. Notice the significant 
improvement that the Symmetric Power method provides. The approximations to the 
eigenvectors produced in the Power method converge to (1, -1, 1 r, a vector with 
11(1, -1, 1)11100 = 1. In the Symmetric Power method, the convergence is to the paral
lel vector (./3/3, -,J}/3, ,J}/W, with 1I(,J}/3, -,J}/3, ,J}/3) 1 1/2 = 1. • 

lable 9.2 

m 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

IO 

(4,-1,1) 
(4.5, -2.25, 2.25) 
(5, -3.5,3.5) 
(5.4, -4.5, 4.5) 

- - -
(5.666, -5.1666,5.1666) 
(5.823529, -5.558824, 5.558824) 
(5.909091, -5.772727,5.772727) 
(5.953846, -5.884615,5.884615) 
(5.976744, -5.941861, 5.941861) 
(5.988327, -5.970817,5.970817) 

f1 (m) 

4 
4.5 
5 
5.4 
5.666 
5.823529 
5.909091 
5.953846 
5.976744 
5.988327 

7 

~ (m) 
f1 

6.2 
6.047617 
6.011767 
6.002931 
6.000733 
6.000184 

(1,0,0) 
(1, -0.25, 0.25) 
(l, -0.5, 0.5) 
(1, -0.7,0.7) - -
(1, -0.8333,0.8333) 
(1, -0.911765,0.911765) 
(1, -0.954545,0.954545) 
(1, -0.976923,0.976923) 
(1, -0.988372,0.988372) 
(1, -0.994163,0.994163) 
(1, -0.997076,0.997076) 

lable9.3 

m 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

(y(m), f1 (m) ~ (m) 
f1 (x(m), with IIx(m) 112 = 1 

(1,0,0) (1,0,0) 
(4,-1,1) 4 7 (0.942809, -0.235702,0.235702) 
(4.242641, -2.121320,2.121320 5 6.047619 (0.816497, -0.408248,0.408248) 
(4.082483, -2.857738,2.857738) 5.666667 6.002932 (0.710669, -0.497468,0.497468) 
(3.837613, -3.198011,3.198011) 5.909091 6.000183 (0.646997, -0.539164,0.539164) 
(3.666314, -3.342816, 3.342816) 5.976744 6.000012 (0.612836, -0.558763,0.558763) 
(3.568871, -3.406650, 3.406650) 5.994152 6.000000 (0.595247, -0.568190,0.568190) 
(3.517370, -3.436200, 3.436200) 5.998536 6.000000 (0.586336, -0.572805, 0.572805) 
(3.490952, -3.450359, 3.450359) 5.999634 (0.581852, -0.575086,0.575086) 
(3.477580, -3.457283,3.457283) 5.999908 (0.579603, -0.576220, 0.576220) 
(3.470854, -3.460706, 3.460706) 5.999977 (0.578477, -0.576786,0.576786) 

The following gives an error bound for approximating the eigenvalues of a symmetric 
matrix. 
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If A is an n x n symmetric matrix with eigenvalues A I, A2, ... , An and II Ax - Ax 112 < c 
for some real number A and vector x with IIxll2 = 1, then 

min IAj -AI < c. 
I<j<n • 

Proof Suppose that y(l), y(2) , ... , v(n) fonn an orthonormal set of eigenvectors of A 
associated, respectively, with the eigenvalues At. A2, ... ,An. By Theorems 9.5 and 9.2, x 
can be expressed, for some unique set of constants /31, /32, . .. . /3", as 

Thus, 

II Ax - Axll~ = 

But 

so 

n 

X = L/3jV(J). 
j=1 

n 

L/3j(Aj - A)VU) 
j=1 

n 

LI/3jI2 = IIxll~ = I, 
j=1 

c > II Ax - Axll2 > min IAj - AI· 
l:oj <n 

• • • 

The Inverse Power method is a modification of the Power method that gives faster 
convergence. It is used to determine the eigenvalue of A that is closest to a specified num
berq. 

Suppose the matrix A has eigenvalues AI, ...• An with linearly independent eigenvec
tors v(I) •...• v(n). The eigenvalues of (A - q I) - t, where q f= Ai, for i = 1. 2, ... ,n, 
are 

1 1 1 
, ,. .. , , 

AI - q A2 - q An - q 

with eigenvectors v(l), V(2), ...• v(n) (See Exercise 9 of Section 7.2.). Applying the Power 
method to (A - q I) -I gives 

and 

y(m) = (A - q I)-Ix(m-I), 

"n /3. 1 v(J) 
y(m) L...j=1 J (A)' _ q)m Pm-l 

IJ (m) = y(m) = Pm-l = 
fA' Pm -1 (m -I) ----'--"-----0-1 -=-'----. 

X En /3 (j) Pm-l . V 
j=1 ) (Aj _ q)m-I Pm-l 

y(m) 
X(m) = "-;-"7 

(m) , 
YPm 

(9.3) 
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where, at each step, Pm represents the smallest integer for which IY~::) I - Ily(m) 1100. The 
sequence {JL(m)} in Eq. (9.3) converges to l/()l.k - q), where 

I I 
---= max , 
I Ak - q I 1 <i <n I Ai - q I 

and Ak ~ q + I/JL(m) is the eigenvalue of A closest to q. 
With k known, Eq. (9.3) can be written as 

Po (k) "n Po [).k-q]m (j) 
Pk V pm _ 1 + L..,j=l pj ).._q vpm _ 1 

j'Fk J JL(m) = I 
Ak - q Po (k) + "n Po [).k_q]m-l (j) 

PkVpm_l L..,j=l pj ).._q vpm _ 1 
j# J 

(9.4) • 

Thus, the choice of q determines the convergence, provided that 1/ (Ak - q) is a unique 
dominant eigenvalue of (A - qJ)-1 (although it may be a mUltiple eigenvalue). The closer 
q is to an eigenvalue Ab the faster the convergence since the convergence is of order 

o 
(A_q)-l m 

(Ak - q)-l 
=0 

(Ak _ q) m 

(A - q) 

where A represents the eigenvalue of A that is second closest to q. 
The vector y(m) is obtained from the equation 

(A - q J)y(m) = x(m-l). 

, 

In general, Gaussian elimination with pivoting can be used to solve this system. 
Although the Inverse Power method requires the solution of an n x n system at each 

step, the multipliers can be saved to reduce the computation. The selection of q can be 
based on the Gerschgorin Circle Theorem or on another means of localizing an eigenvalue. 

Algorithm 9.3 computes q from an initial approximation to the eigenvector x(O) by 

X(O)I Ax(O) 

q = X(O)I x(O) . 

This choice of q results from the observation that if x is an eigenvector of A with respect 
to the eigenvalue A, then Ax = Ax. So Xl Ax = AXIX and 

Xl Ax Xl Ax 

A = XIX - IIxll~· 

If q is close to an eigenvalue, the convergence will be quite rapid, but a pivoting technique 
should be used in Step 6 to avoid contamination by roundoff error. 

Algorithm 9.3 is often used to approximate an eigenvector when an approximate eigen
value q is known. 

Power Method 

To approximate an eigenvalue and an associated eigenvector of the n x n matrix A given a 
nonzero vector x: 
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INPUT dimension n; matrix A; vector x; tolerance TOL; maximum number of itera
tions N. 

OUTPUT approximate eigenvalue /J-; approximate eigenvector x (with IIxlioo = 1) or a 
message that the maximum number of iterations was exceeded. 

Step 1 
x/Ax 

Setq = . 
x/x 

Step 2 Set k = 1. 

Step 3 Find the smallest integer p with 1 < P < n and JXpJ = IIxli oo . 

Step 4 Set x = x/xp. 

Step 5 While (k ::s N) do Steps 6-12. 

Step 6 Solve the linear system (A - q I)y = x. 

Step 7 If the system does not have a unique solution, then 
OUTPUT ('q is an eigenvalue', q); 
STOP. 

Step 8 Set /J- = Yp. 

Step 9 Find the smallest integer p with 1 ::s p < n and JYpJ = IIYlloo. 

Step 10 Set ERR = /Ix - (y /Yp) 100; 

x = y/Yp' 

Step 11 If ERR < TOL then set /J- = (1/ /J-) + q; 
OU'IPUT (/J-, x); 

Step 12 Set k = k + 1. 

(The procedure was successful.) 
STOP. 

Step 13 OUTPUT ('Maximum number of iterations exceeded'); 
(The procedure was unsuccessful.) 
STOP. • 

Since the convergence of the Inverse Power method is linear, Aitken /}. 2 procedure can 
again be used to speed convergence. The following example illustrates the fast convergence 
of the Inverse Power method if q is close to an eigenvalue. 

The matrix 

-4 14 0 
A = -5 13 0 

-1 0 2 



570 

Table 9.4 

Theorem 9.15 

C HAP T ERg • Approximating Eigenvalues 

was considered in Example 1. Algorithm 9.1 gave the approximation 1L(12) = 6.000837 
using x(O) = (1, 1, 1)1. With x(O) = (1, 1, 1)1, we have 

X(O)I Ax(O) 19 
q = x(O)tx(O) = 3 = 6.333333. 

The results of applying Algorithm 9.3 are listed in Table 9.4, and the right column lists the 
results of Aitken's L. 2 method applied to the IL (m). • 

m x(m)1 Jl (m) , (m) 
Jl 

0 (1,1, 1) 

1 (1,0.720727, -0.194042) 6.183183 6.000116 
2 (1,0.715518, -0.245052) 6.017244 6.000004 
3 (1,0.714409, -0.249522) 6.001719 6.000004 
4 (1,0.714298, -0.249953) 6.000175 6.000003 
5 (1,0.714287, -0.250000) 6.000021 
6 (1,0.714286, -0.249999) 6.000005 

If A is symmetric, tben for any real number q, (A - ql)-I is also symmetric, so 
the Symmetric Power method, Algorithm 9.2, can be applied to (A - ql)-I to speed the 
convergence to 

o 
Ak _ q 2m 

A-q 
• 

Numerous techniques are available for obtaining approximations to the other eigen
values of a matrix once an approximation to the dominant eigenvalue has been computed. 
We will restrict our presentation to deflation techniques. 

Deflation techniques involve forming a new matrix B whose eigenvalues are the same 
as those of A, except that the dominant eigenvalue of A is replaced by the eigenvalue 0 in 
B. The following result justifies the procedure. The proof of this theorem can be found in 
[Wil2, p. 596]. 

Suppose AI, A2, .•• , An are eigenvalues of A with associated eigenvectors v(l), V(2), 

•.. , yen) and that Al has multiplicity 1. Let x be a vector with xtvO) = 1. Then the 
matrix 

h . I 0 1 1 1·th . d . (1) (2) (3) (n) as eigenva ues , ""2, ""3, ... , ""n WI associate eIgenvectors v , w , w , ... , w , 
where v(i) and wei) are related by the equation 

(9.5) 

for each i = 2,3, ... , n. • 
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There are many choices of the vector x that could be used in Theorem 9.15. Wielandt 
deflation proceeds from defining 

(9.6) 

where vi!) is a nonzero coordinate of the eigenvector v(l), and the values ail, ai2, ... ,ain 

are the entries in the ith row of A. 
With this definition, 

where the sum is the ith coordinate of the product AvO). Since Av(l) = AIV(l), we have 

which implies that 

So x satisfies the hypotheses of Theorem 9.15. Moreover (see Exercise 12), the ith row of 
8 = A - A I vO)x' consists entirely of zero entries. 

If A i= 0 is an eigenvalue with associated eigenvector w, the relation Bw = A w implies 
that the ith coordinate of w must also be zero. Consequently the ith column of the matrix 
8 makes no contribution to the product Bw = AW. Thus, the matrix B can be replaced 
by an (n - 1) x (n - 1) matrix B' obtained by deleting the ith row and column from 
B. The matrix B' has eigenvalues A2, A3, .,. ,An. If IA21 > IA31, the Power method is 
reapplied to the matrix 8' to determine this new dominant eigenvalue and an eigenvector, 
w(2)', associated with A2, with respect to the matrix B'. To find the associated eigenvector 

w(2) for the matrix B, insert a zero coordinate between the coordinates wY); and w?)' of 

the (n - I)-dimensional vector w(2)' and then calculate V(2) by the use ofEq. (9.5). 

From Example 2, we know that the matrix 

4 -1 1 
A = -I 3-2 

1 -2 3 

has eigenvalues Al = 6, '\'2 = 3, and A3 = 1. Assuming that the dominant eigenvalue AI = 
6 and associated unit eigenvector v(l) = (1, -1, I)' have been calculated, the procedure 
just outlined for obtaining A2 proceeds as follows: 

1 
X=-

6 

4 
-1 

1 
--

2 1 1 ' - -- -
3' 6' 6 

, 
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1 
V(l)Xt = -1 U' 1 

and 

4 
B = A - AIV(l)Xt = -1 

1 

° - 3 -
-3 

Deleting the first row and column gives 

B'= 

1 --6' 

-1 
3 

-2 

0 
2 

-1 

2 
-1 

!] -6 -

1 
-2 

3 

0 
-1 

2 

-1 
2 

2 I I - --
3 6 6 
2 1 1 -- - --
3 6 6 , 
2 1 1 - -- -
3 6 6 

2 1 1 -- -3 6 6 

-6 2 1 1 -- - --3 6 6 
2 1 1 - --3 6 6 

• 

, 

which has eigenvalues A2 = 3 and A3 = 1. For A2 = 3, the eigenvector W(2)' can be 
obtained by solving the linear system 

(B' - 31)w(2)' = 0, 

resulting in 

Adding a zero for the first component gives W(2) = (0,1, _1)t and, from Eq. (9.5), we 
have the eigenvector V(2) of A corresponding to X2 = 3: 

V(2) = (3 - 6)(0,1, -V + 6 
2 1 I 

(0,1, _1)t (1, -1, 1)t = (-2, -1,1)1 .• - -- -
3' 6' 6 

Although this deflation process can be used to find approximations to all of the eigen
values and eigenvectors of a matrix, the process is susceptible to roundoff error. After 
deflation is used to approximate an eigenvalue of a matrix, the approximation should 
be used as a starting value for the Inverse Power method applied to the original matrix. 
This will ensure convergence to an eigenvalue of the original matrix, not to one of the 
reduced matrix, which likely contains errors. When all the eigenvalues of a matrix are re
quired, techniques considered in Section 9.4, based on similarity transformations, should 
be used. 

We close this section with Algorithm 9.4, which calculates the second most domi
nant eigenvalue and associated eigenvector for a matrix, once the dominant eigenvalue and 
associated eigenvector have been determined. 
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Wielandt Deflation 

To approximate the second most dominant eigenvalue and an associated eigenvector of the 
n x n matrix A given an approximation A to the dominant eigenvalue, an approximation v 
to a corresponding eigenvector, and a vector x E JR,n -I : 

INPUT dimension n; matrix A; approximate eigenvalue A with eigenvector v E jRn; 

vector x E jRn-l, tolerance TOL, maximum number of iterations N. 

OUTPUT approximate eigenvalue J.-t; approximate eigenvector u or a message that the 
method fails. 

Step 1 Let i be the smallest integer with 1 :s i :s n and \ vd = maxi <j <n \ v j \. 

Step 2 If i ¥- 1 then 
for k = 1, . . . , i-I 

for j = I, .. , . i-I 

Step 3 If i ¥- 1 and i ¥- n then 
for k = i, . .. • n - 1 

for j = 1, . . . . i-I 

Vk+l 
set bkj = ak+l.j - Vi aij; 

V' 
b jk = a j,k+l - ..2. ai ,k+I' 

Vi 

Step 4 If i ¥- n then 
for k = i, . . . ,n - 1 

for j = i, ... ,n - 1 

Step 5 PerfonIl the power method on the (n - 1) x (n - 1) matrix B' = (bkj) with x as 
initial approximation. 

Step 6 If the method fails, then OUTPUT (,Method fails'); 
STOP 

else let J.-t be the approximate eigenvalue and 
I (' ')1 th . . W = WI"" , wn _ 1 e approximate eigenvector. 

Step 7 If i ¥- 1 then for k = 1, . .. ,i - 1 set W k = w~. 

Step 8 Set Wi = O. 

Step9 Ifi ¥- n then fork = i + 1, ... ,n set Wk = w~_I' 

Step 10 For k = 1, . .. ,n 
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n 

set Uk = (IL - )...)Wk + LaijWj 

j=! 

- • 
Vi 

(Compute the eigenvector using Eq. (9.5).) 

Step 11 OUTPUT (IL, u); (The procedure was successful.) 
STOP. • 

E X ERe I S ESE T 9.2 

1. Find the first three iterations obtained by the Power method applied to the following matrices. 

2 1 1 1 1 1 
a. 1 2 1 • b. 1 1 0 . , , 

1 1 2 1 0 1 -

Use X(D) = (1, -1,2)1. Use x(O) = (-1,0,1)'. 

1 -1 0 
4 1 1 1 
1 3 -1 1 

-2 4 -2 d. c. • • , 
1 -1 2 0 

, 
0 -1 2 

1 1 0 2 
Use x(O) = (-1,2,1)1. 

Use x(O) = (1, -2,0,3)1. 

5 -2 I 3 -4 0 I I -- - - -2 2 2 2 

-2 5 3 1 1 -2 0 1 - -- - -
e. 2 2 • f. 2 2 • 

1 3 , 
I 1 

, 
5 -2 0 0 --

2 2 2 2 
3 1 -2 5 0 1 1 4 - --2 2 

Use xeD) = (1, 1,0, -3)1. Use x(O) = (0,0,0, 1)'. 

2. Repeat Exercise 1 using the Inverse Power method. 

3. Find the first three iterations obtained by the Symmetric Power method applied to the following 
matrices. 

2 1 1 1 1 1 
a. 1 2 1 • b. 1 1 0 • , , 

1 1 2 1 0 1 

Use x(O) = (1, -1,2)1. Use x(O) = (-1,0,1)1. 

4.75 2.25 -0.25 
4 1 -1 0 
1 3 -1 0 

2.25 4.75 1.25 d. c. • • , 
-1 -1 5 2 

, 
-0.25 1.25 4.75 

0 0 2 4 
Use x(O) = (0, 1,0)1. 

Use x(O) = (0, 1,0,0)'. 



9.2 The Power Method 575 

5 -2 I J 
4 1 1 1 -- -2 2 

1 3 -1 1 -2 5 3 I --
e. • f. 2 2 • 

1 -1 2 0 
, 

I 3 
, 

5 -2 -- -2 2 
1 1 0 2 3 I -2 5 --2 2 

Use x(O) == (1,0, 0, 0)'. 
Use x(O) == (1, 1, 0, - 3)' . 

4. Develop an algorithm to incorporate the Inverse Power method into the Symmetric Power 
method. Repeat Exercise 3 using the new algorithm. , 

5. Use the Power method and Wielandt deflation to approximate the two most dominant eigen
values for the matrices in Exercise 1. Iterate until a tolerance of 10-4 is achieved or until the 
number of iterations exceeds 25. 

6. Repeat Exercise 5 using Aitken's D,z technique and the Power method for the most dominant 
eigenvalue. 

7. Use the Symmetric Power method to compute the largest eigenvalue (in absolute value) of the 
matrices given in Exercise 3. Iterate until a tolerance of 10-4 is achieved or until the number 
of iterations exceeds 25. 

8. Repeat Exercise 6 using the Inverse Power method. 

9. Repeat Exercise 7 using the Inverse Power method. 

10. Annihilation Technique Suppose the n x n matrix A has eigenValues AI, ... ,An ordered 
by 

with linearly independent eigenvectors v(l) , v(2) , .. , , v(n). 

a. Show that if the Power method is applied with an initial vector x(O) given by 

x(O) == fh v(Z) + fh V(3) + ... + f3n v(n) , 

then the sequence {f.L(m)} described in Algorithm 9.1 will converge to ,1.2. 

b. Show that for any vector x == L7~1 f3iV(i), the vector x(O) == (A - Ajl)x satisfies the 
property given in part (a). 

c. Obtain an approximation to ,1.2 for the matrices in Exercise 1. 

d. Show that this method can be continued to find A3 using x(O) == (A - A2/)(A - A Il)X. 

11. HoteUing Deflation Assume that the largest eigenvalue Al in magnitude and an associated 
eigenvector v(l) have been obtained for the n x n symmetric matrix A. Show that the matrix 

B==A- AJ v(l)(v(l), 

(v(l))'v(1) 

has the same eigenvalues Az, ... ,An as A, except that B has eigenvalue 0 with eigenvector v(1) 

instead of eigenvector AI. Use this deflation method to find ,1.2 for each matrix in Exercise 3. 
Theoretically, this method can be continued to find more eigenvalues, but roundoff error soon 
makes the effort worthless. 

12. Show that the ith row of B == A - Al v(l)x' is zero, where Al is the largest value of A in absolute 
value, v(l) is the associated eigenvector of A for AI, and x is the vector defined in Eq. (9.6). 

13. Following along the line of Exercise 11 in Section 6.3 and Exercise 11 in Section 7.2, suppose 
that a species of beetle has a life span of 4 years, and that a female in the first year has a 
survival rate of i, in the second year a survival rate of ~, and in the third year a survival rate 
of ~. Suppose additionally that a female gives birth, on the average, to two new females in the 
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third year and to four new females in the fourth year. The matrix describing a single female's 
contribution in one year to the female population in the succeeding year is 

0 0 2 4 
1 0 0 0 -

A= 2 
0 1 0 0 

, 
-
4 

0 0 1 0 -8 

where again the entry in the ith row and jth column denotes the probabilistic contribution that 
a female of age j makes on the next year's female population of age i. 

a. Use the Gerschgorin Circle Theorem to determine a region in the complex plane contain
ing all the eigenvalues of A. 

b. Use the Power method to determine the dominant eigenvalue of the matrix and its asso
ciated eigenvector. 

c. Use Algorithm 9.4 to determine any remaining eigenvalues and eigenvectors of A. 

d. Find the eigenvalues of A by using the characteristic polynomial of A and Newton's 
method. 

e. What is your long-range prediction for the population of these beetles? 

14. A linear dynamical system can be represented by the equations 

dx 
dt = A(t)x(t) + 8(t)u(t), yet) = C(t)x(t) + D(t)u(t), 

where A is an n x n variable matrix, 8 is an n x r variable matrix, C is an m x n variable matrix, 
D is an m x r variable matrix, x is an n-dimensional vector variable, y is an m-dimensional 
vector variable, and u is an r-dimensional vector variable. For the system to be stable, the 
matrix A must have all its eigenvalues with nonpositive real part for all t. 

a. Is the system stable if 

2 0 -1 
A(t) = -2.5 

o 
-7 4? 
o -5 

b. Is the system stable if 

-1 1 0 0 

A(t) = 
0 -2 1 0 ? 
0 0 -5 1 • 

-1 -1 -2 -3 

15. The (m - 1) x (m - 1) tridiagonal matrix 

1 + 2a -a 0.- • • • • • • • • • 0 
• • • 

• • • 
1 + 2a • • -a. -a • • • • • • • • • • • • • • • 
• • • • • 

• • • 

D A o· • • - • • • • - • • • • • • • • • • • • • 
• • • • • • • • • 
• • • • • • • • -a • • • • • • • 
• • • • 

• • • 
• • • • • • • 

o· 0 • 1 + 2a • • • • • • • • · . • · -a 

is involved in the Backward Difference method to solve the heat equation. (See Section 12.2.) 
For the stability of the method we need p(A-I ) < 1. With m = 11, approximate peA -1) for 
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each of the following. 

-1 a. a- 4 

When is the method stable? 

b. a=~ c. 

16. The eigenvalues of the matrix A in Exercise 15 are 

:rr i 2 
Aj = I + 4a sin-

2m 
, for i = 1, ... ,m - I. 

577 

Compare the approximation in Exercise 15 to the actual value of p (A -\ ). Again, when is the 
method stable? 

17. The (m - 1) x (m - 1) matrices A and B given by 

1 +a IX o· • • • • • • • • • ·0 1 a .. 0: • • • • • • • • () -- -2 • 2 • • • • • • • • • 
IX • • IX 1 • .. 1 .. • +a • a • -- -- • - - - • 2 2 • 2 2 • • • • • 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • n • • 
A 0 • • and B o. • 0 • • • - • • - • • - • • - • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • .. • • • • . .. 

• • • • -- • • • • • • 2 • • • • • • • 2 • • • • • • • • • • • • • • • 
• • • • • • • • 

O· • • • • • • • • • • :() .. 1 +0: o· • • • • • • • • :0 .. 1 a -- - -
2 Z 

are involved in the Crank-Nicolson method to solve the heat equation (see Section 12.2). With 
m = 11, approximate p(A -\ B) for each of the following. 

\ b - 1 a. a=i . a- z c. 

9.3 Householder's Method 

In Section 9.4 we will use the QR method to reduce a symmetric tridiagonal matrix to a 
similar matrix that is nearly diagonal. The diagonal entries of the reduced matrix are ap
proximations to the eigenvalues of the given matrix. In this section, we present a method 
devised by Alton Householder for reducing an arbitrary symmetric matrix to a similar tridi
agonal matrix. Although there is a clear connection between the problems we are solving 
in these two sections, Householder's method has a wide application in areas other than 
eigenvalue approximation. 

Householder's method is used to find a symmetric tridiagonal matrix B that is similar 
to a given symmetric matrix A. Theorem 9.10 implies that A is similar to a diagonal matrix 
D since an orthogonal matrix Q exists with the property that D = Q-l AQ = Qt A Q. Be
cause the matrix Q (and consequently D) is generally difficult to compute, Householder's 
method offers a compromise. After Householder's method has been implemented, efficient 
methods such as the QR algorithm can be used for accurate approximation of the eigenval
ues of the resulting symmetric tridiagonal matrix. 

Definition 9.16 Let WE ]Rn with wtw = 1. The n x n matrix 

P =1 -2wwt 

is called a Householder transformation. • 
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Householder transfonnations are used to selectively zero out blocks of entries in vec
tors or columns of matrices in a manner that is extremely stable with respect to roundoff 
error. (See [WiI2, pp. 152-162], for further discussion.) Properties of Householder trans
formations are given in the following theorem. 

A Householder transformation, P = / - 2wwl 
, is symmetric and orthogonal, so P -I = P. 

• 
Proof Since 

it follows that 

so 

Further, since WI w = 1, 

P pI = (1- 2WWI)(1 - 2wwl
) = / - 2wwl 

- 2wwl + 4WWl WWl 

= I -4wwl +4wwl = /, 

p-I = pI = P. • • • 

Householder's method begins by determining'il transformation p(l) with the property 
thatA(2) = P(l)AP(l) has 

aj~) = 0, for each j = 3,4, ... ,n, (9.7) 

(2) 
and by symmetry, alj = O. 

The vector w = (WI, W2, ... , wnr is chosen so that wtw = 1, Eq. (9.7) holds, and in 
the matrix 

A(2) = p(l) AP(l) = (1- 2WWI)A(I- 2WWI), 

h (2) d (2) 0 C h' 3 4 Thi h' . we ave all = all an a jl = , lor eac J = , , ... ,n. s c Olce Imposes n 

conditions on the n unknowns WI, W2,· .. , wn . 

Setting WI = 0 ensures that a~~) = all. We want 

p(l) = / - 2wwt 

to satisfy 

(9.8) 

where a will be chosen later. To simplify notation, let 

~ ( )1 1TJJn-1 W = W2, W3, ... ,Wn E JA. , 
~ ( )1 1TJJn-1 y = a21, a31, . .. ,an I E JA. , 
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, 
and P be the (n - 1) x (n - 1) Householder transformation 

, 
P = In-! - 2wwl

. 

Eq. (9.8) then becomes 

1 
, 

0 0 all , • • • • • all , 
- - - -1- - - - - - -- - - - - -- - - - - -

a21 , all al1 a 
0 ----- ----- 0 p(1) a31 , , - • - Py -• 

Y - • 
• • • 
• , 

P • • 
• • • 

• • • 

ani 0 0 

with 

.1'\"_ ""tA_" AtAA_ I Py - (In-l - 2ww )y - Y - 2(w y)w - (a, 0, ... ,0) . (9.9) 

Let r = wlY. Then 

and we can determine all of the Wi once we know a and r. Equating components gives 

a = a21 - 2rw2 

and 

0= ajl - 2rwj, for each j = 3, .. , , n. 

Thus, 
<r., 

and 
2rWj=ajl, foreachj=3, ... ,n. 

Squaring both sides of each of the equations and adding gives 

n n 

4r2 L W] = (a21 - a)2 + La]!. 
j=2 j=3 

Since wrw = 1 and W! = 0, we have I:J=2 W] = 1, and 

n 

4r2 = La]! - 2aa21 + a 2
. 

j=2 

Equation (9.9) and the fact that P is orthogonal imply that 

a 2 = (a, 0, ... , O)(a, 0, ... , O)t = (Py)t py = yl pt Py = yty. 

(9.10) 

(9.11) 

(9.12) 
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Thus, 

n 
2 '\' 2 

a = Lajl' 
)=2 

which, when substituted into Eq. (9.12), gives 

n 

2r2 = La;1 - aa21. 

j=2 

To ensure that 2r2 = 0 only if a21 = a31 = ... = ani = 0, we choose 

which implies that 

n 

2r2 = La;1 + la211 
j=2 

1/2 

, 

1/2 

• 

With this choice of a and 2r2, we solve Eqs. (9.10) and (9.11) to obtain 

a21 -a 
W2= ---

2r 
and 

a'l 
W - J j - , 

2r 
for each j = 3, ... ,n. 

To summarize the choice of p(l), we have 

1/2 

, 

r= 
1 2 1 
-a - -a2la 
2 2 

1/2 
, 

WI = 0, 

2r 
, 

and 

ajl 
for each j = 3, ... ,n. Wj = , 

2r 

With this choice, 
(2) (2) 0 0 all a l2 

• • • 

a(2) (2) a(2) a(2) 
a 22 • • • 21 23 2n 

A(2) = P(l)AP(l) = 0 (2) a(2) a(2) 
a 32 • • • • 

33 3n 
• • • • 
• • • • 
• • • • 

0 (2) a(2) a(2) a n2 • • • n3 nn 
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Having found pO) and computed A (2), the process is repeated for k = 2, 3, ... , n - 2 as 
follows: 

1/2 
(k) 

a = -sgn(aHI,k) , 

r= 
1/2 

1 2 1 (k) 
Za - Zaak+I,k , 

w~k) = wik) = ... = wk
k
) = 0, 

(k) 
(k) _ aHI,k - a 

wk+! - 2r ' 
• (k) 
(k) a jk 

Wj = 2r' foreach j=k+2,k+3, ... ,n, 

p(k) = I _ 2W(k) . (W(k»', 

and 

A (HI) = p(k) A (k) p(k), 

where 

(HI) 
all • • 

(HI) 
a2! • 

• • 

O. 
• • 

a(HI) 
12 . • 

• • 

o : . . . . . . . . . . . . . . . . . . . . . . . . . . 0 
• • • 

• • • • • • • • • • • • . . 0 . . . . . . . . . 0 

• 

• 

• • • 

• • • 
• • • 

• • 

• 
• • • 

• • • • • • • • • • • • • • • • • • • • • • • 
. '. (HI) . 'a(Hl) .. a(k+1) . . . . .. (HI) 

ak+I,k k+I,k+I k+I,k+2 ak+I,n 
• 

• 

A (HI) • • • 
• • - • - • • • 
• • • • • • • 
• • • 
• 

• • • • 
• • • '0 

• • 
• • • • • • • • • • • • • · " • • • o ............. 0 a(Hl) ............. ',' a(HI) 

n~+1 nn 

Continuing in this manner, the tridiagonal and symmetric matrix A (n-I) is formed, 
where 

The 4 x 4 matrix 

A (n-I) = p(n-2) p(n-3) ... p(l) AP(1) ... p(n-3) p(n-2). 

A= 

4 1 
1 2 

-2 0 
2 1 

-2 2 
o 1 
3 -2 

-2 -1 
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is symmetric. For the first application of a Householder transfonnation, 

4 1/2 

a = -(1) La;1 
j=2 

= -3, r = 
121 
-(-3) - -(1)(-3) 
2 2 

and 

w= 

p(l)= 

--

.[6 .[6.[6 
o --
'3' 6'6' 

1 0 0 0 
o 1 0 0 
o 0 I 0 

.[62 
-2 

6 
o 0 0 1 

1 0 0 0 

0 I 2 2 -- - --3 3 3 
2 2 I , 

0 - - -
3 3 3 

0 2 I 2 -- -
3 3 3 

4 -3 

-3 10 -
A(2) = 3 

0 1 

0 4 -
3 

Continuing to the second iteration, 

5 

• 

o 
2 

-1 
I 

0 

1 
5 
3 
4 --
3 

·(0,2,-1,1) 

0 
4 -
3 
4 • 

--
3 

-1 

a = --, r= 
3 ' W= 

..;51 
0,0,2.J5, 5 

3 

1 0 0 0 

p(2) = 
0 1 0 0 
0 0 3 4 , -- --5 5 

0 0 4 3 -- -5 5 , 

and the symmetric tridiagonal matrix is 

4 -3 0 0 
-3 10 5 0 - --

A(3) = 3 3 

0 5 33 68 • -- -- -3 25 75 

0 0 68 149 -75 75 

, 

1/2 

= ./6, 

• 

Algorithm 9.5 performs Householder's method as described here, although the actual 
matrix multiplications are circumvented. 
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Householder's 
• 

To obtain a symmetric tridiagonal matrix A (n-I) similar to the symmetric matrix A = A (I), 

construct the following matrices A (2), A (3), .. , , A (n-I), where A (k) = (at» for each k = 
1,2, ... ,n-1: 

I N PUT dimension n; matrix A. 

OUTPUT A (n-I). (At each step, A can be overwritten.) 

Step 1 For k = 1,2, ... , n - 2 do Steps 2-14. 

Step 2 Set 

Step 3 

Step 4 

Step 5 

~ ( (k»)2 q = ~ ajk . 
j=k+1 

If (k) - 0 h - 1/2 ak+l,k - t en set ct - -q 

q 1/2a(k) 
k+Lk 

else set ct = - (k) • 

lak+ l,k I 

S S 2 (k) 
et R Q = ct - ctak+l.k· (Note: RSQ = 2r2) 

Set Vk = 0; (Note: VI = ... = Vk-I = 0, but are not needed.) 
(k) • 

Vk+1 = ak+Lk - ct, 
For j = k + 2, ... , n set Vj = aj~). 

1 1 
Note: w = y = -v. 

J2RSQ 2r 

Step 6 For j = k, k + 1, ... , n set U j = 
1 

RSQ 

Note: u = 
1 

RSQ 

n 

Step 7 Set PROD = L ViUi' 

i=k+1 

Step 8 For j = k, k + 1, ... , n set Zj = Uj -
PROD 

2RSQ 

1 1 
Note: z = u - 2RSQ ytUY = u - 4r2 ytUV 

1 1 = u - wwtu = -A(k)W - ww -A(k)W. 
r r 

Step 9 For I = k + 1, k + 2, ... , n - 1 do Steps 10 and 11. 
(Note: Compute A(k+l) = A(k) - vzt - zvt = (/ - 2wwt )A(k)(l- 2WW1).) 
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Step 10 For j = I + 1, . .. ,n set 
(H I) (k) • 

ajl = ajl - VZZj - VjZZ, 

ag+1) = a;7+1
). 

Step 11 S (HI) (k) 2 
et all = all - V/ZI· 

Step 12 

Step 13 

Step 14 

Set a(HI) = a(k) - 2v Z nn nn nn· 

F . k 2 (k+l) (HI) 0 or J = + , ... , n set a kj = a jk =. 

S (k+l) (k) 
et ak+l,k = ak+l.k - Vk+IZk; 

(HI) (HI) 
ak,k+ I = a k+ I ,k' 

(Note: The other elements of A (k+l) are the same as A (k).) 

Step 15 OUTPUT (A(n-I»; 
(The process is complete. A (n-I) is symmetric, tridiagonal, and similar to A.) 
STO~ • 

To apply Householder's Algorithm to an arbitrary n x n matrix, the following modifications 
must be made to account for a possible lack of symmetry. 

Step 6 

Step 8 

. 1 ~ (k) 
For J = 1, 2, ... ,n set U j = L.J a ji Vi; 

RSQ i=HI 

1 ~ (k) 
Yj = L.J aij Vi· 

RSQ i=HI 

PROD 
Forj=I,2, ... ,nsetZj=uj- RSQVj. 

Step 9 For I = k + 1, k + 2, ... ,n do Steps 10 and 11. 

Step 10 . k (k+l) (k) For J = 1,2, ... , seta jl = ajl - ZjVI; 

(HI) (k) 
alj = alj - YjV/. 

Step 11 . (HI) (k) 
For J = k + 1, ... ,n set a jl = a jl - Z j VI - YI V j. 

After these steps are modified, delete Steps 12 through 14 and output A (n-l). 

The resulting matrix A (n-I) will not be tridiagonal unless the original matrix A is 
symmetric. However, all the entries below the lower subdiagonal will be 0. A matrix of 
this type is called upper Hessenberg. That is, H = (hi}) is upper Hessenberg if hij = 0, 
for all i ::: j + 2. 

In the next section, we will examine how the QR algorithm can be applied to detenlline 
the eigenvalues of A (n-l), which are the same as those of the original matrix A. 
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E X ERe I S ESE T 9.3 

1. Use Householder's method to place the following matrices in tridiagonal form. 

2. 

a. 

c. 

12 10 4 
10 8-5 
4 -5 3 

I I 1 
110 
101 

b. 

d. 

2 -1 -1 
-1 2-1 
-1 -1 2 

4.75 2.25 -0.25 
2.25 4.75 1.25 

-0.25 1.25 4.75 

Use Householder's method to place the following matrices in tridiagonal form. 

4 -1 -1 0 5 -2 -0.5 
-1 4 0 -1 

b. 
-2 5 1.5 a. 

-1 0 4 -1 -0.5 1.5 5 
0 -1 -1 4 1.5 -0.5 -2 

8 0.25 0.5 2 -1 

0.25 -4 0 1 2 
c. 0.5 0 5 0.75 -1 

2 1 0.75 5 -0.5 
-1 2 -1 -0.5 6 

2 -1 -1 0 0 
-1 3 0 -2 0 

d. -1 0 4 2 1 • 

0 -2 2 8 3 
0 0 1 3 9 

585 

1.5 
-0.5 
-2 

5 

3. Modify Householder's Algorithm 9.5 to compute similar upper Hessenberg matrices for the 
following nonsymmetric matrices. 

a. 

c. 

2 -1 3 
2 0 I 

-2 1 4 

5 -2 -3 
0 4 2 
1 3 -5 

-1 4 0 

9.4 The QR Algorithm 

4 
-1 

2 
3 

b. 

d. 

-1 2 3 
2 3 -2 
3 1 -1 

4 -1 -1 
-1 4 0 
-1 -1 4 
-1 -1 -1 

-1 
-1 
-1 

4 

The deflation methods discussed in Section 9.2 are not generally suitable for calculating 
all the eigenvalues of a matrix because of the growth of roundoff error. In this section we 
consider the QR Algorithm, a matrix reduction technique used to simultaneously determine 
all the eigenvalues of a symmetric matrix. 
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To apply the QR method, we begin with a symmetric matrix in tridiagonal fOlm; that 
is, the only nonzero entries in the matrix lie either on the diagonal or on the subdiagonals 
directly above or below the diagonal. If this is not the fOlIn of the symmetric matrix, the 
first step is to apply Householder's method to compute a symmetric, tridiagonal matrix 
similar to the given matrix. 

In the remainder of this section it will be assumed that the symmetric matrix for which 
these eigenvalues are to be calculated is tridiagonal. If we let A denote a matrix of this 
type, we can simplify the notation somewhat by labeling the entries of A as follows: 

al b2 0: • • • • • • • ·0 
• • • 

• • 

b2 b3 
• • a2 • 

• • 
• • 

• • • 
• • • 

• • 

A - O. b3 a3 • '0 (9.13) - • • 
• • • • • 

• • • • 
• • • • • 

• • • • 
• • 'bn • • 
• • • • 

• • • 
• • • • 

• • • • . • • 

O· :0 'bn 
• • • • • • • • an 

If b2 = 0 or bn = 0, then the 1 x 1 matrix [ad or [an] immediately produces an eigenvalue 
al or an of A. 

When bj = 0 for some j, where 2 < j < n, the problem can be reduced to consider
ing, instead of A, the smaller matrices 

al b2 0'-: • • • • • • • '0 a· bJ+I 0: • • • • . • • • • 0 } • • · • • 
• • • • • • 

b1 b3 
• bj+1 b'+l 

• • al aj+1 • • • • • ) . • • • • • • 
• • • • • • • • • 

b3 
• .. 0 O· b+2 

• '0 (9.14) O. U3 and a'+2 • 
• • • • • J . ) . • • • • • • • • • • • • • • • • • • • • • • • 

• • • • · b j- 1 
• • • • 'bn • • • • • • • • • • • • • • • • • • • • • • • • • • · • • . • • • • 

:0 • • • 0 .. . bj - l 
• O· :0 'bn 'an • • • • • aj-l • • • • • • • • 

If none of the b j are zero, the QR method proceeds by forming a sequence of matrices 
A = A (1), A (2), A (3), ... , as follows: 

1. A (1) = A is factored as a product A(l) = Q(l) R(l), where Q(l) is orthogonal and 
R(1) is upper triangUlar. 

2. A (2) is defined as A (2) = R(I) Q(l). 

In general, A (i) is factored as a product A (i) = Q(i) R(i) of an orthogonal matrix Q(i) 

and an upper triangular matrix R(i). Then A (i+ i) is defined by the product of R(i) and Q(i) 

in the reverse direction A(i+l) = R(i)Q(i). Since Q(i) is orthogonal, R(i) = Q(i)t A(i) and 

(9.15) 

So A (i + 1) is symmetric with the same eigenvalues as A (i). By the manner in which we 
define R(i) and Q(i), we also ensure that A (i+l) is tridagonal. 

Continuing by induction, A (i + I) has the same eigenvalues as the original matrix A, and 
A (i+1) tends to a diagonal matrix with the eigenvalues of A along the diagonal. 

To describe the construction of the factoring matrices Q(i) and R(i) , we need the notion 
of a rotation matrix. 
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Definition 9.18 A rotation matrix P differs from the identity matrix in at most four elements. These four 
elements are of the form 

Pii = Pjj = cose and Pij = -Pji = sine, 

for some 8 and some i =1= j. • 

It is easy to show (see Exercise 6) that, for any rotation matrix P, the matrix A P 
differs from A only in the ith and jth columns and the matrix P A differs from A only in 
the ith and jth rows. For any i =1= j, the angle e can be chosen so that the product P A 
has a zero entry for (P A)ij. In addition, every rotation matrix P is orthogonal, since the 
definition implies that P pI = [. 

The factorization of A (I) into A (I) = Q(I) R(I) uses a product of n - 1 rotation matrices 
to construct 

We first choose the rotation matrix P2 with 

Pll = P22 = cos e2 and Pl2 = - P21 = sin 82 , 

where 

and 
al 

COSe2 = . 
../b~ + af 

Then the matrix 

has a zero in the (2, 1) position, that is, in the second row and first column, since the (2, 1) 
entry in A~l) is 

Since the multiplication P2A (I) affects both rows 1 and 2 of A (I), the new matrix does 
not necessarily retain zero entries in positions (1,3), (1,4), ... , and (1, n). However, A (I) 
is tridiagonal, so the (1,4), ... , (1, n) entries of A~l) must be O. Only the (1, 3)-entry, the 
one in the first row and third column, can become nonzero. 

In general, the matrix Pk is chosen so that the (k, k - 1) entry in Afl) = PkAfl) 1 is 

zero, which results in the (k - 1, k + I)-entry becoming nonzero. The matrix A?) has the 
form 
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A(l) -
k -

and PHI has the fOIm 

rl . ZI '. ql .. • 
• • • • • • • • O. • • • • • • • • • • • • • • 

O' . 
• • • • • • • • • • • • • 

• • • • • • • • • 

• 

• 

• 

0: .............. , .......... '0 
• • • 

• • • 
• • • 

• • • 
• • 

• • • 
• 

• • 
• • • • 

• • • 
• • • • 

• • • • • • • 
• • • • • • 

• • 
• '0 Zk-I • • • • • • • • • • 

• • • • • 
• 
• 
• 

• o • 

• o • • Yk • • • 
• • • • • • 

• • • • 
• • 

o 
• 

• 

o 
• 

• 
• 

• 

· '. bk+ I. 
• 

• 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : 0 • 

'b n 

It-I o o 
~rowk 

o o 

o o In-k-l . 

t 
columnk 

where 0 denotes the appropriately dimensional matrix with all zero entries. 

(9.16) 

The constants cH I = cos I1H I and Sk+ I = sin I1H I in PH I are chosen so that the 
(k + 1, k)-entry in Ak~1 is zero; that is, Sk+IXk - Ck+lbk+1 = O. Since cf+1 + sf+1 = 1, the 
solution to this equation is 

(I) 
and Ak+1 has the fOlln 

A(I)
k -

ZI. rl. 
• • 

• • • 
• • • 

• 

O. • • • • • • • • • • • • • • • 

o· . • • • • • 
• • 

• • • • • • 
• • • • • • • 
• • '0 • 
• • 

• • • 
• • • 

• • 
• • • 

• • • 
• • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 

• 

• 

Xk 
Ck+1 = , 

Jbl+l + xf 
and 

0: . . . . . . . . . . . . . . . . . . . . . . . . . 0 
• 

• 
• 

• 
• 

• 
• • 

• 

• • 
• • • 

• • 
• • • 

• • • • • • • 
• • • 

• • 
• • • 

• • 
• • • 

• • • • • • 
• • • • 

Zk • 
• 

• 
• • 

• • 
• • o o 

• Yk+1 • 
• 

• • • 

• 
• 
• 

• 
• • • 

• • • • • • • • • • • • • • • • • • • • • • • • o 
• • • • 

• • • • 
• • • • 

• • • • 
• • • 

• • 
• • • 

• • • 
• • • 

• • • • o· .............................. . " 0 .. b
n 

. an 
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Proceeding with this construction in the sequence P2, . " , Pn produces the upper tri
angular matrix 

Zl ql. 'I 0: • • • • • • • • • 0 
• • • • 

• • • • 
• • • • • 

• • • • 
0 • • • • • 

• • • • • • • • • • • • • • • • 
• • • • • • 

• • • • • • 
• • • • • 

'0 • 
• • • • • 

R(I) A (I) 
• • • • 

• • • • • - - • • • • • • - - • • • • • n • • • • . 
• • • 'n-2 • • • • 

• • • • 
• • • • • • • 

• • • • 
• • • Zn-I qn-I • • 

• • • 
• • 

O· • 0 • • • • • • • • • • • • • • • • • • Xn 

The other half of the QR factorization is the matrix 

Q(I) - pI pI pI 
- 2 3'" n' 

since the orthogonality of the rotation matrices implies that 

The matrix Q(I) is orthogonal since 

In addition, Q(l) is an upper-Hessenberg matrix. To see why this is true, you can follow 
the steps in Exercises 7 and 8. 

As a consequence, A (2) = R(I) Q(I) is also an upper-Hessenberg matrix, since multi
plying Q(1) on the left by the upper triangular matrix R(l) does not affect the entries in the 
lower triangle. This implies that A (2) is in fact tridiagonal, since we already know that it is 
symmetric. 

The entries off the diagonal of A (2) will generally be smaller in magnitude than the 
corresponding entries of A (I), so A (2) is closer to being a diagonal matrix than is A (I). The 
process is repeated to construct A (3), A (4), .... 

If the eigenvalues of A have distinct moduli with 1.1..11 > 1.1..21 > ... > IAnl, then 
the rate of convergence of the entry bY:/) to 0 in the matrix A (i+l) depends on the ratio 

1.1.. j+J/ A j I (see [Fr]). The rate of convergence of bY:II) to 0 determines the rate at which the 

entry aji+l) converges to the jth eigenvalue Aj. Thus, the rate of convergence can be slow 
if 1.1.. j+t!A j I is close to unity. 

To accelerate this convergence, a shifting technique is employed similar to that used 
with the Inverse Power method in Section 9.2. A constant s is selected close to an eigen
value of A. This modifies the factorization in Eq. (9.15) to choosing Q(i) and R(i) so that 

A (i) - s I = Q(i) R(i) , (9.17) 

and, correspondingly, the matrix A (i+l) is defined to be 

(9.18) 
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With this modification, the rate of convergence of bttl
1
) to 0 depends on the ratio 1 (A J+I -

s) / (A j - s) I. This can result in a significant improvement over the original rate of conver
gence of a ji + I) to A j if s is close to A J+ 1 but not close to A j. 

We change s at each step so that when A has eigenvalues of distinct modulus, b~i+l) 

converges to 0 faster than bY+1
) for any integer j less than n. When b~i+l) is sufficiently 

small, we assume that An ~ a~i+I), delete the nth row and column of the matrix, and 
proceed in the same manner to find an approximation to An-I. The process is continued 
until an approximation has been detenuined for each eigenvalue. 

The shifting technique chooses, at the ith step, the shifting constant Si, where Si is the 
eigenvalue of the matrix 

that is closest to a~i). This shift translates the eigenvalues of A by a factor Si. With this 
shifting technique, the convergence is usually cubic. (See [WR, p. 270].) The method ac
cumulates these shifts until b~+I) ~ 0 and then adds the shifts to a~i+I) to approximate the 
eigenvalue An. 

If A has eigenvalues of the same modulus, bji+l) may tend to 0 for some j i= n at a 

faster rate than b~i+l). In this case, the matrix-splitting technique described in (9.14) can 
be employed to reduce the problem to one involving a pair of matrices of reduced order. 

Let 

3 I 0 
a(l) 

1 
b(l) 

2 0 

A= 1 3 1 - b(I) a(1) b(1) - • 2 2 3 
0 1 3 0 b(I) (1) 

a 3 3 

To find the acceleration parameter for shifting requires finding the eigenvalues of 

ail) bjI) 
b(1) a(1) 

3 3 

- 3 1 
1 3 ' 

which are 11-1 = 4 and 11-2 = 2. The choice of eigenvalue closest to a~l) = 3 is arbitrary, 
and we choose 11-2 = 2 and shift by this amount. Then SI = 2 and 

--

Continuing the computation gives 

XI = 1, YI = 1. ZI = h. 

1 
1 
o 

1 
1 
1 

./2 

o 
1 
1 

• 

.Ji 
C2 = , 

2 S2 = 2 ' 

.Ji 
Y2 = 2 ' and 
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so 

Further, 
• 

A
(1)-
2 -

../i../i 
o 0 

o 1 

591 

..fi -2 

../i. 
1 

../i 
Z2 = 1, C3 = 0, S3 = 1, q2 = 1, and x3 = - , 

2 
so 

../i .,fi :11 
2 

R(1) = A~l) = 0 1 1 • 

0 0 _:11 
2 

To compute A (2) , we have 

../i 
Z3 = - 2 ' 

(2) a I :::::: 2, (2) 
a2 = 1, b

(2) __ .,fi 
3 - , 

2 
and aj2) = 0, 

so 

2 ..fi 0 -2 
A (2) = R(1) Q(1) :::::: :!1 1 ..fi -- • 2 2 

0 ..fi 0 --2 

One iteration of the QR method is complete. Since neither bf) = ../i12 nor bj2) = -../i12 
is small, another iteration of the QR method is performed. For this iteration, we calculate 
the eigenvalues ~ ± ~../3 of the matrix 

(2) b(2) 
a2 3 -

_:11 
2 

b(2) a (2) 
3 3 

-
o 

, 

and choose S2 = ~ - ~../3, the closest eigenvalue to af) :::::: O. Completing the calculations 
• 

gIves 

A(3) = 
2.6720277 

0.37597448 
o 

0.37597448 
1.4736080 

0.030396964 

o 
0.030396964 

-0.047559530 
• 

If bj3) = 0.030396964 is sufficiently small, then the approximation to the eigenvalue )..3 is 

1.5864151, the sum of a3(3) and the shifts SI + S2 = 2 + (1 - ../3)/2. Deleting the third 
row and column gives 

A (3) = 2.6720277 
0.37597448 

0.37597448 
1.4736080 

, 
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which has eigenvalues fJ.,1 = 2.7802140 and fJ.,2 = 1.3654218. Adding the shifts gives the 

approximations 

Al ~ 4.4141886. and A2 ~ 2.9993964. 

Since the actual eigenvalues of the matrix A are 4.41420, 3.00000, and 1.58579, the QR 
method gave four significant digits of accuracy in only two iterations. -

Algorithm 9.6 implements the QR method. 

QR 

To obtain the eigenvalues of the symmetric, tridiagonal n x n matrix 

a(l) b(l) 0: • • • • • • • • • 0 I 2 .. • • 
• • • • 

b(l) (I) • • • • • • • 
a 2 • • • 2 . • • • 

• • • • • 
• • 

• • • • • 
A Al O. • • • • 0 - - • - • • - • • • 

• • • • • 
• • • • 

• • • • • • 
• • · b(l) • • • • • • 

• • • • • • n • • • • • 
• • • • • • • 'b(l) a(l) O· • 0 • • • • • • • • • 

n n 

INPUT . (I) (I) b(l) b(l)· I 'rOL' n, a I ,..., an ' 2 ,..., n ' to erance ~ I , 
maximum number of itera-

tions M. 

OUTPUT eigenvalues of A, or recommended splitting of A, or a message that the maxi
mum number of iterations was exceeded. 

Step 1 Set k = 1; 
SHIFT = O. (Accumulated shift·) 

Step 2 While k :s M do Steps 3-19. 
(Steps 3-7 test for success.) 

Step 3 If Ib~k) I :s TOL then set A = a~k) + SHIFT; 
OUTPUT (A); 
set n = n - 1. 

Step 4 If Ibik) I :s TOL then set A = a~k) + SHIFT; 
OUTPUT (A); 
setn=n-l; 

Step 5 If n = 0 then 
STOP. 

a
(k) _ a(k). 
I - 2 ' 

for j = 2, .. , ,n 
(k) (k) • 

set a j = aj+l' 

bY) = bnl' 
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step 6 If n = 1 then 
set A = a~k) + SHIFT; 
OUTPUT (A); 
STOP. 

Step 7 FOf j = 3, ... ,n - 1 
if Ib~k)1 ::S TOL then 

OUTPUT ( ' l't' t' (k) (k) b(k) b(k) sp 1 In 0 ,a l , .. · ,a j _\, 2 ,,,., j_\' 

'and' , 
(k) (k) b(k) b(k) SHIF1)' aj , •.. ,an , j+l'···' n' , 

STOP. 

Step 8 (Compute shift·) 
Set b = _(ark) + ark»~. 

n-l n' 

c = ark) a (k) _ [b(k)]2. 
n n-l n' 

d = (b2 _4c)1/2. 

Step 9 If b > 0 then set ILl = -2c/(b + d); 
IL2 = -(b + d)/2 

else set ILl = (d - b)/2; 
IL2 = 2c/(d - b). 

Step 10 If n = 2 then set Al = ILl + SHIFT; 
).2 = IL2 + SHIFT; 
OUTPUT ().I , A2); 

STOP. 

Step 11 Choose s so that Is - a~k)1 = min{IILI - a~k)l, IIL2 - a~k)J}. 

Step 12 (Accumulate the shift·) 
Set SHIFT = SHIFT + s. 

Step 13 (Perform shift·) 
F . 1 d (k) 

Of] = '''. ,n,set j =a j -so 

Step 14 (Steps 14 and 15 compute R(k).) 

Set Xl = d l ; 

YI = b2· 

Step 15 FOf j = 2, ... , n 
2 1/2 

[ 
(k)] 

set Zj-I = X;_I + b j 
• , 
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If j ::j: n then set Tj_1 = Sjbnl; 

(k) 
Yj =cjbj+l· 

( A jk) = Pj A jk) I has just been computed and R(k) = A~k).) 

Step 16 (Steps 16-18 compute A (k+I.) 

Set Zn = Xn; 

(k+I) 
a l = S2QI + C2ZI; 

bik+1) = S2Z2· 

Step 17 For j = 2, 3, ... ,n - 1 
(k+I) 

set aj = sj+lqj + CjCj+IZj; 

b
(k+l) 
j+l = Sj+IZj+l· 

Step 18 Set a~k+l) = CnZn . 

Step 19 Set k = k + 1. 

Step 20 OUTPUT (,Maximum number of iterations exceeded'); 
(The procedure was unsuccessful.) 
STOP. • 

A similar procedure can be used to find approximations to the eigenvalues of a non
symmetric n x n matrix. The matrix is first reduced to a similar upper-Hessenberg matrix 
H using the Householder Algorithm for non symmetric matrices. 

The QR factoring process assumes the following form. First 

(9.19) 

Then H(2) is defined by 

(9.20) 

and factored into 

(9.21) 

The method of factoring proceeds with the same aim as the QR Algorithm. The ma
trices are chosen to introduce zeros at appropriate entries of the matrix, and a shifting 
procedure is used similar to that in the QR method. However, the shifting is somewhat 
more complicated for nonsymmetric matrices since complex eigenvalues· with the same 
modulus can occur. The shifting process modifies the calculations in Eqs. (9.19), (9.20), 
and (9.21) to obtain the double QR method H(l) - Sl / = Q(l) R(l), H(2) = R(l) Q(l) + Sl /, 

H(2) -sz/ = Q(Z) R(2), and H(3) = R(2) Q(2) +sz/, where SI and S2 are complex conjugates 
and HO), H(2), .•. are real upper-Hessenberg matrices. 

A complete description of the QR method can be found in [Wil2]. Detailed algorithms 
and programs for this method and most other commonly employed methods are given in 
[WR]. We refer the reader to these works if the method we have discussed does not give 
satisfactory results. 
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The QR method can be performed in a manner that will produce the eigenvectors of a 
matrix as well as its eigenvalues, but Algorithm 9.6 has not been designed to accomplish 
this. If the eigenvectors of a symmetric matrix are needed as well as the eigenvalues, we 
suggest either using the Inverse Power method after Algorithms 9.5 and 9.6 have been 
employed or using one of the more powerful techniques listed in [WR]. 

E X ERe I S ESE T 9.4 

1. Apply two iterations of the QR Algorithm to the following matrices. 

a. 

c. 

e. 

2 -1 0 
-1 2-1 

o -1 2 

4 -1 
-1 3 
o -1 

-2 
1 
o 
o 

1 
-3 
-1 

o 

o 
-1 

2 

o 0 
-I 0 

1 I 
1 3 

b. 

d. 

r. 

310 
1 4 2 
021 

1 1 
1 2 
o -1 
o 0 

o 0 
-1 0 

3 1 
1 4 

0.5 0.25 o 0 
0.4 0 
0.6 0.1 
0.1 1 

0.25 0.8 
o 0.4 
o 0 

2. Use the QR Algorithm to determine, to within 10-5, all the eigenValues of the following ma-
• 

tnces. 

2 -1 0 3 1 0 
a. -1 -1 -2 b. 1 4 2 

0 -2 3 0 2 3 

4 2 0 0 0 5 -1 0 0 0 
2 4 2 0 0 -1 4.5 0.2 0 0 

c. 0 2 4 2 0 d. 0 0.2 1 -0.4 0 
0 0 2 4 2 0 0 -0.4 3 1 
0 0 0 2 4 0 0 0 1 3 

3. Use the QR Algorithm to determine, to within 10-5, all the eigenvalues for the matrices given 
in Exercise 1. 

4. Use the Inverse Power method to determine, to within 10-5 , the eigenvectors of the matrices 
in Exercise I. 

s. a. Sh th th 
. . cose 

ow at e rotatIOn matnx . e 
sm 

- sine . 
e apphed to the vector x = (Xl, X2)' has 

cos 

the geometric effect of rotating x through the angle e without changing its magnitude 

with respect to " . 112. 
b. Show that the magnitude of x with respect to II . 1100 can be changed by a rotation matrix. 

6. Let P be the rotation matrix with Pii = p}} = cos 0 and Pi} = - P ji = sin 0, for j < i. Show 
that for any n x n matrix A: 
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(AP)pq = 

(PA)pq = 

apq , 
(cos B)apj + (sin B)apj, 
(cos B)apj - (sin B)apj, 

apq , 
(cos B)a jq - (sin B)ajq, 
(sinB)ajq + (cosB)ajq, 

ifq'i=i,j, 
if q = j, 
if q = i. 
ifp=j=.i,j, 
if p = j, 
if p = i. 

7. Show that the product of an upper triangular matrix (on the left) and an upper Hessenberg 
matrix produces an upper Hessenberg matrix. 

8. Let Pk denote a rotation matrix of the fonn given in (9.16). 

a. Show that P; P; differs from an upper triangular matrix only in at most the (2,1) and (3,2) 
positions. 

b. Assume that P~ P; ... PI differs from an upper triangular matrix only in at most thc 
(2, I), (3,2), ... , (k, k - 1) positions. Show that P; P; ... PI PI+ I differs from an upper 
triangular matrix only in at most the (2, I), (3,2), ... , (k, k - 1), (k + I, k) positions. 

c. Show that the matrix P; P; ... P~ is upper Hessenberg. 

9. Jacobi's method for a symmetric matrix A is described by 

Al = A, 

A2 = PIAIP: 

and, in general, 

The matrix AHI tends to a diagonal matrix, where Pj is a rotation matrix chosen to eliminate 
a large off-diagonal element in A j. Suppose a j,k and ak,j are to be set to 0, where j =j=. k. If 
aJj =j=. au, then 

where 

and 

1 

2 

./i 
(Pj)kj = -(Pj)jk = 2 . 

Develop an algorithm to implement Jacobi's method by setting a21 = O. Then set a31, a32, a4h 
a42, a43,'" ,an,I, ... ,an.n-I in turn to zero. This is repeated until a matrix Ak is computed 
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with 

n n 

LLlag)1 
1=1 )=1 

)#i 

sufficiently small. The eigenvalues of A can then be approximated by the diagonal entries 
of A k . 

10. Repeat Exercise 3 using the Jacobi method. 

11. In the lead example of this chapter, the linear system Aw = -O.04(p / P )AW must be solved 
for W and A in order to approximate the eigenvalues Ak of the Strum-Liouville system. 

a. Find all four eigenvalues f.L 1, . .. ,J.i4 of the matrix 

2 -1 0 0 

A= 
-1 2 -I 0 

0 -1 2 -1 
0 0 -1 2 

to within 10-5 . 

b. Approximate the eigenvalues AI, ... ,A4 of the system in terms of p and p. 

12. The (m - 1) x (m - 1) tridiagonal matrix 

1 - 2a 0: ......... ·0 
• • • • • • 

a I - 2a • • • 
• • • • • 

• • 
• • 

• • 
• • 

A O· • - • - • • • • • • • • 
• • 

• o • • 
• • 

• • 

• • 
• • 

• • • • • • • • • • • • • • • • • • 
• • • • • • 

• • • • • 
• 
a O· . . . . . . . . . . : 0 

is involved in the Forward Difference method to solve the heat equation (sec Section 12.2). 
For the stability of the method we need peA) < 1. With m = 11, approximate the eigenvalues 
of A for each of the following. 

1 
a. a=- b. 

I 
a=- c. 

3 
a=-

4 2 4 

When is the method stable? 

13. The eigenvalues of the matrix A in Exercise 12 are 

. 2 
Jrl 

Ai = 1 - 4a sin-
2m 

, for i = 1, . . . ,m - I. 

Compare the approximations in Exercise 12 to the actual eigenvalues. Again, when is the 
method stable? 

9.5 Survey of Methods and Software 

This chapter discussed the approximation of eigenValues and eigenvectors. The Ger
schgorin circles give a crude approximation to the location of the eigenvalues of a matrix. 
The Power method can be used to find the dominant eigenvalue and an associated eigen-
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vector for an arbitrary matrix A. If A is symmetric, the Symmetric Power method gives 
faster convergence to the dominant eigenvalue and an associated eigenvector. The Inverse 
Power method will find the eigenvalue closest to a given value and an associated eigen
vector. This method is often used to refine an approximate eigenvalue and to compute an 
eigenvector once an eigenvalue has been found by some other technique. 

Deflation methods, such as Wielandt deflation, obtain other eigenvalues once the dom
inant eigenvalue is known. These methods are used if only a few eigenvalues are required 
since they are susceptible to roundoff error. The Inverse Power method should be used to 
improve the accuracy of approximate eigenvalues obtained from a deflation technique. 

Methods based on similarity transformations, such as Householder's method, are used 
to convert a symmetric matrix into a similar matrix that is tridiagonal (or upper Hessenberg 
if the matrix is not symmetric). Techniques such as the QR method can then be applied to 
the tridiagonal (or upper-Hessenberg) matrix to obtain approximations to all the eigenval
ues. The associated eigenvectors can be found by using an iterative method, such as the 
Inverse Power method, or by modifying the QR method to include the approximation of 
eigenvectors. We restricted our study to symmetric matrices and presented the QR method 
only to compute eigenvalues for the symmetric case. 

The subroutines in the IMSL and NAG libraries are based on those contained in EIS
PACK and LAPACK, packages that were discussed in Section 1.4. In general, the subrou
tines transform a matrix into the appropriate fOlIn for the QR method or one of its modifi
cations, such as the QL method. The subroutines approximate all the eigenvalues and can 
approximate an associated eigenvector for each eigenvalue. There are special routines that 
find all the eigenvalues within an interval or region or that find only the largest or small
est eigenvalue. Subroutines are also available to detelInine the accuracy of the eigenvalue 
approximation and the sensitivity of the process to roundoff error. 

The LAPACK routine SGEBAL prepares a real nonsymmetric matrix A for further 
processing. It tries to use permutation matrices to transform A to a similar block upper 
triangular form. Similarity transformations are used to balance the rows and columns in 
nOIll!. The routine SGEHRD can then be used to convert A to a similar upper Hessenberg 
matrix H. The matrix H is then reduced via SHSEQR to Schur form ST S', where S is 
orthogonal and the diagonal of T holds the eigenvalues of A. STREVC can then be used 
to obtain the corresponding eigenvectors. 

The LAPACK routine SSYTRD is used to reduce a real symmetric matrix A to a sim
ilar tridiagonal matrix via Householder's method. The routine SSTEQR uses an implicity 
shifted QR algorithm to obtain all the eigenvalues and eigenvectors of A. 

The IMSL subroutine EVLRG produces all eigenvalues of A in increasing order of 
magnitude. This subroutine first balances the matrix A using a version of the EISPACK 
routine BALANC, so that the sums of the magnitudes of the entries in each row and in each 
column are approximately the same. This leads to greater stability in the ensuing compu
tations. EVLRG next performs orthogonal similarity transformations, such as in House
holder's method, to reduce A to a similar upper Hessenberg matrix. This portion is similar 
to the EISPACK subroutine ORTHES. Finally, the shifted QR algorithm is performed to 
obtain all the eigenvalues. This part is similar to the subroutine HQR in EISPACK. The 
IMSL subroutine EVCRG is the same as EVRLG, except that corresponding eigenvec
tors are computed. The subroutine EVLSF computes the eigenvalues of the real symmetric 
matrix A. The matrix A is first reduced to tridiagonal form using a modification of the 
EISPACK routine TRED2. Then the eigenvalues are computed using a modification of the 
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EISPACK routine IMTQL2, which is a variation of the QR method called the implicit QL 
method. The subroutine EVCSF is the same as EVLSF except that the eigenvectors are 
also calculated. Finally, EVLRH and EVCRH compute all eigenvalues of the upper Hes
senberg matrix A and, additionally, EVCRH computes the eigenvectors. These subroutines 
are based on the subroutines HQR and HQR2, respectively, in EISPACK. 

The NAG library has similar subroutines based on the EISPACK routines. The subrou
tine F02EBF computes the eigenvalues of a real matrix and, optionally, the eigenvectors. 
The matrix is first balanced and then is reduced to upper-Hessenberg form for the QR 
method. If only the eigenvalues are required, then the algorithm uses a Hessenberg QR 
method to compute the eigenvalues; if the eigenvectors are also required, then a Schur 
factorization is used. The subroutine F02FAF is used on a real symmetric matrix to com
pute the eigenvalues in increasing order of magnitude and optionally the eigenvectors. The 
subroutine first reduces the matrix to tridiagonal form using Householder's method. The 
eigenvalues are then computed using a variant of the symmetric tridiagonal QR algorithm. 
The subroutine F08FEF implements Householder's algorithm directly for symmetric ma
trices to produce a similar tridiagonal symmetric matrix. Routines are also available in the 
NAG library for directly balancing real matrices, recovering eigenvectors if a matrix was 
first balanced, and performing other operations on special types of matrices. 

The Maple procedure Eigenvals (A) ; computes the eigenvalues of A by first balanc
ing and then transfonuing A to upper Hessenberg fmIll. The QR method is then applied to 
obtain all eigenvalues and eigenvectors. The tridiagonal form, as in Algorithm 9.6, is used 
for a symmetric matrix. 

The MATLAB procedure eig computes the eigenvalues and, optionally, eigenvectors 
of A by using the EISPACK routines. It uses BALANC to balance the matrix, ORTHES to 
transform the matrix to upper Hessenberg, and finally a modified HQR2 routine to find the 
eigenvalues and, optionally, the eigenvectors of a real upper Hessenberg matrix by the QR 
method. MATLAB also has a procedure eigs that computes a selected number of eigen
values and eigenvectors. The procedure eigs is based on the implicitly restarted Arnoldi 
method by Sorensen [So]. The software package contained in Netlib, ARPACK [ARP] to 
solve large sparse eigenvalue problems, is also based on the implicitly restarted Arnoldi 
method. The implicitly restarted Arnoldi method is a Krylov subspace method that finds a 
sequence of Krylov subspaces that converge to a subspace containing the eigenvalues. 

The books by Wilkinson [WiI2] and Wilkinson and Reinsch [WR] are classics in the 
study of eigenvalue problems. Stewart [Stew2] is also a good source of information on 
the general problem, and Parlett [Par] considers the symmetric problem. A study of the 
non symmetric problem can be found in Saad [Sal]. 

"e "'" •• , 
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T he amount of pressure required to sink a large heavy object into soft, 

homogeneous soil lying above a hard base soil can be predicted by the 

amount of pressure required to sink smaller objects in the same soil. 

Specifically, the amount of pressure p to sink a circular plate of radius r 

a distance d in the soft soil, where the hard base soil lies a distance D > d 

below the surface, can be approximated by an equation of the form 

where k .. k 2, and k3 are constants depending on d and the consistency of 

the soil, but not on the radius of the plate. 

To determine the minimal size of plate required to sustain a large 

load, three small plates with differing radii are sunk to the same distance, 

and the loads required for this sinkage are recorded, as shown in the 

accompanying figure. 

This produces the three nonlinear equations 

ml = kleklrl + k3r t, 

m2 = klekzrl + k3r2' 

m3 = kleklr3 + k3r3, 
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in the three unknowns kh k2• and k3• Numerical approximation methods 

are usually needed for solving systems of equations when the equations 

are nonlinear. Exercise 10 of Section 10.2 concerns an application of the 

type described here. 

Solving a system of nonlinear equations is a problem that is avoided when possible, 
customarily by approximating the nonlinear system by a system of linear equations. When 
this is unsatisfactory, the problem must be tackled directly. The most straightforward ap
proach is to adapt the methods from Chapter 2, which approximate the solutions of a single 
nonlinear equation in one variable, to apply when the single-variable problem is replaced 
by a vector problem that incorporates all the variables. 

The principal tool in Chapter 2 was Newton's method, a technique that is generally 
quadratically convergent. This is the first technique we modify to solve systems of nonlin
ear equations. Newton's method, as modified for systems of equations, is quite costly to 
apply, so in Section 10.3 we describe how a modified Secant method can be used to obtain 
approximations more easily, although with a loss of the extremely rapid convergence that 
Newton's method provides. 

Section 10.4 describes the method of Steepest Descent. It is only linearly conver
gent, but it does not require the accurate starting approximations needed for more rapidly 
converging techniques. It is often used to find a good initial approximation for Newton's 
method or one of its modifications. 

In Section 10.5, we give an introduction to continuation methods, which use a pa
rameter to move from a problem with an easily determined solution to the solution Cif the 
original nonlinear problem. . 

Most of the proofs of the theoretical results in this chapter are omitted since they 
involve methods that are usually studied in advanced calculus. A good general reference 
for this material is ·Ortega's book entitled Numerical Analysis-A Second Course [Or21. A 
more complete reference is [OR]. 



602 C HAP T E R 10 • Numerical Solutions of Nonlinear Systems of Equations 

1 0.1 Fixed Points for Functions of Several Variables 

Figure 10.1 

• 

EXAMPLE 1 

A system of nonlinear equations has the fOlJn 

II (XI , x2, .. ·, xn) = 0, 

h(XI, X2, ... , xn) = 0, 
• 
• 
• 

• 
• 
• 

(10.1) 

where each function J; can be thought of as mapping a vector x = (XI, X2, ... ,xn )' of 
the n-dimensional space Rn into the real line R. A geometric representation of a nonlinear 
system when n = 2 is given in Figure 10.1. 

Il(Xl' X2) = 0 
XI and 

f7(Xl'~) = 0 

This system of n nonlinear equations in n unknowns can also be represented by defin
ing a function F mapping Rn into JR." as 

F(XI, X2, ... ,xn) = (II (X 10 X2, ... ,xn), h(XI, X2, ... ,xn), ... , In (XI, X2, ... ,xn»'. 
If vector notation is used to represent the variables XI, X2, ... , Xn , system (l0.1) assumes 
the form 

F(x) = O. (10.2) 

The functions II, 12, ... , In are the coordinate functions of F. 

The 3 x 3 nonlinear system 



10.1 Fixed Points for Functions of Several Variables 

xf - 81 (X2 + 0.1)2 + sin X3 + 1.06 = 0, 

IOrr - 3 
e-X1X2 + 20X3 + = 0 

3 

603 

can be placed in the fonn (10.2) by defining the three coordinate functions II. h. and h 
from lR 3 to lR as 

1 
II (Xl, X2, X3) = 3x\ - COS(X2X3) - 2' 

h(x\. X2. X3) = xf - 81(x2 + 0.1)2 + sinx3 + 1.06. 

x x IOrr - 3 
h(x\. X2, X3) = e- I 2 + 20X3 + 3 • 

and then defining F from lR3 ~ lR3 by 

F(x) = F(x\. X2. X3) 

= (fl (x\, X2. X3), h(x\. X2. X3), h(XI. X2, X3»t 

1 2 2· 106 = 3x\ - COS(X2X3) - 2' XI - 81(x2 + 0.1) + smX3 + . . 

10rr - 3 t 
e-XIX2 + 20X3 + ---

3 
• • 

Before discussing the solution of a system given in the form (10.1) or (10.2). we 
need some results concerning continuity and differentiability of functions from lRn into lRn. 
Although this study could be presented directly (see Exercise 10), we use an alternative 
method that allows us to present the more theoretically difficult concepts of limits and 
continuity in terms of functions from lRn into R 

DefInition 10.1 Let I be a function defined on a set D C lRn and mapping into R The function I is said 
to have the limit L at XQ, written 

lim I(x) = L, 
x-.."O 

if, given any number c > 0, a number 8 > 0 exists with 

I/(x) - LI < c, 

whenever xED and 

o < IIx - xoll < 8. • 
The existence of a limit is independent of the particular vector nonn being used. as 

discussed in Section 7.1. Any convenient norm can be used to satisfy the condition in this 
definition. The specific value of 8 will depend on the norm chosen, but the existence of a 8 
is independent of the nOlIn. 
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Definition 70.2 Let I be a function from a set D C JRn into lR. The function I is continuous at Xo E D 
provided limX- HO I(x) exists and 

lim I(x) = I(Xo). 
x-->xo 

Moreover, I is continuous on a set D if I is continuous at every point of D. This concept 
is expressed by writing I E C(D). • 

We can now define the limit and continuity concepts for functions from JRn into ]Rn by 
considering the coordinate functions from ]Rn into lR. 

Definition 70.3 Let F be a function from D C JRn into JRn of the fOlm 

Theorem 70.4 

where Ii is a mapping from JRn into JR for each i. We define 

lim F(x) = L = (L I , L2, ... ,LS, 
X~~ 

if and only if limx-->xo Ii (x) = L i , for each i = 1, 2, ... , n. • 
The function F is continuous at Xo E D provided limx ..... xo F(x) exists and limx--.xo 

F(x) = F(Xo). In addition, F is continuous on the set D if F is continuous at each x in D. 
This concept is expressed by writing FE C(D). 

For functions from lR into JR, continuity can often be shown by demonstrating that 
the function is differentiable (see Theorem 1.6). Although this theorem generalizes to 
functions of several variables, the derivative (or total derivative) of a function of several 
variables is quite involved and will not be presented here. Instead we state the following 
theorem, which relates the continuity of a function of n variables at a point to the partial 
derivatives of the function at the point. 

Let I be a function from D C JRn into JR and Xo ED. If constants 8 > 0 and K > 0 exist 
so that whenever IIx - XoII < 8 and xED, we have 

a/(x) 
< K, for each j = I, 2, . .. ,n, ax ] 

then I is continuous at Xo. • 

In Chapter 2, an iterative process for solving an equation I(x) = 0 was developed 
by first transfOlIlling the equation into the fixed-point fonll x = g(x). A similar procedure 
will be investigated for functions from JRn into JRn. 

Definition 70.5 A function G from D C Rn into JRn has a fixed point at p E D if G(p) = p. • 
The following theorem extends the Fixed-Point Theorem 2.3 to the n-dimensional 

case. This theorem is a special case of the Contraction Mapping Theorem, and its proof 
can be found in [Or2, p. 153]. 
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Let D = { (XI, X2, ... , xn)t I ai < Xi < hi, for each i = 1, 2, ... , n } for some collection 
of constants aI, a2, ... , an and hI, h 2 , ... , bn . Suppose G is a continuous function from 
D C jRn into jRn with the property that G(x) E D whenever XED. Then G has a fixed 
point in D. 

Suppose, in addition, that all the component functions of G have continuous partial 
derivatives and a constant K < 1 exists with 

agi(X) 

ax ] 
K 

<-
n 

, whenever xED, 

for each j = 1,2, ... , n and each component function gi. Then the sequence {X(k) }Z'" 0 

defined by an arbitrarily selected x(O) in D and generated by 

x(k) = G(x(k-I), for each k > 1, 

converges to the unique fixed point P E D and 

Consider the nonlinear system from Example 1 given by 

1 
3Xl - COS(X2X3) - 2 = 0, 

x~ - 81(x2 + 0.1)2 + sinx3 + 1.06 = 0, 

IOn - 3 
e-X1X2 + 20X3 + = O. 

3 

(l0.3) 

• 

If the i th equation is solved for Xi, the system is changed into the fixed-point problem 

1 1 
XI = 3 COS(X2X3) + 6' 

X2 = ~ /xr + sinx3 + 1.06 - 0.1, 

1 xx lOn-3 
X3 = - e- 12_ . 

20 60 

Let G : jR3 --+ jR3 be defined by G(x) = (gl (x), g2(X), g3(X)r, where 

IOn - 3 

60 
• 

(lOA) 
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Theorems lOA and 10.6 will be used to show that G has a unique fixed point in 

D = {(XJ,X2,X3)1 1-1 <Xj < 1, foreachi = 1,2,3}. 

1 1 
Ig,(x" X2, x3)1 < 31 COS(X2X3) I + 6" ::: 0.50, 

Ig2(XI, X2, x3)1 = ~!xf + sinx3 + 1.06 - 0.1 
1 . 

< -JI + sm 1 + 1.06 - 0.1 < 0.09, - 9 

and 

so -1 < gj(x" X2, X3) ::: 1, for each i = 1,2,3. Thus, G(x) E D whenever xED. 
Finding bounds for the partial derivatives on D gives 

as well as 

and 

8g, 

8X2 

ag, 

aX3 

ag2 
ax, 

::: ~ IX31 . I sinx2x31 < ~ sin 1 < 0.281, 

1 . 1 . 
< 31x21 . I smx2x31 < 3 sm 1 < 0.281, 

Ix,1 1 
= < < 0.238, 

9!xt + sinx3 + 1.06 9JO.2I8 

I cos x31 1 
= < <0.119, 

I8!xt + sinx3 + 1.06 18JO.218 

_ IX21 -XlXZ < 1 0 14 - e e< . , 
20 - 20 

ag3 _ Ix,1 -XlXZ < 1 0 14 - e e < . . 
aX2 20 - 20 

Since the partial derivatives of g" g2, and g3 are bounded on D, Theorem 1004 implies 
that these functions are continuous on D. Consequently, G is continuous on D. Moreover, 
for every xED, 
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ogi(X) < 0.281 ~ h 1 2 3 d 1 2 3 
O 

- ,lor eac i = " an j = , , , 
X· } 

and the condition in the second part of Theorem 10.6 holds with K = 3(0.281) = 0.843. 
In the same manner it can also be shown that og;jOXj is continuous on D for each 

i = 1, 2, 3 and j = 1, 2, 3. (This is considered in Exercise 3.) Consequently, G has a 
unique fixed point in D, and the nonlinear system has a solution in D. 

Note that G having a unique fixed point in D does not imply that the solution to the 
original system is unique on this domain, since the solution for X2 in (10.4) involved the 
choice of the principal square root. Exercise 7(d) examines the situation that occurs if, 
instead, the negative square root is chosen in this step. 

To approximate the fixed point p, we choose xeD) = (0.1, 0.1, -O.l)t. The sequence 
of vectors generated by 

(k) I (k-l) (k-l) + 1 
Xl = 3' cos x2 X3 6' 

(k) I (k_I»)2 . (k-I) x 2 = 9 Xl + smx3 + 1.06 - 0.1, 

(k) 1 _ \k-l) (k-l) 
X - - e XI X2 -

3 20 
IOrr - 3 

60 

converges to the unique solution of (10.4). The results in Table 10.1 were generated until 

k X(k) 
I 

X(k) 
2 

x(k) 
3 

I X(k) - X(k-l) IL", 
0 0.10000000 0.10000000 -0.10000000 
1 0.49998333 0.00944115 -0.52310127 0.423 
2 0.49999593 0.00002557 -0.52336331 9.4 x 10-3 

3 0.50000000 0.00001234 -0.52359814 2.3 x 10-4 

4 0.50000000 0.00000003 -0.52359847 1.2 x 10-5 

5 0.50000000 0.00000002 -0.52359877 3.1 x 10-7 

Using the error bound (10.3) with K = 0.843 gives 

which does not indicate the true accuracy of x(5) because of the inaccurate initial approxi
mation. The actual solution is 

p = (0.5,0, - ~) t ~ (0.5,0, -0.5235987757/, 

so the true error is 
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One way to accelerate conver.e;ence of the fixed-point iteration is to use the latest esti-
(k) (k) • (f-I) (k-I) (k). . 

mates xI , ... , xi_I 10stead of xI ' ... ,Xi_I to compute Xi ,as 10 the Gauss-SeIdel 
method for linear systems. The component equations then become 

(k) _ 1 (k-I) (k-I») 1 
xI - 3 cos x 2 x3 + 6' 

(k) 1 (k»)2 . (k-I) 
x 2 ="9 xI + s1Ox3 + 1.06 - 0.1, 

IOrr - 3 

60 
• 

With xeD) = (0.1,0.1, -O.lr, the results of these calculations are listed in Table 10.2. 
The iterate x(4) is accurate to within 10-7 in the 100 nonn; so the convergence was in

deed accelerated for this problem by using the Gauss-Seidel method. However, this method 
does not always accelerate the convergence. _ , 

k (k) x(k) (k) Ilx(k) - x(k-l) I Xl X3 2 CXl 

0 0.10000000 0.10000000 -0.1 00000oo 
1 0.49998333 0.02222979 -0.52304613 0.423 
2 0.49997747 0.00002815 -0.52359807 2.2 x 10-2 

3 0.50000000 0.00000004 -0.52359877 2.8 x 10-5 

4 0.50000000 0.00000000 -0.52359877 3.8 x 10-8 

Maple provides the function fsolve to solve systems of equations. The fixed-point 
problem of Example 2 can be solved with the following commands: 

>gi:=xl=(2*cos(x2*x3)+i)/6: 
>g2:=x2=sqrt(xi~2+sin(x3)+i.06)/9-0.i: 

>g3:=x3=-(3*exp(-xi*x2)+i0*Pi-3)/60: 
>fsolve({gi,g2,g3},{xi,x2,x3},{xi=-i .. i,x2=-i .. 1,x3=-i .. i}); 

The first three commands define the system, and the last command invokes the procedure 
f sol ve. The answer displayed is 

[x3 = -.5235987758, xl = .5000000000, x2 = -.2102454409 1O- lo} 

In general, fsolve (eqns, vars, options) solves the system of equations represented by 
the parameter eqns for the variables represented by the parameter vars under optional 
parameters represented by options. Under options we specify a region in which the 
routine is required to search for a solution. This specification is not mandatory, and Maple 
determines its own search space if the options are omitted. 
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EXERCISE SET 10.1 

1. Show that the function F : lR3 -+ lR3 defined by 

is a continuous at each point of lR 3. 

2. Give an example of a function F : ]R2 -+ ]R2 that is continuous at each point of]R2, except at 
(1, 0). 

3. Show that the first partial derivatives in Example 2 are continuous on D. 

4. The nonlinear system 

has two solutions. 

-Xl (Xl + 1) +2X2 = 18, 

(Xl - 1)2 + (X2 - 6)2 = 25 

a. Approximate the solutions graphically. 

b. Use the approximations from part (a) as initial approximations for an appropriate function 
iteration, and determine the solutions to within 10-5 in the 100 norm. 

5. The nonlinear system 

xf - lOXI + xi + 8 = 0, 

XIX;+ Xl - lOX2 + 8 = 0 

can be transformed into the fixed-point problem 

xf +xi + 8 
Xl =gl(Xl,X2) = 10 ' 

xlxi + Xl + 8 
X2 = gl (Xl, X2) = 10 • 

a. Use Theorem 10.6 to show that G = (gl, g2)' mapping D C ]R2 into ]R2 has a unique 
fixed point in 

b. Apply functional iteration to approximate the solution. 

c. Does the Gauss-Seidel method accelerate convergence? 

6. The nonlinear system 

5Xf - xi = 0, 

has a solution near (!, !)'. 
a. Find a function G and a set D in lIe such that G : D -+ ]R2 and G has a unique fixed 

point in D. 

b. Apply functional iteration to approximate the solution to within 10-5 in the 100 norm. 

c. Does the Gauss-Seidel method accelerate convergence? 
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7. Use Theorem 10.6 to show that G : D C JR3 --+ JR3 has a unique fixed point in D. Apply 
functional iteration to approximate the solution to within 10-5, using II . II 00' 

G ) COS(X2, X3) + 0.5 ~ / 2 + 0 3125 _ 0 03 
a. (XI, X2, X3 = 3 ' 25 V XI' ., 

1011' - 3 ' 
• 

60 ' 

b. 
13 - x~ + 4X3 . II + X3 - xl 22 + x? 

15 ' 10 '25 
• , 

D = { (XI, X2, X3)' I 0 ::: XI ::: 1.5, i = 1,2,3 } 

C. G(XI, X2, X3) = (1 - COS(XIX2X3), I - (I - XI)I/4 - 0.05x~ + 0.15x3, xl 

+ O.Ixi - 0.OIx2 + 1)'; 

D = {(XI, X2, X3)' I -0.1 < XI < 0.1, -0.1 < X2 < 0.3,0.5::: X3 < I.I} 

1011' - 3 t 
• 

60 ' 

8. Use the Gauss-Seidel method to approximate the fixed points in Exercise 7 to within 10-5 , 

using II . II 00' 

9. Use functional iteration to find solutions to the following nonlinear systems, accurate to within 
10-5, using II . 1100' 

a. xi + x~ - XI = 0 

xl - xi - X2 = o. 

c. xl + X2 - 37 = 0, 

XI - x~ - 5 = 0, 

Xl + X2 + X3 - 3 = O. 

b. 3Xl - xi = 0, 

3xlx~ - xi - 1 = O. 

d. xl + 2xi - X2 - 2X3 = 0, 

xl - 8xi + lOx3 = 0, 

x2 
I _ 1 = O. 

7X2X3 

10. Show that a function F mapping D C JR" into JR" is continuous at Xo E D precisely when, 
given any number c > 0, a number 8 > 0 can be found with property that for any vector noml 
II . II, 

IIF(x) - F(Xo) II < c, 

whenever XED and Ilx - xoll < 8. 

11. In Exercise 8 of Section 5.9, we considered the problem of predicting the population of two 
species that compete for the same food supply. In the problem. we made the assumption that 
the populations could be predicted by solving the system of equations 

dXI (t) 
dt = Xl (1)(4 - O.OOO3xI (I) - 0.OOO4X2(1» 
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and 

In this exercise, we would like to consider the problem of determining equilibrium populations 
of the two species. The mathematical criteria that must be satisfied in order for the populations 
to be at equilibrium is that, simultaneously, 

dX2(t) 
dt = O. 

This occurs when the first species is extinct and the second species has a population of 20,000 
or when the second species is extinct and the first species has a population of 13,333. Can an 
equilibrium occur in any other situation? 

10.2 Newton's Method 

The problem in Example 2 of the previous section is transformed into a convergent fixed
point problem by algebraically solving the three equations for the three variables Xl, X2, 

and X3. It is, however, rather unusual for this technique to be successful. In this section, 
we consider an algorithmic procedure to perfOlIll the transformation in a more general 
situation. 

To construct the algorithm that led to an appropriate fixed-point method in the one
dimensional case, we found a function ¢ with the property that 

g(X) = X - ¢(x)f(x) 

gives quadratic convergence to the fixed point p of the function g (see Section 2.4). From 
this condition Newton's method evolved by choosing ¢(x) = l/!'(x), assuming that 
!,(x) t= O. 

Using a similar approach in the n-dimensional case involves a matrix 

all (x) adx) • • • aln(x) 
a21 (x) a22(x) • • • a2n (x) 

A(x) = • • • , (10.5) 
• • • 
• • • 

ani (x) an2(x) • • • ann (x) 

where each of the entries aij (x) is a function from ~n into R This requires that A (x) be 
found so that 

G(x) = x - A(x)-'F(x) 

gives quadratic convergence to the solution ofF(x) = 0, assuming that A (x) is nonsingular 
at the fixed point p of G. 

The following theorem parallels Theorem 2.8 in Section 2.4. Its proof requires being 
able to express G in tenlls of its Taylor series in n variables about p. 
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Let p be a solution of G(x) = x, Suppose a number 8 > 0 exists with 

(i) agdaxj is continuous on No = (x I Ilx - pll < 8}, for each i = 1,2, ... ,n 
andj=I,2, ... ,n; 

(ii) a2gj(x)/(aXjaXk) is continuous, and la2gj(x)/(aXjaXk)1 < M for some con
stant M, whenever x E No, for each i = 1,2, ... , n, j = 1,2, ... , n, and 
k=I,2, ... ,n; 

(iii) agj(p)/aXk = 0, for each i = 1,2, ... , nand k = 1,2, ... , n. 
~ 

Then a number 8 < 8 exists such that the sequence generated by X(k) = G(X(k-I» con-
verges quadratically to p for any choice of x(O) , provided that x(O) - p < 8. Moreover, 

for each k > 1. • -

To use Theorem to.7, suppose that A(x) is an n x n matrix of functions from lRn 

into lR in the form of Eq. (10.5), where the specific entries will be chosen later. Assume, 
moreover, that A (x) is nonsingular near a solution p of F(x) = 0, and let bi} (x) denote the 
entry of A(X)-I in the ith row and jth column. 

Since G(x) = x - A(X)-IF(x), we have gj(x) = Xj - I:j=1 bij (x)/j (x) and 

ago 
--=-1 (x) = 
aXk 

n 

I-I: 
j=1 

~ at- ab·· 
- ~ bij(x) a J (x) + a IJ (x)/j(x) , 

j=1 Xk Xk 

Theorem 10.7 implies that we need agj(p)/aXk = 0, for each i 
1,2, ... , n. This means that for i = k, 

so 

When k i= i, 

so 

if i = k, 

if i i= k. 

1, 2, ... , n and k = 

(10.6) 

(10.7) 
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Defining the matrix J (x) by 

a/J (x) afl (x) a/J (x) • • • 

aXI aX2 aXn 

ah (x) ah (x) ah (x) • • • 

J(x) = aXI aX2 aXn , (10.8) 
• • • 
• • • 
• • • 

afn (x) afn (x) 
• • • Jfn (x) 

aXI aX2 JXn 

we see that conditions (10.6) and (10.7) require 

A (p) -I J (p) = I, the identity matrix, 

so 

A(p) = J(p). 

An appropriate choice for A (x) is, consequently, A(x) = J (x) since this satisfies condition 
(iii) in Theorem 10.7. 

The function G is defined by 

G(x) = x - J(x)-IF(x), 

and the functional iteration procedure evolves from selecting xeD) and generating, for k > I, 

(10.9) 

This is called Newton's method for nonlinear systems, and it is generally expected 
to give quadratic convergence, provided that a sufficiently accurate starting value is known 
and J(p)-I exists. 

The matrix J (x) is called the Jacobian matrix and has a number of applications in 
analysis. It might, in particular, be familiar to the reader due to its application in the mul
tiple integration of a function of several variables over a region that requires a change of 
variables to be performed. 

The weakness in Newton's method arises from the need to compute and invert the ma
trix J (x) at each step. In practice, explicit computation of J (x) -I is avoided by perfonning 
the operation in a two-step manner. First, a vector y is found that satisfies J(X(k-I»y = 
-F(X(k-I». Then the new approximation, X(k), is obtained by adding y to X(k-I). Algorithm 
10.1 uses this two-step procedure. 

Newton's Method for Systems 

To approximate the solution of the nonlinear system F(x) = 0 given an initial approxima
tion x: 

I N PUT number n of equations and unknowns; initial approximation x = (XI, ... , Xn f , 
tolerance TOL; maximum number of iterations N. 
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OUTPUT approximate solution x = (XI, ... , Xn)1 or a message that the number of 
iterations was exceeded. 

Step 7 Set k = I. 

Step 2 While (k < N) do Steps 3-7. 

Step3 CakulateF(x) and lex), where l(x)i,j = (af;(x)/axj) for I <i,j< n. 

Step 4 Solve the n x n linear system 1 (x)y = -F(x). 

Step 5 Set x = x + y. 

Step 6 If iiYii < TOL then OUTPUT (x); 
(The procedure was successful.) 
STOP. 

Step 7 Set k = k + I. 
Step 8 OUTPUT (,Maximum number of iterations exceeded'); 

(The procedure was unsuccessful.) 
STOP. 

The nonlinear system 

I 
3XI - COS(X2X3) - 2 = 0, 

xt - 81(X2 + 0.1)2 + sinx3 + 1.06 = 0, 

lOJT - 3 
e-

X1X2 + 20X3 + = ° 
3 

• 

was shown in Example 2 of Section 10.1 to have an approximate solution at (0.5,0, 
-0.52359877)1. Newton's method will be used to obtain this approximation when the ini
tial approximation is x(O) = (0.1,0.1, -0.1)' and 

where 

and 

F(XI, X2, X3) = (fI (XI, X2, X3), h(xI, X2, X3), h(xI, X2, X3»I, 

I 
/1 (Xl, X2, X3) = 3XI - COS(X2X3) - 2' 

h(xI, X2, X3) = x~ - 81(X2 + 0.1)2 + sinx3 + 1.06, 

x x lOJT - 3 
h(XI,X2,x3)=e- 12 +20X3+ 3 . 

The Jacobian matrix lex) for this system is 

-162(X2 + 0.1) 

• 
X2 SlllX2X3 

cosx3 

20 
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and 

where 

(k-J) 
YI 

(k-I) 
Y2 

(k-I) 
Y3 

(k) 
xl 

(k-I) 
XI 

(k-i) 
YI 

(k) (k-J) + (k-I) 
X 2 - X 2 Y2 , 

(k) 
X3 

(k-J) 
X3 

(k-l) 
Y3 

__ (1 (k-I) (k-l) (k-l)))-I F (k-l) (k-l) (k-l») 
- xI ,X2 ,X3 xl ,X2 ,X3 . 
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Thus, at the kth step, the linear system 1 (X(k-l)) y(k-I) - -F (x(k-I») must be solved, 
where 

and 

3 

2 (k-I) XI 

(k-I). (k-IJ (k-l) 
x3 smx2 x3 

-162 (XY-I) + 0.1) 
(k-I) _ (k-I) (k-I) (k-I) _ (k-I) (k-I) -x e XI X2 -x e Xl x 2 
2 I 

(k-l) 
Y1 

Y
(k-I) = (k-I) 

Y2 ' 
(k-l) 

Y3 

3 (k-I) (k-l) (k-l) I 
X I - cos X z x3 - 2 

(k-I). (k-I) (k-I) 
x2 smx2 x3 

(k-I) 
COSX 3 • 

20 

F (X(k-I)) = (xik-')/ _ 81 (xik-1) + 0.1)2 + sinx~k-I) + 1.06 . 

_x(k-l)x(k-l) 20 (k-I) 1011"-3 
e I 2 + x3 + 3 

The results using this iterative procedure are shown in Table 10.3. 

k X(k) (k) X(k) IIx(k) - X(k-l) 1100 X 2 1 3 

0 0.10000000 0.10000000 -0.10000000 
1 0.50003702 0.01946686 -0.52152047 0.422 
2 0.50004593 0.00158859 -0.52355711 1.79 x 10-2 

3 0.50000034 0.00001244 -0.52359845 1.58 x 10-3 

4 0.50000000 0.00000000 -0.52359877 1.24 x 10-5 

5 0.50000000 0.00000000 -0.52359877 0 

• 
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The previous example illustrates that Newton's method can converge very rapidly once 
an approximation is obtained that is near the true solution. However, it is not always easy 
to determine starting values that will lead to a solution, and the method is comparatively 
expensive to employ. In the next section, we consider a method for overcoming the latter 
weakness. Good starting values can usually be found by the method that will be discussed 
in Section 10.4. 

Initial approximation to the solutions of 2 x 2 and often 3 x 3 nonlinear systems can 
also be obtained using the graphing facilities of Maple. The nonlinear system 

xl - xi + 2X2 = 0, 

2xI +xi - 6 = 0 

has two solutions, (0.625204094, 2.17935582W and (2.109511920, -1.334532188)1. To 
use Maple we first define the two equations 

>eql:=xl-2-x2-2+2*x2=O; 
>eq2:=2*xl+x2-2-6=O; 

To obtain a graph of the two equations for - 3 < XI, X2 < 3, enter the commands 

>with(plots); 
>implicitplot({eql,eq2},xl=-3 .. 3,x2=-3 .. 3); 

From the graph shown in Figure 10.2, we are able to estimate that there are solutions near 
(0.64,2.2)1 and (2.1, -1.3)1. This gives us good starting values for Newton's method. 

3 

x2 

1 

-3 -2 -1 o 1 xl 2 3 

-1 

-2 

-3 

The problem is more difficult in three dimensions. Consider the nonlinear system 

2xI - 3X2 + X3 - 4 = 0, 

2xI + X2 - X3 + 4 = 0, 

xl + xi + xj - 4 = O. 



10.2 Newton's Method 

Define three equations using the Maple commands 

>eql:=2*xl-3*x2+x3-4=O; 
>eq2:=2*xl+x2-x3+4=O; 
>eq3:=xl-2+x2-2+x3-2-4=O; 

617 

The third equation describes a sphere of radius 2 and center (0,0,0), so xl, x2, and x3 
are in [-2,2]. The Maple commands to obtain the graph in this case are 

>with(plots) ; 
>implicitplot3d({eql,eq2,eq3},xl=-2 .. 2,x2=-2 .. 2,x3=-2 .. 2); 

Various three-dimensional plotting options are available in Maple for isolating a so
lution to the nonlinear system. For example, we can rotate the graph to better view the 
sections of the surfaces. Then we can zoom into regions where the intersections lie and al
ter the display form of the axes for a more accurate view of the intersection's coordinates. 
For this problem, a reasonable initial approximation is (Xl, X2, X3)' = (-0.5, -1.5, 1.5)'. 

EXERCISE SET 10.2 

1. Use Newton's method with x(O) - 0 to compute X(2) for each of the following nonlinear 
systems. 

a. 

c. 
1 

3Xl - COS(X2 X 3) - 2 = 0, 

4x; - 625xi + 2X2 - 1 = 0, 

IOn - 3 
e-X1X2 + 20X3 + = 0. 

3 

b. 

d. 

4n - 1 

4n 
(e 2X1 

- e) + 4exi - 2exi = 0. 

Xf + X2 - 37 = 0, 

Xl - xi - 5 = 0, 

Xl + X2 + X3 - 3 = 0. 

2. Use the graphing facilities of Maple to approximate solutions to the following nonlinear sys
tems. 

a. xl(1-xl)+4x2=12, 

(XI - 2)2 + (2X2 - 3)2 = 25. 

C. 15xI + xi - 4X3 = 13, 

xf + lOx2 - X3 = 11, 

xi - 25x3 = -22. 

b. 5xf - xl = 0, 

X2 - O.25(sin Xl + cos X2) = 0. 

d. lOx I - 2xi + X2 - 2X3 - 5 = 0, 

8xi + 4x; - 9 = 0. 

8X2X3 +4 = 0. 
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3. Use Newton's method to find a solution to the following nonlinear systems in the given do
main. Iterate untilllx(k) - X(k-l) 1100 < 10-6. 

a. 3xr - xi = 0, 

3XlXi - xi - 1 = O. 
Use x(O) = (1, 1)'. 

c. xi + XlX2 - XlX3 + 6 = 0, 

eX) + e X2 - X3 = 0, 

xi - 2XlX3 = 4. 

Use x(O) = (-1, -2, 1)'. 

b. In(xr + xi} - sin(xlx2) = In2 + In Jr, 

eX) -X2 + COS(XlX2) = O. 

Use x(O) = (2, 2)'. 

d. 6Xl - 2 COS(X2X3) - 1 = 0, 

9X2 + Jxr + sinx3 + 1.06 + 0.9 = 0, 

6OX3 + 3e-X
)X2 + IOJr - 3 = O. 

Use x(O) = (0, 0, 0)'. 

4. Use the answers obtained in Exercise 2 as initial approximations to Newton's method. Iterate 
until II X(k) - x(k-I) 1100 < 10-6 

5. The nonlinear system 

1 
3Xl - COS(X2X3) - 2 = 0, 

221 
Xl - 625x2 - 4 = 0, 

IOJr - 3 
e- X

)X2 + 20X3 + = 0 
3 

has a singular Jacobian matrix at the solution. Apply Newton's method with x(O) = (1, 1 - 1)'. 
Note that convergence may be slow or may not occur within a reasonable number of iterations. 

6. The nonlinear system 

has six solutions. 

-Xl + 3X2 - 2x3 = X2X4, 

Xl - 2X2 + 3X3 = X3X4, 

xf +X; +X~ = 1 

a. Show that if (Xl, X2, X3, X4)' is a solution then (-Xl, -X2, -X3, -X4)' is a solution. 

b. Use Newton's method three times to approximate all solutions. Iterate until II X(k)_ 

X(k-I) 1100 < 10-5 • 

7. Show that when n = 1, Newton's method given by Eq. (10.9) reduces to the familiar Newton's 
method given by Eq. (2.5). 

-

, , 

-
• 

-
• 

( 
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8. What does Newton's method reduce to for the linear system Ax = b given by 

where A is a nonsingular matrix? 

9. In calculating the shape of a gravity-flow discharge chute that will minimize transit time of 
discharged granular particles, C. Chiarella, W. Charlton, and A. W. Roberts [eCR] solve the 
following equations by Newton's method: 

(i) /n(eJ, ... ,eN) = sinen+J(1 - f-i,Wn+J) - sinen(l - f-i,W n ) 0, for each n 
Vn+J Vn 

I. 2, ... , N - I. 

(ii) /N(eJ, ... , 8N) = fly L~ J tan8i - X = 0, where 

a. 2 _ 2 . "n I 
vn - Vo + 2gnfly - 2f-i,fly L-j=J ' 

cose j 

for each n = I, 2, .... N, and 

N 1 
Wn = -flyvn Li=J 3 (j' for each n = 1,2, ... , N. 

Vi cos i 
b. 

The constant Vo is the initial velocity of the granular material, X is the x-coordinate of the end 
of the chute, f-i, is the friction force, N is the number of chute segments, and g = 32.17ftls2 

is the gravitational constant. The variable ei is the angle of the ith chute segment from the 
vertical, as shown in the following figure, and Vi is the particle velocity in the ith chute seg
ment. Solve (i) and (ii) for e = (eJ, ... , eN r with f-i, = 0, X = 2, fly = 0.2, N = 20, and 
Vo = 0, where the values for Vn and Wn can be obtained directly from (a) and (b). Iterate until 
IleCk) - eCk-J)lloo < 10-2. 

(0,0) 

x 

yz 

y 

10. The amount of pressure required to sink a large, heavy object in a soft homogeneous soil that 
lies above a hard base soil can be predicted by the amount of pressure required to sink smaller 
objects in the same soil. Specifically, the amount of pressure p required to sink a circular plate 
of radius r a distance d in the soft soil, where the hard base soil lies a distance D > d below 
the surface, can be approximated by an equation of the form 
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where kl' k2, and k3 are constants, with k2 > 0, depending on d and the consistency of the soil 
but not on the radius of the plate. (See [Bek, pp. 89-94].) 

a. Find the values of kl' k2' and k3 if we assume that a plate of radius I in. requires a pressure 
of 10 Ib/in. 2 to sink I ft in a muddy field, a plate of radius 2 in. requires a pressure of 12 
Ib/in2 to sink I ft, and a plate of radius 3 in. requires a pressure of 15 Ib/in. 2 to sink this 
distance (assuming that the mud is more than 1 ft deep). 

b. Use your calculations from part (a) to predict the minimal size of circular plate that would 
be required to sustain a load of 500 Ib on this field with sinkage of less than J ft. 

11. An interesting biological experiment (see [Schr2]) concerns the determination of the maximum 
water temperature, X M , at which various species of hydra can survive without shortened life 
expectancy. One approach to the solution of this problem uses a weighted least squares fit of 
the form f(x) = Y = a/ex - by to a collection of experimental data. The x-values of the data 
refer to water temperature. The constant b is the asymptote of the graph of f and as such is an 
approximation to X M . 

a. Show that choosing a, b, and c to minimize 

reduces to solving the nonlinear system 

n 

L WiYi 
a-

. (x - b)C 
l=l J 

n 1 

L (x - b)2c' 
1=1 I 

o f--. Wi Yi f--. I 
= L.... (x- - b) C • L.... -:--(x-· ----:b-:-:) 2c::-+C71 

/=1 I /=1 I 

2 

n 
'"" WiYi 
L.... (It _ b)c+l 
I = I I 

n 1 

. L (x _ b)2c' 
1=1 I 

0= t WiYi c • t In (Xi - b) _ t WiYi In(xi - b) . t 1 2c' 

i=l (Xi - b) ;=1 (Xi - b)2c i=1 (X; - bY ;=1 (x; - b) 

b. Solve the nonlinear system for the species with the following data. Use the weights WI = 
In y;. 

• 
I 

Yi 

X; 

1 

2.40 
31.8 

2 

3.80 
31.5 

3 

4.75 
31.2 

4 

21.60 
30.2 

10.3 Quasi-Newton Methods 

A significant weakness of Newton's method for solving systems of nonlinear equations is 
that, for each iteration, a Jacobian matrix must be computed and an n x n linear system 
solved that involves this matrix. Consider the amount of computation associated with one 
iteration of Newton's method. The Jacobian matrix associated with a system of n nonlin
ear equations written in the fOlIll F(x) = 0 requires that the n2 partial derivatives of the n 
component functions of F be determined and evaluated. In most situations, the exact eval
uation of the partial derivatives is inconvenient, although the problem has been made more 
tractable with the widespread use of symbolic computation systems, such as Maple. 
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When the exact evaluation is not practical, we can use finite difference approximations 
to the partial derivatives. For example, 

af· . f (x(i) + ekh) - f (x(i» 
---=c..J (X(I» ~ J J, 

aXk h 
(JO.1O) 

where h is small in absolute value and ek is the vector whose only nonzero entry is a 1 in 
the kth coordinate. This approximation, however, still requires that at least n2 scalar func
tional evaluations be perfmmed to approximate the Jacobian and does not decrease the 
amount of calculation, in general 0 (n 3), required for solving the linear system involving 
this approximate Jacobian. The total computational effort for just one iteration of Newton's 
method is consequently at least n2 + n scalar functional evaluations (n 2 for the evaluation 
of the Jacobian matrix and n for the evaluation of F) together with 0 (n 3) arithmetic oper
ations to solve the linear system. This amount of computational effort is extensive, except 
for relatively small values of n and easily evaluated scalar functions. 

In this section we consider a generalization of the Secant method to systems of nonlin
ear equations, a technique known as Broyden's method (see [Broy D. The method requires 
only n scalar functional evaluations per iteration and also reduces the number of arithmetic 
calculations to O(n2). It belongs to a class of methods known as least-change secant up
dates that produce algorithms called quasi-Newton. These methods replace the Jacobian 
matrix in Newton's method with an approximation matrix that is updated at each iteration. 
The disadvantage of the methods is that the quadratic convergence of Newton's method is 
lost, being replaced, in general, by a convergence called superlinear, which implies that 

X(i+l) _ p 
lim -"-,;------"..::.. = 0 

xU) - p , 1---> 00 

where p denotes the solution to F(x) = 0 and xU) and x U+ I) are consecutive approxima
tions to p. 

In most applications, the reduction to superlinear convergence is a more than accept
able trade-off for the decrease in the amount of computation. An additional disadvantage 
of quasi-Newton methods is that, unlike Newton's method, they are not self-correcting. 
Newton's method will generally correct for roundoff error with successive iterations, but 
unless special safeguards are incorporated, Broyden's method will not. 

To describe Broyden's method, suppose that an initial approximation x(O) is given to 
the solution p of F(x) = O. We calculate the next approximation x(!) in the same manner 
as Newton's method, or, if it is inconvenient to determine J (x(O» exactly, we use the dif
ference equations given by (10.10) to approximate the partial derivatives. To compute x (2) , 

however, we depart from Newton's method and examine the Secant method for a single 
nonlinear equation. The Secant method uses the approximation 

!'(Xl) ~ f(x\) - f(xo) 
Xl - Xo 

as a replacement for !'(x\) in Newton's method. For nonlinear systems, x(l) - xeD) is a vec
tor, and the corresponding quotient is undefined. However, the method proceeds similarly 
in that we replace the matrix J (x(\)) in Newton's method for systems by a matrix Al with 
the property that 

(10.11) 
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Any nonzero vector in IRn can be written as the sum of a multiple of x(1) - xeD) and a 
multiple of a vector in the orthogonal complement of xCI) - x CD). So, to uniquely define the 
matrix AI, we need to specify how it acts on the orthogonal complement ofx(l) _x(D). Since 
no information is available about the change in F in a direction orthogonal to x(l) - X(D), 

we require that 

(10.12) 

Thus, any vector orthogonal to x(l) - xeD) is unaffected by the update from 1 (X(D», which 
was used to compute x(l), to A I, which is used in the determination of X(2) . 

Conditions (l0.11) and (10.12) uniquely define Al (see [DM]) as 

(0) [F (x(l)) - F (xCD») - 1 (x(D») (x(1) - xeD»)] (x(1) - x(O)r 
Al = l(x ) + .---. 

I x(l) - xeD) II ~ 

It is this matrix that is used in place of 1 (x(l») to determine X(2) as 

X(2) = xCI) - A~IF (xCI)). 

Once x(2) has been determined, the method is repeated to determine x(3), using A I in 
place of AD = 1 (x(D»), and with x(2) and x(1) in place of x(l) and x(O). In general, once xU) 
has been determined, X(i+I) is computed by 

00.13) 

and 

(10.14) 

where the notation Yi = F (x(i») - F (xCi-I)) and Si = xCi) - x(i-I) is introduced to simplify 

the equations. 
If the method is performed as outlined in Eqs. (10.13) and (10.14), the number of scalar 

functional evaluations is reduced from n2 + n to n (those required for evaluating F (xU»)), 
but D(n 3) calculations are still required to solve the associated n x n linear system (see 
Step 4 in Algorithm 10.1) 

_ (i») Aisi+1 - -F (x . (10.15) 

Employing the method in this form would not be justified because of the reduction to 
superlinear convergence from the quadratic convergence of Newton's method. 

A considerable improvement can be incorporated, however, by employing a matrix 
inversion formula of Shennan and Morrison (see, for example, [DM, p. 55]). 

(Sherman-Morrison Formula) 
If A is a nonsingular matrix and x and Y are vectors, then A + xyt is nonsingular, provided 
that yt A - I X =I - 1, and 

• 
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The Shennan-Morrison formula permIts A;l to be computed directly from Ai-.!l' 

eliminating the need for a matrix inversion with each iteration. By letting A = Ai-I, 

X = (Yi - Ai-ISi)/lls;[I~, and Y = Si, Eg. (10.13) together with Theorem 10.8 imply that 

so 

A-. I = , 
-I 

Yi - Ai-lSi t 
A i - l + 2 Si 

Ils;l12 

A
-I Yi - Ai-lSi t -I 
. I '----=---S A I 

= Ai _\ ___ ' = ___ IIS_i,--II-".~ __ ' __ '~_ 
Yi - Ai-lSi 

1 tA-I + s· . I , t-
IIsi II~ 

(A - 1 ) tA- I 
= A-I _ i-IYi - Si Si i-I 

,-I 2 t -I 2 ' 
IIs;l12 + SiAi_IYi - IIs;llz 

( A-I) IA- I s - . S 
A-I _ A-I ' i-IY' i i-I . - . 1+ . 
"- tA- I 

Si i-IYi 

(10.16) 

This computation involves only matrix-vector multiplication at each step and therefore 
requires only O(n2) arithmetic calculations. The calculation of Ai is bypassed, as is the 
necessity of solving the linear system (10.15). Algorithm ID.2 follows directly from this 
construction, incorporating (10.16) into the iterative technique (10.14). 

Broyden 

To approximate the solution of the nonlinear system F(x) = 0 given an initial approxima
tion x: 

INPUT number n of equations and unknowns; initial approximation x = (XI, ... , xn)t; 

tolerance TOL; maximum number of iterations N. 

OUTPUT approximate solution x = (XI, ... , xn)1 or a message that the number of 
iterations was exceeded. 

Step 1 

Step 2 

Step 3 

Set Ao = J (x) where J (X)i,j = :ti (x) for 1 ::: i, j < n; 
) 

v = F(x). (Note: v = F(x(O).) 

Set A = AOI. 

Set S = -Av; 
x = x+ s; 
k = 2. 

(Use Gaussian elimination.) 

(Note: S = Sl.) 

(Note: x = x(l).) 

Step 4 While (k < N) do Steps 5-13. 

Step 5 Set w = v; (Save v.) 
v = F(x); (Note: v = F(X(k).) 

Y = v - w. (Note: Y = Yk.) 
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Step 6 Set z = -Ay .. (Note: z = -Ak~,Yd 

Step 7 

StepB 

Set p = -stz. 
, 

Step 9 Set A = A + ! (s + z)ut
. (Note: A = Ak'.) 

Step 10 Set s = -Av. (Note: s = -Ak'F(x(k).) 

Step 7 7 Set x = x + s. (Note: x = x(k+').) 

Step 72 If Ilsll < TOL then OUTPUT (x); 
(The procedure was successful.) 
STOP. 

Step 73 Set k = k + 1. 

Step 74 OUTPUT ('Maximum number of iterations exceeded'); 
(The procedure was unsuccessful.) 
STOP. 

The nonlinear system 

1 
3x, - COS(X2X3) - 2 = 0, 

xf - 81(x2 + 0.1)2 + sinx3 + 1.06 = 0, 

IOJr - 3 
e-XjX2 + 20X3 + = 0 

3 

• 

was solved by Newton's method in Example 1 of Section 10.2. The Jacobian matrix for 
this system is 

• 
X3 smX2X3 

-162(x2 + 0.1) 
_x,e-XjX2 

• 
X2 smX2X3 

COSX3 
20 

Let x(O) = (0.1, 0.1, -0.1)1 and 

where 

and 

F(X"X2,X3) = (f,(X"X2,X3), h(x"x2,x3), h(X],X2,X3»t, 

1 
II (x], X2, X3) = 3x] - COS(X2X3) - 2' 

h(x" X2, X3) = xf - 81(x2 + 0.1)2 + sinx3 + 1.06, 

• 
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Then 

-1.199950 
F (x(O)) = -2.269833 , 

8.462025 

and since 

( 
(0) (0) (0)) 

AD = J xI ' x2 ' x3 

we have 

So 

-
3 

0.2 
-9.900498 x 10-2 

A-I _ J ((0) (0) (0))-1 
o - xI' x2 ' x3 

0.3333332 
- 2.108607 x 10-3 

1.660520 X 10-3 

9.999833 X 10-4 

-32.4 
-9.900498 x 10-2 

1.023852 X 10-5 

-3.086883 X 10-2 

-1.527577 X 10-4 

0.4998697 

-9.999833 X 10-4 

0.9950042 
20 

1.615701 X 10--5 

1.535836 X 10-3 

5.000768 X 10-2 

. xO) = x(O) _ AolF (x(O)) = 1.946685 x 10-2 , 
-0.5215205 

-3.394465 X 10-4 

-0.3443879 
3.188238 x 10-2 

0.3998697 

, 

1.199611 
1.925445 

-8.430143 

SI = -8.053315 X 10-2 , 
-0.4215204 

si AolYI = 0.3424604, 

, 

All = Aol + 0/0.3424604) [(SI - AoIYI) S;Aol] 

8.967344 X 10-6 

• 

0.3333781 
-2.021270 x 10-3 

1.022214 X 10-3 

1.11050 X 10-5 

-3.094849 X 10-2 2.196906 X 10-3 . 

-1.650709 X 10-4 5.010986 X 10-2 

and 

625 
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0.4999863 
8.737833 x 10-3 

-0.5231746 
• 

Additional iterations are listed in Table 10.4. The fifth iteration of Broyden's method is 
slightly less accurate than was the fourth iteration of Newton's method given in the example 
at the end of the preceding section. -

k 
(k) 

XI 
(k) 

X2 
Ik) 

X3 Ilxlk) - Xlk - I)112 

3 0.5000066 8.672157 x 10-4 -0.5236918 7.88 x 10- 3 

4 0.5000003 6.083352 x 10-5 -0.5235954 8.12 x 10-4 

5 0.5000000 -1.448889 x 10-6 -0.5235989 6.24 x 10- 5 

6 0.5000000 6.059030 x 10-9 -0.5235988 1.50 x 10-6 

Procedures are also available that maintain quadratic convergence but significantly 
reduce the number of required functional evaluations. Methods of this type were originally 
proposed by Brown [Brow,K]. A survey and comparison of some commonly used methods 
of this type can be found in [MC]. In general, however, these methods are much more 
difficult to implement efficiently than Broyden's method. 

EXERCISE SET 10.3 

1. Use Broyden's method with XID) 

systems. 

a. 

I 
C. 3Xl - COS(X2X3) - 2 = 0, 

4x~ - 625xi + 2X2 - 1 = 0, 
IOrr - 3 

e-X1X2 + 20X3 + 3 = o. 

o to compute X
(2

) for each of the following nonlinear 

b. 

4rr - I 

4rr 

sin(4rr XIX2) - 2X2 - XI = 0, 

d. x~ + X2 - 37 = 0, 

XI - xi - 5 = 0, 

XI + X2 + X3 - 3 = O. 

2. Use Broyden's method to approximate solutions to the nonlinear systems in Exercise I. Iterate 
until IIx 'k) - Xlk- I)1100 < 10-6. The initial approximations XID) in Exercise 1 may not lead to 
convergence. If it does not, use a different value of XID). 

3. Use Broyden's method to find a solution to the following nonlinear systems. Iterate until 
II X1k) - Xlk - I) II 00 < 10-6. 

a. 3x~ - xi = 0, 

3xlxi - xi - I = O. 

Usex(D) = 0,1)'. 

b. In(x~ + xi) - sin(xlx2) = In 2 + In rr. 

eX
/-

X2 + COS(XIX2) = o. 
Use x(O) = (2, 2)'. 
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c. x? + XfX2 - XIX3 + 6 == 0, 

eXI + eX2 
- X3 = 0, 

xi - 2XIX3 == 4. 

d. 6xI - 2 COS(X2X3) - 1 = 0, 

9X2 + J x~ + sinx3 + 1.06 + 0.9 = 0, 

60X3 + 3e-X1X2 + IOn - 3 = O. 
Use x(O) = (-1, -2, I)'. Use x(O) = (0, 0, 0)'. 

4. Use Broyden's method to approximate solutions to the following nonlinear systems. Iterate 
until I X(k) - X(k-l) I 00 < 10-6 • 

a. x,(l-XI)+4X2=12, b. 5x~ - xi = 0, 

(XI - 2)2 + (2X2 - 3)2 = 25. X2 - 0.25(sinxl + COSX2) = o. 
C. 15xI + xi - 4X3 = 13, 

xf + lOx2 - X3 = 11, 

xi - 25x3 = -22. 

5. The nonlinear system 

d. lOx I - 2xi + X2 - 2X3 - 5 = 0, 

8xi + 4x~ - 9 = 0, 

8X2X3 + 4 = O. 

1 
3Xl - COS(X2X3) - 2 = 0, 

221 x -625x - - = 0 
I 2 4 ' 

IOn - 3 
e-X1X2 + 20X3 + = 0 

3 

has a singular Jacobian matrix at the solution. Apply Broyden's method with x(O) = (1, 1- 1)'. 
Note that convergence may be slow or may not occur within a reasonable number of iterations. 

6. The nonlinear system 

has six solutions. 

-XI + 3X2 - 2X3 = X2X4, 

XI - 2X2 + 3X3 = X3 X4, 

2 2 2 1 XI +X2 +X3 = 

a. Show that if (XI, X2, X3, X4)' is a solution then (-XI, -X2, -X3, -X4)' is a solution. 

b. Use Broyden's method three times to approximate each solution. Iterate until IX(k)

x(k-1t", < 10-5 . 

7. Exercise 13 of Section 8.1 dealt with determining an exponential least squares relationship 
of the form R = bwQ to approximate a collection of data relating the weight and respira
tion rule of Modest sphinx moths. In that exercise, the problem was converted to a log-log 
relationship, and in part (c), a quadratic term was introduced in an attempt to improve the 
approximation. Instead of converting the problem, determine the constants a and b that mini
mize L:7 I (Ri - bwf)2 for the data listed in Exercise 13 of 8.1. Compute the error associated 
with this approximation, and compare this to the error of the previous approximations for this 
problem. 

8. Show that if 0 "1= y E JR" and Z E JRn, then z = z, + Z2, where z, = (y'z/IIYII~)Y is parallel to 
y and Z2 is orthogonal to y. 

9. Show that ifu, v E JR". then det(l + Uy) = 1 + Yu. 
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10. a. Use the result in Exercise 9 to show that if A -I exists and x, y E IRn, then (A + xy')-I 
exists jf and only if y' A -I X 1= -1. 

b. By multiplying on the right by A + xy', show that when y' A -I X 1= -1 we have 

10.4 Steepest Descent Techniques 

The advantage of the Newton and quasi-Newton methods for solving systems of nonlin
ear equations is their speed of convergence once a sufficiently accurate approximation is 
known. A weakness of these methods is that an accurate initial approximation to the so
lution is needed to ensure convergence. The Steepest Descent method considered in this 
section converges only linearly to the solution, but it will usually converge even for poor 
initial approximations. As a consequence, this method is used to find sufficiently accurate 
starting approximations for the Newton-based techniques in the same way the Bisection 
method is used for a single equation. 

The method of Steepest Descent determines a local minimum for a multivariable func
tion of the form g : lRn ---+ R The method is valuable quite apart from the application as a 
starting method for solving nonlinear systems. (Some other applications are considered in 
the exercises.) 

The connection between the minimization of a function from lRn to lR and the solution 
of a system of nonlinear equations is due to the fact that a system of the fOlln 

II (Xl, Xz, ... , Xn) = 0, 

h(Xl,X2, ... ,Xn) = 0, 

• • 
• • 
• • 

has a solution at x = (Xl, X2, ... , xn)t precisely when the function g defined by 

has the minimal value O. 
The method of Steepest Descent for finding a local minimum for an arbitrary function 

g from Rn into lR can be intuitively described as follows: 

1. Evaluate g at an initial approximation x(O) = (X ~O) , xiO), ... , x~O) ) t . 

2. Detellnine a direction from x(O) that results in a decrease in the value of g. 

3. Move an appropriate amount in this direction and call the new value x(l). 

4. Repeat steps 1 through 3 with x(O) replaced by x(1). 
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Before describing how to choose the correct direction and the appropriate distance to 
move in this direction, we need to review some results from calculus. The Extreme Value 
Theorem states that a differentiable single-variable function can have a relative minimum 
only when the derivative is zero. To extend this result to multivariable functions, we need 
the following definition. 

DefInition 10.9 For g : JRn ~ JR, the gradient of g at x = (Xl, X2, ... ,xn)1 is denoted V g(x) and defined 
by 

Figure 10.3 

Vg(x) = 
8g 8g ag I 

a (x), a (x), ... 'a (x) 
Xl X2 Xn 

• • 

The gradient for a multivariable function is analogous to the derivative of a singJe
variable function in the sense that a differentiable multivariable function can have a relative 
minimum at x only when the gradient at x is the zero vector. 

The gradient has another important property connected with the minimization of mul
tivariable functions. Suppose that v = (VI, V2, ..• , Vn)1 is a unit vector in ]Rn; that is, 

n 

Ilvll~ = LV; = l. 
i=l 

The directional derivative of g at x in the direction of v is defined by 

. 1 
Dvg(x) = lim -[g(x+ hv) - g(x)] = VI. Vg(x). 

h-oh 

The directional derivative of g at x in the direction of v measures the change in the 
value of the function g relative to the change in the variable in the direction of v. 

z 

/------__ ~: Steepest descent direction 

:- :-------• 
I I 

X = (Xl. X2)' ~ 
- Vg(X) 
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A standard result from the calculus of multivariable functions states that, when g is 
differentiable, the direction that produces the maximum value for the directional derivative 
occurs when v is chosen to be parallel to \7 g(x), provided that \7 g(x) t= O. As a con
sequence, the direction of greatest decrease in the value of g at x is the direction given 
by - \7 g(x). (See Figure 10.3 on page 629 for an illustration when g is a function of two 
variables. ) 

The object is to reduce g(x) to its minimal value of zero, so an appropriate choice for 
x(1) is 

x(1) = x(O) - a"i.l g(x(O», for some constant a > 0. (10.17) 

The problem now reduces to choosing a so that g (x(l)) will be significantly less than 
g (x(O»). To determine an appropriate choice for the value a, we consider the single-variable 
function 

h(a) = g (x(O) - a\7g (x(O»)). (10.18) 

The value of a that minimizes h is the value needed for Eq. (l0.17). 
Finding a minimal value for h directly would require differentiating h and then solving 

a root-finding problem to determine the critical points of h. This procedure is generally too 
costly. Instead, we choose three numbers al < a2 < a3 that, we hope, are close to where 
the minimum value of h(rx) occurs. Then we construct the quadratic polynomial P(x) 
that interpolates h at ai, rx2, and a3. We define a in [ai, a3] so that pea) is a minimum 
in [ai, a3] and use pea) to approximate the minimal value of h(a). Then a is used to 
detennine the new iterate for approximating the minimal value of g: 

Since g (x(O») is available, we first choose rxl = ° to minimize the computation. Next a 
number rx3 is found with h(a3) < h(al). (Since al does not minimize h, such a number a3 
does exist.) Finally, a2 is chosen to be a3/2. 

The minimum value of P on [ai, a3] occurs either at the only critical point of P or 
at the right endpoint a3 because, by assumption, P(a3) = h(rx3) < head = P(al). The 
critical point is easily determined since P is a quadratic polynomial. 

To find a reasonable starting approximation to the solution of the nonlinear system 

1 
11 (XI, X2, X3) = 3xI - COS(X2X3) - 2 = 0, 

h(xI, X2, X3) = xf - 81(x2 + 0.1)2 + sinx3 + 1.06 = 0, 

xx 20 lOrr-3 0 h(XI,X2,x3)=e- 12 + X3+ 3 =, 

we use the Steepest Descent method with x(O) = (0,0,0)1. 
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Let g(x" X2, X3) = [f, (X" X2, X3)]Z + [f2(X" X2, X3)]2 + [h(x" X2, x3)f. Then 

alI ah ah 
V' g(XI, X2, X3) == V' g(x) = 2/, (x) (x) + 2h(x) (x) + 213 (x) (x), 

ax, ax, ax, 

alI ah 813 2/, (x) (x) + 2h(x) (x) + 213 (x) (x), 
aX2 8X2 aX2 

ai, 8h ah 2/, (x) (x) + 2fz(x) (x) + 2h(x) (x) 
aX3 OX3 aX3 

= 2J(x)/F(x). 

For x(O) = (0, 0, W, we have 

g (x(O») = 111.975 and Zo = IIV'g (x(O») 112 = 419.554. 

Let 

Z = ~V'g (x(o») = (-0.0214514, -0.0193062,0.999583)/. 
Zo 

With a, = 0, we have g, = g (x(O) - a,z) = g (x(O») = 111.975. We arbitrarily let a3 = I 
so that 

g3 = g (x(O) - a3z) = 93.5649. 

Since g3 < g" we accept a3 and set a2 = 0.5. Thus, 

g2 = g (x(O) - a2z) = 2.53557. 

We now fOIIn the Newton's forward divided-difference interpolating polynomial 

that interpolates 

g (x(O) - aVg (x(O»)) = g (x(O) - az) 

at a, = 0, a2 = 0.5, and a3 = 1 as follows: 

a, = 0, g, = 111.975, 

O 5 2 53557 h, = g2 - g, = -218.878, a2 = ., g2 =. , 
a2 - a, 

a3 = 1, g3 = 93.5649, 
g3 - g2 

h2 = = 182.059, 
a3 - a2 

Thus, 

pea) = 111.975 - 218.878ct + 400.937a(a - 0.5). 

We have pl(a) = 0 when a = ao = 0.522959. Since go = g (x(O) - aoz) = 2.32762 is 
smaller than g, and g3, we set 

x(1) = x(O) - aoz = x(O) - 0.522959z = (0.0112182,0.0100964, -0.522741)' 



632 

lable 10.5 

C HAP T E R 10 • Numerical Solutions of Nonlinear Systems of Equations 

and 

g (x(l)) = 2.32762. 

Table 10.5 contains the remainder of the results. A true solution to the nonlinear system 
is (0.5,0, -0.5235988)t, so x(2) would likely be adequate as an initial approximation for 
Newton's method or Broyden's method. One of these quicker converging techniques would 
be appropriate at this stage, since 70 iterations of the Steepest Descent method are required 
to find IIx(k) - xll oo < 0.01. • 

k X(k) (k) (k) g(xik
) , xik

) , 4» X z X3 1 

2 0.137860 -0.205453 -0.522059 1.27406 
3 0.266959 0.00551102 -0.558494 1.06813 
4 0.272734 -0.00811751 -0.522006 0.468309 
5 0.308689 -0.0204026 -0.533112 0.381087 
6 0.314308 -0.0147046 -0.520923 0.318837 
7 0.324267 -0.00852549 -0.528431 0.287024 

Algorithm 10.3 applies the method of Steepest Descent to approximate the minimal 
value of g (x). To begin an iteration, the value 0 is assigned to al and the value 1 is assigned 
to a3. If h(a3) ~ head, then successive divisions of a3 by 2 are perfOImed and the value 
of a3 is reassigned until h(a3) < h(al) and a3 = 2-k for some value of k. 

To employ the method to approximate the solution to the system 

II (XI, X2, ... ,xn ) = 0, 

h(xl, X2, ..• ,x,,) = 0, 

• • 
• • 
• • 

In (Xl, X2, ... ,Xn) = 0, 

we simply replace the function g with I:7 1 I?· 

Steepest Descent 

To approximate a solution p to the minimization problem 

g(p) = min g(x) 
xERn 

given an initial approximation x: 

INPUT number n of variables; initial approximation x = (XI, ... ,xn)t; tolerance 
TOL; maximum number of iterations N. 

OUTPUT approximate solution x = (Xl, ... , Xn)t or a message of failure. 

Step 1 Set k = 1. 
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Step2 While (k ~ N) do Steps 3-15. 

Step 3 Set gl = g(XI, ... , x n ); (Note: gl = g (X(k») .) 
z = Vg(XI,"" xn ); (Note: z = Vg (X(k»).) 
Zo = IIzllz. 

Step 4 If Zo = 0 then OUTPUT (,Zero gradient'); 
OUTPUT (XI, .. " Xn , gl); 
(The procedure completed, may have a minimum.) 

STOP. 

Step 5 Set z = z/zo; (Make z a unit vector.) 
al = 0; 
a3 = 1; 
g3 = g(x - a3z). 

Step 6 While (83 ::: gl) do Steps 7 and 8. 

Step 7 Set a3 = a3/2; 
83 = g(x - a3z). 

Step 8 If a3 < TOL/2 then 
OUTPUT ('No likely improvement'); 
OU'IPUT (XI, ... , Xn , gl); 
(The procedure completed, may have a minimum.) 

STOP. 

Step 9 Set az = a3/2; 
gz = g(x - azz). 

Step 10 Set hi = (g2 - gl)/a2; 
hz = (g3 - gZ)/(a3 - az); 
h3 = (hz - h l )/a3' 
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(Note: Newton's forward divided-difference formula is used to find 
the quadratic pea) = gl + hllX + h3a(a - az) that interpolates 

• 

h(a) at a = 0, a = ai, a = a3.) 

Step 11 Set aD = 0.5(az - hI! h3); (The critical point of P occurs at aD.) 
gO = g(x - aDz). 

Step 12 Find IX from {ao, a3} so that g = g(x - az) = min{gO, 83}. 

Step 13 Set x = x - az. 

Step 14 If 18 - 811 < TOL then 
OUTPUT (XI, ... , Xn , 8); 
(The procedure was successful.) 
STOP. 

Step 15 Set k = k + 1. 

Step 16 OU'IPUT ('Maximum iterations exceeded'); 
(The procedure was unsuccessful.) 
STOP. • 
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There are many variations of the method of Steepest Descent, some of which involve 
more intricate methods for determining the value of ex that will produce a minimum for 
the single-variable function h defined in Eq. (10.18). Other techniques use a multidimen
sional Taylor polynomial to replace the original multi variable function g and minimize the 
polynomial instead of g. Although there are advantages to some of these methods over 
the procedure discussed here, all the Steepest Descent methods are, in general, linearly 
convergent and converge independent of the starting approximation. In some instances, 
however, the methods may converge to something other than the absolute minimum of the 
function g. 

A more complete discussion of Steepest Descent methods can be found in [OR] or 
[RR]. 

E X ERe I S ESE T 10.4 

1. Use the method of Steepest Descent with TOL = 0.05 to approximate the solutions of the 
following nonlinear systems. 

a. 2 I 2 
4xj - 20Xj + 4X2 + 8 = 0, 

I 2 
"2X\X2 + 2Xj - 5X2 + 8 = O. 

c. In(xf + xi) - sin(xj X2) = In 2 + In rr, 

d. 

4Jl' - 1 

4Jl' 

sin(4Jl' XjX2) - 2X2 - Xl = 0, 

(e2x1 - e) + 4exi - 2exj = O. 

2. Use the results in Exercise 1 and Newton's method to approximate the solutions of the nonlin
ear systems in Exercise 1 to within 10-6 • 

Use the method of Steepest Descent with TOL = 0.05 to approximate the solutions of the 
following nonlinear systems. 

a. 15xj + xi - 4X3 == 13, 

xf + 10x2 - x) == 11, 

xi - 25x3 == -22. 

c. xi+xfx2-XjX3+6=0, 

eX, + eX2 - X3 = 0, 

xi - 2XjX3 = 4. 

b. lOx I - 2x? + X2 - 2X3 - 5 = 0, 

8x~ + 4x~ - 9 = 0, 

8XZX3 + 4 = O. 

d. Xj + COS(XIX2X) - I = 0, 

(l - Xl)I/4 + X2 + O.05xj - O.15x3 - 1 = 0, 

-Xf - O.Ix? + O.OlXl + X3 - I = 0. 
, 

3. Use the results of Exercise 3 and Newton's method to approximate the solutions to within 10-6 

for the nonlinear systems in Exercise 3. 



10.5 Homotopy and Continuation Methods 635 

4. Use the method of Steepest Descent to approximate minima to within 0.005 for the following 
functions. 

a. g(XI' X2) = cos (Xl + X2) + sin Xl + cos X2 

b. g(XI, X2) = IOO(x; - X2)2 + (1 - XI)2 

c. g(XI' X2, X3) = X~ + 2x~ + xi - 2XIX2 + 2xI - 2.SX2 - X3 + 2 

d. g(XI' X2, X3) = xi + 2xi + 3xj + 1.01 

5. a. Show that the quadratic polynomial 

interpolates the function h defined in (10.18): 

at cx = 0, CX2, and CX3. 

b. Show that a critical point of P occurs at 

1 
ao =-

2 

10.5 Homotopy and Continuation Methods 

Homotopy, or continuation, methods for nonlinear systems embed the problem to be solved 
within a collection of problems. Specifically, to solve a problem of the form 

F(x) = 0, 

which has the unknown solution x*, we consider a family of problems described using a 
parameter A that assumes values in [0, 1]. A problem with a known solution x(o) corre
sponds to A = 0, and the problem with the unknown solution x(l) = x* corresponds to 
A=1. 

For example, suppose x(o) is an initial approximation to the solution of F(x*) 
Define 

G : [0, 1] x ]Rn -+ ]Rn 

by 

-0 - . 

G(A, x) = )"F(x) + (1 - )..) [F(x) - F(x(O))] = F(x) + ().. - I)F(x(O». (10.19) 

We will detelluine, for various values of ).., a solution to 

G(J.., x) = o. 
When A = 0, this equation assumes the form 

0= G(O, x) = F(x) - F(x(O». 

and xeD) is a solution. When A = 1, the equation assumes the form 

0= G(1, x) = F(x), 

and x(l) = x* is a solution. 
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The function G, with the parameter ).., provides us with a family of functions that can 
lead from the known value x(O) to the solution x(1) = x*. The function G is called a 
homotopy between the function G(O, x) = F(x) - F(x(O» and the function G(l, x) = 

F(x). 
The continuation problem is to: 

Determine a way to proceed from the known solution x(O) of G(O, x) to the unknown 
solution x(1) = x* of G(l, x) = 0 that solves F(x) = O. 

We first assume that x()..) is the unique solution to the equation 

G().., x) = 0, (10.20) 

for each A E [0, 1]. The set {X(A) I 0 < ).. < 1 } can be viewed as a curve in ]Rn from x(O) 
to x(1) = x* parameterized by A. A continuation method finds a sequence of steps along 
this curve corresponding to {X()..k)}k=O' where )..0 = 0 < Al < ... < Am = 1. 

If the functions ).. ~ x()..) and G are differentiable, then differentiating Eq. (10.20) 
with respect to A gives 

O 
aG().., X(A» aG(A, X(A» '( ) 

= + XA, 
aA ax 

and solving for x' (A) gives 

aG(A, x()..» -I aG()", x()..» 
X'(A) = - ----. ax a).. 

This is a a system of differential equations with the initial condition x(O). 
Since 

we can determine both 

aG 
-a-x ().., X(A» = 

the Jacobian matrix, and 

G()", x()..» = F(X(A» + ().. - l)F(x(O», 

• 
• 
• 

ali (x()..» 
aX2 

ah (X(A» 
aX2 

• • • 

• • • 

afn (X(A» 
aXI 

afn (x()..» ... 
aX2 

aG().., x()..» = F(x(O». 
aA 

afl (x()..» 
aXn 

ah (X(A» 
aXn 

afn (X(A» 
aXn 

Therefore, the system of differential equations becomes 

X'(A) = -[J(X(A»rIF(x(O», for ° <).. :s 1, 

with the initial condition x(O). 

= J(x()..», 

(10.21) 

The following theorem (see [OR, pp. 230-231]) gives conditions under which the 
continuation method is feasible. 
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Theorem 10.10 Let F(x) be continuously differentiable for x E ]Rn. Suppose that the Jacobian matrix J (x) 

is nonsingular for all x E ]Rn and that a constant M exists with II J (x)-' II < M, for all 
x E lRn. Then, for any x(O) in ]Rn, there exists a unique function X(A), such that 

EXAMPLE 1 

G(A, X(A)) = 0, 

for all A in [0, 1]. Moreover, X(A) is continuously differentiable and 

X'(A) = -l(X(A))-'F(x(O)), for each A E [0, 1]. • 
The following example shows the form of the system of differential equations associ

ated with a nonlinear system of equations. 

Consider the nonlinear system 

I, (Xl, XZ, X3) = 3Xl - COS(XZX3) - 0.5 = 0, 

h(x" XZ, X3) = xf - 81(xz + O.1)Z + SinX3 + 1.06 = 0, 

xx IOn-3
0 h(X"X2,X3)=e- 12 +20X3+ 3 =. 

The Jacobian matrix is 
• • 

X3 sm X2X3 X2 sm X2X3 

lex) = -162(X2 + 0.1) COSX3 

Let x(O) = (0, 0, 0)1, so that 

_x,e-X1X2 

F(x(O)) = 
-1.5 
0.25 

IOn/3 

The system of differential equations is 

x; (A) 

X~(A) 
X3(A) 

• 

X3 smXZx 3 
-162(xz + 0.1) 

_x,e-X1X2 

20 

• 

• 

X2 smX2x3 
COSX3 

20 

-, 

• 

-1.5 

0.25 
IOn!3 

• • 

In general, the system of differential equations that we need to solve for our continua
tion problem has the form 

dx, 
dA = cP,(A,X"xz, ... ,xn ), 

dX2 
~ = cPZ(A, Xl, X2, ... ,Xn ), 
dA 

• 
• 
• 

dXn 
- = cPn (A., Xl, XZ, ••• ,Xn), 
dA 
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where 

¢>IO .. , Xl, ... ,Xn ) 

¢>2(A, Xl, ... ,Xn ) 

• 
• 
• 

il(X(O)) 
h(x(O)) 

• 
• 
• 

in (x(O)) 

• (10.22) 

To use the Runge-Kutta method of order four to solve this system, we first choose an 
integer N > 0 and let h = (1 - 0)/ N. Partition the interval [0, 1] into N subintervals with 
the mesh points 

A.j = jh, for each j = 0,1, ... , N. 

We use the notation wij, for each j = 0, I, ... , N and i = I, ... ,n, to denote an approx
imation to Xi(Aj). For the initial conditions, set 

W),O = x) (0), w2,O = X2(0) , . .. , Wn,O = Xn (0). 

Suppose w),j' W2,j, ... , Wn,j have been computed. We obtain WI,j+I, WZ,j+I, ... , 

Wn,j+l using the equations 

kl,i = h¢>i (A j, w),j, W2,j, ... , Wn,j), for each i = 1, 2, ... ,n; 

h 1 1 1 
Aj + 2' W),j + "2 k ),), WZ,j + 2 k I,2,'" ,Wn,j + "2 k ),n , 

for each i = I, 2, .. ... ,n; 

h 1 1 1 
Aj + 2' w),j + 2k2,), WZ,j + "2k2,z, ..• , Wn,j + "2k2,n , 

for each i = 1,2, ... ,n; 
• 

k 4,i = h¢>i(Aj + h, w).j + k3,), W2,j + k3,2, •.. ,Wn,j + k3,n), 

for each i = I, 2, . .. . ,n; 

and, finally 

1 
Wi,j+J = Wi,j + 6" (kl,i + 2k2,i + 2k3,i + ku) . for each i = 1, 2, ... ,n. 

We use the vector notation 

kl,l k2 ) • k 3, I k 4,) WI . ,J 

k1,2 k2,2 k3,z k4,2 W2 . ,J 
k)= • k2 = • k3 = • • ~= , and Wj = • • • • 

• • .. • • 
.. • .. • • 

kl,n k2,n k3,n k4,n Wra,j 

to simplify the presentation. 
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Eq. (10.22) gives us x(O) = x(Ao) = Wo, and for each j = 0,1, ... , N, 

and 

<PI (Aj, WI,},'" ,Wn,j) 

¢l(Aj, WI,}, ... ,wn,}) 

• 
• 
• 

<Pn(Aj, WI,}, ... ,wn,}) 

= h [-J(Wj)r
l 

F(x(O»; 

1 
w· + -kl 

J 2 

1 
k3 = h -J Wj + 2k2 

-I 

F(x(O»; 

-I 

F(x(O»; 

~ = h [-J (Wj + k3)r
l 

F(x(O»; 

Finally, x(An) = x(1) is our approximation to x*. 

We will approximate the solution to 

II (XI, X2, X3) = 3xI - COS(X2X3) - 0.5 = 0, 

h(xl, X2, X3) = xr - 81(x2 + 0.1)2 + sinx3 + 1.06 = 0, 

-x X2 !Orr - 3 0 
h(XI,X2,X3) = e I, +20X3 + 3 =. 

The Jacobian matrix is 

• • 

X3 sm X2X3 X2 sm X2X3 

J(x) = -162(x2 + 0.1) COSX3 
_xle-X1X2 20 

Let x(O) = (0, 0, 0)1, so that 

F(x(O» = (-1.5,0.25, 1Orr/3)'. 

With N = 4 and h = 0.25, we have 

3 
kl = h[ -J (x(O)r l F(x(O» = 0.25 0 

o 

o 
-16.2 

o 

o 
1 

20 

= (0.125, -0.004222203325, -0.1308996939)'; 

-I 
-1.5 
0.25 

!Orr 13 

• 
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k2 = h[-J(0.0625, -0.002111101663, -0.06544984695)r l (-1.5, 0.25, IOrr/3)! 

3 
=0.25 0.125 

0.002111380229 

-0.9043289149 X 10-5 

-15.85800153 
-0.06250824706 

-0.2916936196 X 10--6 -I 

0.9978589232 
20 

= (0.1249999773, -0.003311761993, -0.1309232406)1; 

-1.5 
0.25 

10rr /3 

k3 = h[-J(0.06249998865, -0.001655880997, -0.0654616203)]-1(-1.5,0.25, lOrr/3)1 

= (0.1249999844, -0.003296244825, -0.130920346)1; 

~ = h[-J(0.1249999844, -0.003296244825, -0.130920346)]-1(-1.5,0.25, lOrr/3)1 

= (0.1249998945, -0.00230206762, -0.1309346977)1; 

and 

1 
X()..I) = WI = Wo + 6[kI + 2k2 + 2k3 +~] 

= (0.1249999697, -0.00329004743, -0. 1309202608Y. 

Continuing, we have 

and 

X(AZ) = Wz = (0.2499997679, -0.004507400128, -0.2618557619/, 

X(A3) = W3 = (0.3749996956, -0.003430352103, -0.392763442W, 

X(A4) = x(I) = W4 = (0.4999999954,0.126782 x 10-7, -0.5235987758)1. 

The results obtained here are very accurate, since the actual solution is approximately 
(0.5,0, -0.52359877/. • 

In the Runge-Kutta method of order four, the calculation of each W j requires four ma
trix inversions, one each when computing k1, k2 , k3 , and~. Thus, using N steps requires 
4N matrix inversions. By comparison, Newton's method requires one matrix inversion per 
iteration. Therefore, the work involved for the Runge-Kutta method is roughly equivalent 
to 4N iterations of Newton's method. 

An alternative is to use a Runge-Kutta method of order two, such as the modified Euler 
method or even Euler's method, to decrease the number of inversions. Another possibility 
is to use smaller values of N. The following example illustrates these ideas. 

Table 10.6 summarizes a comparison of Euler's method, the Midpoint method, and the 
Runge-Kutta method of order four applied to the problem in Example 2 with initial ap
proximation x(O) = (0, 0, 0)1. • 

The continuation method can be used as a stand-alone method not requiring a particu
larly good choice of x(O). However, the method can also be used to give an initial approxi
mation for Newton's or Broyden's method. For example, the result obtained in Example 2 
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Method 

Euler 
Euler 
Midpoint 
Midpoint 
Runge-Kutta 
Runge-Kutta 

10.5 Homotopy and Continuation Methods 

N 

1 
4 
1 
4 
1 
4 

xCI) 

(0.5, -0.0168888133, -0.5235987755)' 
(0.499999379, -0.004309160698, -0.523679652)' 
(0.4999966628, -0.00040240435, -0.523815371)' 
(0.500000066, -0.00001760089, -0.5236127761)' 

(0.4999989843, -0.1676151 x 10-5 , -0.5235989561)' 
(0.4999999954,0.126782 x 10-7

, -0.5235987758)' 
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Number of Inversions 

1 
4 
2 
8 
4 

16 

using Euler's method and N = 2 might easily be sufficient to start the more efficient New
ton's or Broyden's methods and be better for this purpose than the continuation methods, 
which require more calculation. 

We note that in the Runge-Kutta methods, the steps similar to 

can be written as solving the linear system 

Continuation Algorithm 

To approximate the solution of the nonlinear system F(x) = 0 given an initial approxima
tion x: 

INPUT number n of equations and unknowns; integer N > 0; initial approximation 
x = (Xl, X2, ' ... , Xn)t. 

OUTPUT approximate solution x = (Xl, X2, ... , Xn)'. 

Step 1 Set h = 1/ N; 
b = -hF(x). 

Step 2 For i = 1, 2, ... , N do Steps 3-7. 

Step 3 Set A = lex); 
Solve the linear system Akl = b. 

Step 4 Set A = l(x + ikd; 
Solve the linear system Ak2 = h. 

Step 5 Set A = l(x + ik2); 
Solve the linear system At3 = h. 

Step 6 Set A = l(x + k3); 
Solve the linear system At3 = b. 
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Step 7 Set x = x + (k, + 2k2 + 2k3 + ~)/6. 

Step 8 OUTPUT (Xl, X2, ... , xn ); 

STOP. • 

EXERCISE SET 10.5 

1. The nonlinear system 

II (XI, X2) = x~ - x; + 2X2 = 0, 

12(XI,X2) = 2xI +x; - 6 = 0 

has two solutions, (0.625204094, 2.179355825)' and (2.109511920, -1.334532188)'. Use 
the continuation method and Euler's method with N = 2 to approximate the solutions where 

a. x(O) = (0,0)' h. x(O) = (I, I)' c. x(O) = (3, _2)' 

2. Repeat Exercise 1 using the Runge-Kutta method of order four with N = 1. 

3. Use the continuation method and Euler's method with N = 2 on the following nonlinear 
systems. 

a. 

c. 
I 

3XI - COS(X2X3) - - = 0, 
2 

4x~ - 625xi + 2x2 - I = 0, 

IOn - 3 
e-X'XZ + 20X3 + 3 = O. 

h. 

4n - I 

4n 

sin(47rxIX2) - 2X2 - XI = 0, 

(e 2x1 - e) + 4exi - 2exI = O. 

d. x~ + X2 - 37 = 0, 

XI - xi - 5 = 0, 

XI + X2 + X3 - 3 = O. 

4. Use the continuation method and the Runge-Kutta method of order four with N = I on 
Exercise 4 of Section 10.2 using x(O) = O. Are the answers here comparable to the results of 
Exercise 4 of Section 10.2, or are they suitable initial approximations for Newton's method? 

5. Repeat Exercise 4 using the initial approximation obtained in Exercise 2 of Section 10.2. 

6. Use the continuation method and the Runge-Kutta method of order four with N = 1 on 
Exercise 3 of Section 10.2. Are the results as good as those obtained. there? 

7. Repeat Exercise 5 using N = 2. 

8. Repeat Exercise 6 of Section 10.2 using the continuation method and the Runge-Kutta method 
of order four with N = 1. 

9. Repeat Exercise 5 of Section 10.2 using the continuation method and the Runge-Kutta method 
of order four with N = 2. 

10. Show that the continuation method and Euler's method with N = I gives the same result as 
Newton's method for the first iteration; that is, with x(O) = x(O) we always obtain x(l) = x(l). 

11. Show that the homotopy 

G(A, x) = F(x) - e-J.. F(x(O» 
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used in the continuation method with Euler's method and h = I also duplicates Newton's 
method for any x(O); that is, with x(O) = x(O), we have xCI) = x(l). 

12. Let the continuation method with the Runge-Kutta method of order four be ahhreviated 
CMRK4. After completing Exercises 4,5,6, 7, 8, and 9, answer the following questions. 

a. Is CMRK4 with N = I comparable to Newton's method? Support your answer with the 
results of earlier exercises. 

b. Should CMRK4 with N = 1 be used as a means to obtain an initial approximation for 
Newton's method? Support your answer with the results of earlier exercises. 

c. Repeat part (a) for CMRK4 with N = 2. 

d. Repeat part (b) for CMRK4 with N = 2. 

10.6 Survey of Methods and Software 

In this chapter we considered methods to approximate solutions to nonlinear systems 

11 (Xl, X2, ... , Xn) = 0, 

h(XI, X2, ... , Xn) = 0, 

• 
• 

Newton's method for systems requires a good initial approximation (x;O), xiO) . .... .r~O»)t 
and generates a sequence 

X(k) = X(k-I) _ J(X(k-I»)-IF(x(k-I»), 

that converges rapidly to a solution x if x(O) is sufficiently close to p. However, Newton's 
method requires evaluating, or approximating, n2 partial derivatives and solving an n by n 
linear system at each step, which requires O(n3) computations. 

Broyden's method reduces the amount of computation at each step without signifi
cantly degrading the speed of convergence. This technique replaces the Jacobian matrix 
J with a matrix Ak-I whose inverse is directly deteImined at each step. This reduces the 
arithmetic computations from 0 (n 3) to 0 (n 2 ). Moreover, the only scalar function eval
uations required are in evaluating the 1;, saving n2 scalar function evaluations per step. 
Broyden's method also requires a good initial approximation. 

The Steepest Descent method was presented as a way to obtain good initial approxi
mations for Newton's and Broyden's methods. Although Steepest Descent does not give a 
rapidly convergent sequence, it does not require a good initial approximation. The Steepest 
Descent method approximates a minimum of a multivariable function g. For our applica
tion we choose 

n 

g(XI, X2, ... , xn) = .L:[I; (Xl, X2, ... , Xn)]2. 
;=1 

The minimum value of g is 0, which occurs when the functions I; are simultaneously O. 
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Homotopy and continuation methods are also used for nonlinear systems and are the 
subject of current research (see [AG]). In these methods, a given problem 

F(x) = 0 

is embedded in a one-parameter family of problems using a parameter A that assumes 
values in [0, 1]. The original problem corresponds to A = 1, and a problem with a known 
solution corresponds to A = O. For example, the set of problems 

G(A, x) = AF(x) + (1 - A)(F(x) - F(Xo» = 0, for 0 < A < 1 - - , 

with fixed Xo E ]Rn forms a homotopy. When A = 0, the solution is X(A = 0) = Xo. 
The solution to the original problem corresponds to X(A = 1). A continuation method 
attempts to determine xC;. = 1) by solving the sequence of problems corresponding to 
AO = 0 < Al < A2 < ... < Am = 1. The initial approximation to the solution of 

would be the solution, X(A = Ai-d, to the problem 

The package Hompack in Netlib solves a system of nonlinear equations by using various 
homotopy methods. 

The nonlinear systems methods in the IMSL and NAG libraries are based on two sub
routines, HYBRD and HYBRJ, contained in MINPACK, a public-domain package. Both 
methods use the Levenberg-Marquardt method, which is a weighted average of Newton's 
method and the Steepest Descent method. The weight is biased toward the Steepest Descent 
method until convergence is detected, at which time the weight is shifted toward the more 
rapidly convergent Newton's method. The subroutine HYBRD uses a finite-difference ap
proximation to the Jacobian, and HYBRJ requires a user-supplied subroutine to compute 
the Jacobian. 

The IMSL subroutine NEQNF solves a nonlinear system without a user-supplied Ja
cobian. The subroutine NEQNJ is similar to NEQNF, except that the user must supply a 
subroutine to calculate the Jacobian. 

In the NAG library, C05NBF is similar to HYBRD. The subroutine C05PBF is similar 
to C05NBF, except that the user must supply a subroutine to compute the Jacobian. The 
subroutine C05PBF is based on HYBRJ in the MINPACK package. NAG also contains 
other modifications of the Levenberg-Marquardt method. 

A comprehensive treatment of methods for solving nonlinear systems of equations 
can be found in Ortega and Rheinbolt [OR] and in Dennis and Schnabel [DenS]. Recent 
developments on iterative methods can be found in Argyros and Szidarovszky [AS], and 
information on the use of continuation methods is available in Allgower and Georg [AG]. 
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A common problem in civil engineering concerns the detlection of a 

beam of rectangular cross section subject to uniform loading while the 

ends of the beam are supported so that they undergo no deflection. 

r--..... ,/ 

S S f;::. 
0 I x 

w(x) 

The differential equation approximating the physical situation is of 

the form 

tfw S qx . 
dx2 (x) = Elw(x) + 2E/x - f), 

where w(x) is the deflection a distance x from the left end of the beam, 

and l, q, E, S, and I represent, respectively, the length of the beam, the 

intensity of the uniform load, the modulus of elasticity, the stress at the 

endpoints, and the central moment of inertia. Since no detlection occurs 

at the ends of the beam, we also have the two boundary conditions 

w(O) = w(l) = O. 
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When the beam is of uniform thickness, the product EI is constant, 

and the exact solution is easily obtained. When the thickness is not uni

form, the moment of inertia I is a function of x, and approximation tech

niques are required. Problems of this type are considered in Exercises 7 

of Section 11.3 and 6 of Section 11.4. 

The differential equations in Chapter 5 are of first order and have one initial condi
tion to satisfy. Later in the chapter we saw that the techniques could be extended to sys
tems of equations and then to higher-order equations, but all the specified conditions are 
on the same endpoint. These are initial-value problems. In this chapter we show how to 
approximate the solution to boundary-value problems, differential equations with condi
tions imposed at different points. For first-order differential equations, only one condition 
is specified, so there is no distinction between initial-value and boundary-value.problems. 
We will be considering second-order equations with two boundary values. 

Physical problems that are position-dependent rather than time-dependent are often 
described in telms of differential equations with conditions imposed at more than one point. 
The two-point boundary-value problems in this chapter involve a second-order differential 
equation of the form 

y" = f(x, y, y'), a <x:::: b, (11.1) 

together with the boundary conditions 

yea) = a and y(b) = /3. (11.2) 

11.1 The Linear Shooting Method 

Theorem 11.7 

The following theorem gives general conditions that ensure that the solution to a second
order boundary value problem exists and is unique. The proof of this theorem can be found 
in [Keller, H]. 

Suppose the function f in the boundary-value problem 

y" = f(x, y, y'), a <x < b, yea) = a, y(b) = {3, 

is continuous on the set 

D = {(x, y, y') I a <x < b, -00 < y < 00, -00 < y' < oo}, 

and that the partial derivatives fy and f y' are also continuous on D. If 

(i) fy (x, y, y') > 0, for all (x, y, y') E D, and 

(ii) a constant M exists, with 

h(x,y,y') < M, for all (x,y,y') E D, 

then the boundary-value problem has a unique solution. • 
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The boundary-value problem 

y" + e-xy + siny' = 0, I <x < 2, y(1) = y(2) = 0, 

has 

f(x, y, y') = _e-XY - siny'. 

Since 

fy(x, y, y') = xe-XY > 0 and fy'(X, y, y') = 1 - cos y'l < 1. 

this problem has a unique solution. • 
When f(x, y, y') has the form 

f(x, y, y') = p(x)y' + q(x)y + rex), 

the differential equation 

y" = f (x, y, y') 

is linear. Problems of this type frequently occur, and in this situation, Theorem 11.1 can 
be simplified. 

Corollary 11.2 If the linear boundary-value problem 

y" = p(x)y' + q(x)y + rex), a < x <b, yea) = a, y(b) = (3, 

satisfies 

(i) p(x), q(x), and rex) are continuous on [a, b], 

(ii) q(x) > 0 on [a, b], 

then the problem has a unique solution. • 
To approximate the unique solution guaranteed by the satisfaction of the hypotheses 

of Corollary 11.2, let us first consider the initial-value problems 

y" = p(x)y' + q(x)y + rex), a <x < b, yea) = a, y'(a) = 0, (11.3) 

and 

y" = p(x)y' + q(x)y, a <x < b, yea) = 0, y'(a) = 1. (11.4) 

Theorem 5.16 in Section 5.9 ensures that under the hypotheses in Corollary 11.2, both 
problems have a unique solution. Let Yl (x) denote the solution to (11.3), Y2 (x) denote the 
solution to (11.4), and let 

(11.5) 
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Then 

'() '() fJ-YI(b) I ) Y X = YI X + Y2(X 
Y2(b) 

and 

"( ) _ I/() + fJ - YI (b) !/( ) Y X - YI X Yo x . 
Y2(b) ~ 

So 

1/ ( ) I () ) fJ - YI (b) ( ( ) I ) 
Y =p X YI +q X YI +r(x + yz(b) px h+q(X)Y2 

() 
I fJ-YI(b) I 

= P X YI + Y2(b) Y2 + q(x) 
fJ - YI (b) 

YI + Y2(b) Y2 + rex) 

= p(X)y'(X) + q(x)y(x) + rex). 

Moreover, 

fJ - YI(b) fJ - YI(b) 
yea) = YI (a) + Y2(a) = a + ·0 = a 

Y2(b) Y2(b) 

and 

fJ-YI(b) 
y(b) = YI(b) + Y2(b) Y2(b) = YI(b) + fJ - YI(b) = {3. 

Hence, y(x) is the unique solution to the linear boundary-value problem, provided, of 
course, that Y2 (b) "I O. (That Y2 (b) = 0 is in conflict with the hypotheses of Corollary 11.2 
is considered in Exercise 8.) 

The Shooting method for linear equations is based on the replacement of the linear 
boundary-value problem by the two initial-value problems (11.3) and (11.4). Numerous 
methods are available from Chapter 5 for approximating the solutions YI (x) and Y2 (x), 

and once these approximations are available, the solution to the boundary-value problem 
is approximated using Eq. (11.5). Graphically, the method has the appearance shown in 
Figure 11.1. 

Y 

f3 
f3 - y](b) 

y(x) = Yl(X) + yz(b) Yz(x) 

Yl(X) 

a b x 
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Algorithm 11.1 uses the fourth-order Runge-Kutta technique to find the approxima
tions to YI (x) and Y2(X), but another technique for approximating the solutions to initial
value problems can be substituted into Step 4. 

The algorithm has the additional feature of obtaining approximations for the derivative 
of the solution to the boundary-value problem as well as to the solution of the problem 
itself. The use of the algorithm is not restricted to those problems for which the hypotheses 
of Corollary 11.2 can be verified; it will work for many problems that do not satisfy these 
hypotheses. 

Linear Shooting 

To approximate the solution of the boundary-value problem 

-y" + p(x)y' + q(x)y + rex) = 0, a < x <b, yea) = ex, y(b) = {3 : 

(Note: Equations (11.3) and 01.4) are written as first-order systems and solved.) 

INPUT endpoints a, b; boundary conditions ex, (3; number of subintervals N. 

OUTPUT approximations w].i to y(Xi); W2.i to y'(Xi) for each i = 0, I, .. , , N. 

Step 7 Seth=(b-a)/N; 
UIO=ex; , 

U2,O = 0; 
Vl,O = 0; 
V2,O = 1. 

Step 2 For i = 0, ... , N - 1 do Steps 3 and 4. 
(The Runge-Kutta methodfor systems is used in Steps 3 and 4.) 

Step 3 

Step 4 

Set x = a + ih. 

Set kl 1 = hU2 i; , , 

k1,2 = h [p(x )U2,i + q (x )ul,i + r(x)]; 

k2,1 = h [U2,i + ~k1,2]; 
k2,2 = h [p(x + h/2) (U2,i + ~kl,2) 

+q(x + h/2) (U].i + ~kl,l) + rex + h/2)]; 

k3,1 = h [U2,i + ~k2,2]; 
k3,2 = h [p(x + h/2) (U2,i + ~k2,2) 

+q(x + h/2)(u].i + ~k2,1) + rex + h/2)]; 

k4 ,1 = h [U2,i + k3,2]; 

k4 ,2 = h [p(x + h)(U2,i + k3,2) + q(x + h)(ul,i + k3,1) + rex + h)]; 

Ul,i+l = UI,i + ~ [kl,l + 2k2,1 + 2k3,1 + k4 ,1]; 

U2,i+! = U2,i + ~ [k1,2 + 2k2,2 + 2k3,2 + k4 ,2]; 

ki,l = hV2,i; 
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Step 5 

k;,2 = h [p(X)V2,i + q(X)Vl,i]; 

k~, 1 = h [V2,i + ~ k; ,2]; 

k;,2 = h [p(X + h/2) (V2,i + ik;,2) + q(X + h/2) (Vl,i + ~k;,I)]; 

k~, I = h [V2,i + ; k;,2]; 

k~,2 = h [p(X + h/2) (V2,i + ik;,2) + q(X + h/2) (Vl,i + ~k~,I)]; 
k~, 1 = h [V2,; + k~,2]; 
k~,2 = h [p(X + h)(V2,i + k~,2) + q(X + h)(Vl,i + k~,I)]; 

Vl,i+1 = Vl,i + ~ [k;,1 + 2k;,1 +2k~,1 +k~,I]; 

V2,i+1 = V2,i + ~ [k;,2 + 2k;,2 + 2k~,2 + k~,2]. 

Set WI 0 = a; , 

{J-UI,N, 
W2,O = , 

Vl,N 
OUTPUT (a, WIO, W2,O), 

Step 6 For i = 1, ' , . , N 
set WI = Ul,i + W2,OV1,i; 

W2 = U2,i + W2,OV2,i; 
x=a+ih; 

OUTPUT (x, WI, W2). (Output is Xi, Wl,i, W2,i.) 

Step 7 STOP. (The process is complete.) 

The boundary-value problem 

/I 2 / 2 sin(lnx) 
y = --y + -y + --::--

X x 2 x 2 ' 
1 < X < 2, y(1) = 1, 

has the exact solution 

C2 
Y = CIX + -

x 2 

3 1 
10 sin(lnx) - 10 cos(lnx), 

where 

y(2) = 2, 

1 
C2 = [8 - 12 sin(ln 2) - 4cos(ln 2)] ~ -0.03920701320 

70 

and 

11 
CI = 10 - C2 ~ 1.1392070132. 

• 

Applying Algorithm 11.1 to this problem requires approximating the solutions to the 
initial-value problems 

/I 2 / 2 sin (In x) 
YI = --Y + -Yl + ---;:--

X 1 x 2 x2' 
1 < x < 2, Y; (1) = 0, 

> 
> --
-• 
• 
, 
, 

[ 

, 
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and 

/I 2, 2 0 1 
Y2 = --Y2 + -Y2, 1 <x ~ 2, Y2(l) = , Y2(l) = 1. 

x X2 

The results of the calculations, using Algorithm 11.1 with N = 10 and h = 0.1, are 
given in Table 11.1. The value listed as U l.i approximates YI (Xi), the value vl,i approxi
mates Y2 (Xi), and Wi approximates 

• 

x, U I . , , VI . , , Wi y(x;) Iy(x;) - wd 

1.0 1.00000000 0.00000000 1.00000000 1.00000000 
1.1 1.00896058 0.09117986 1.09262917 1.09262930 1.43 x 10-7 

1.2 1.03245472 0.16851175 1.18708471 1.18708484 1.34 x 10-7 

1.3 1.06674375 0.23608704 1.28338227 1.28338236 9.78 x 10-8 

1.4 1.10928795 0.29659067 1.38144589 1.38144595 6.02 x 10-8 

1.5 1.15830000 0.35184379 1.48115939 1.48115942 3.06 x 10-8 

1.6 1.21248372 0.40311695 1.58239245 1.58239246 1.08 x 10-8 

1.7 1.27087454 0.45131840 1.68501396 1.68501396 5.43 x lO- JO 

1.8 1.33273851 0.49711137 1.78889854 1.78889853 5.05 x 10-9 

1.9 1.39750618 0.54098928 1.89392951 1.89392951 4.41 x 10-9 

2.0 1.46472815 0.58332538 2.00000000 2.00000000 

The accurate results in this example are due to the fact that the fourth-order Runge
Kutta method gives O(h4) approximations to the solutions of the initial-value problems. 
Unfortunately, because of roundoff errors, there can be problems hidden in this technique. 
If ydx) rapidly increases as x goes from a to b, then U I,N ~ YI (b) will be large. If f3 is 
small in magnitude compared to UI,N. the teIm W2,O = (f3 - UI,N )/VI,N will be approxi
mately -UI.N/VI,N. The computations in Step 6 then become 

WI=uI +W20VI'~UI'-,I ,,' ,I 

W2 = U2 + W2 OV2 . ~ U2 . -,I • ,l ,l 

UI,N 

VI,N 

Ul,N 

Vl,N 

VI i, , 

V2,i, 

which allows a possibility of a loss of significant digits due to cancellation. However, since 
UI,i is an approximation to YI (Xi), the behavior of Yl can easily be monitored, and if Ul,i 

increases rapidly from a to b, the shooting technique can be employed backward from 
Xo = b to XN = a; that is, solving instead the initial-value problems 

y" = p(X)Y' + q(x)y + rex), a ~ X <b, y(b) = f3, y'(b) = 0, 

and 

y" = p(X)Y' +q(x)y, a <x:::: b, y(b) = 0, y'(b) = 1. 
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If this reverse shooting technique still gives cancellation of significant digits and if 

increased precision does not yield greater accuracy, other techniques must be used, such 

as those presented later in this chapter. In general, however, if Ul,i and VI,i are O(h n ) 

approximations to YI (Xi) and Y2 (Xi), respectively, for each i = 0, 1, ... , N, then Wl,i will 

be an O(hn
) approximation to Y(Xi). In particular, 

VI . 
Iwl,i - y(xi)1 < Khn 1 + ,t, 

VI,N 

for some constant K (see [IK, p. 426]). 

EXERCISE SET 11.1 

1. The boundary-value problem 

y" = 4(y - x), 0 <x < 1, yeO) = 0, y(l) = 2, 

has the solution y(x) = e2 (e4 - l)-l(e2< - e-2<) + x. Use the Linear Shooting method to 
approximate the solution, and compare the results to the actual solution. 

a. With h = !. b. With h = 4
1

• 
2 ' 

2. The boundary-value problem 

y"=y'+2y+cosx, O<x<~, y(O) =-0.3, y(~)=-O.l 

has the solution y(x) = - 1~ (sin x + 3 cos x). Use the Linear Shooting method to approximate 
the solution, and compare the results to the actual solution. 

a. With h = ;; b. With h = ;. 

3. Use the LinearShooting method to approximate the solution to the following boundary-value 
problems. 

a. y"=-3y'+2y+2x+3, O<x<l, y(O) =2, y(I)=I; useh=O.1. 

b. yll=-;y'+~y-~lnx, 1 <x <2, y(1)=-~, y(2)=ln2; useh=0.05. 

c. y"=-(x+I)y'+2y+(1-x2)e-x , O<x<l, y(O)=-I, y(1)=O; useh=O.1. 

d. yll=~+!>y+l:X_I, l<x<2,y(1)=y(2)=O;useh=0.1. 

4. Although q(x) < 0 in the following boundary-value problems, unique solutions exist and 
are given. Use the Linear Shooting Algorithm to approximate the solutions to the following 
problems, and compare the results to the actual solutions. 

a. y" + y = 0, O::'S x < ;, yeO) = I, y(;) = 1; use h = ;0; actual solution 

y(x) = cosx + (.J2 - I) sinx. 

b. y" + 4y = cosx, 0 < x < ;, yeO) = 0, y(;) = 0; use h = ~; actual solution 

y(x) = -~ cos2x -1 sin2x + ~ cosx. 

c. y" = -;y' - ~y+ -!r lnx, 1 <x< 2, y(1) = ;, y(2) = In2; useh = 0.05; actual 

solution y(x) = 4 - !r + lnx - 2
3

• x x 

d. y" = 2y' - Y + xex - x, 0 < x < 2, yeO) = 0, y(2) = -4; use h = 0.2; actual 
solution y(x) = ~x3eX - ~xex + 2ex - x - 2. 
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S. Use the Linear Shooting Algorithm to approximate the solution y = e- lOx to the boundary
value problem 

y" = l00y, 0 <x < 1, yeO) = 1, y(l) = e- IO
• 

Use h = 0.1 and 0.05. 

6. Write the second-order initial-value problems (11.3) and (11.4) as first-order systems, and 
derive the equations necessary to sol ve the systems using the fourth-order Runge· Kutta method 
for systems. 

7. Let u represent the electrostatic potential between two concentric metal spheres of radii R I and 
Rz (RI < R2)' The potential of the inner sphere is kept constant at VI volts, and the potential 
of the outer sphere is 0 volts. The potential in the region between the two spheres is governed 
by Laplace's equation, which, in this particular application, reduces to 

d 2u 2 du __ +- =0, RI <r<R2, u(RI ) = VI, U(R2) =0. 
dr2 r dr 

Suppose RI = 2 in., R2 = 4 in., and VI = 110 volts. 

a. Approximate u(3) using the Linear Shooting Algorithm. 

b. Compare the results of part (a) with the actual potential u(3), where 

• 

8. Show that, under the hypothesis of Corollary 11.2, if Y2 is the solution to y" = p(x) y' + q (x) y 
and Y2(a) = Y2(b) = 0, then Y2 = O. 

9. Consider the boundary-value problem 

y" + y = 0, 0 <x < b, yeO) = 0, y(b) = B. 

Find choices for band B so that the boundary-value problem has 

a. No solution; 

b. Exactly one solution; 

c. Infinitely many solutions. 

10. Attempt to apply Exercise 9 to the boundary-value problem 

" 0 y - y = , o <x < b, yeO) = 0, y(b) = B. 

What happens? How do both problems relate to Corollary 11.2? 

11.2 The Shooting Method for Nonlinear Problems 

The shooting technique for the nonlinear second-order boundary-value problem 

y" = f(x, y, y'), a::::: x < b, yea) = 0', y(b) = {3, (1l.6) 

is similar to the linear technique, except that the solution to a nonlinear problem cannot be . 
expressed as a linear combination of the solutions to two initial-value problems. Instead, 
we approximate the solution to the boundary-value problem by using the solutions to a 
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sequence of initial-value problems involving a parameter t. These problems have the fonn 

yl/=/(x,y,y'), a~x~b, y(a)=a, y'(a)=t. (11:7) 

We do this by choosing the parameters t = tk in a manner to ensure that 

lim y(b, tk) = y(b) = p, 
k-+oo 

where y(x, tk) denotes the solution to the initial-value problem (11.7) with t = tk, and y(x) 
denotes the solution to the boundary-value problem (11.6). 

y 

f3 
y(b, to) 

a (a, a) 

a 

(b, y(b, to» 

y(x, to) 

Slope to 

b x 

This technique is called a "shooting" method, by analogy to the procedure of firing 
objects at a stationary target. (See Figure 11.2.) We start with a parameter to that determines 
the initial elevation at which the object is fired from the point (a, a) and along the curve 
described by the solution to the initial-value problem: 

yl/ = I(x, y, y'), a ~ x ~ b, yea) = a, y'(a) = to. 

If y(b, to) is not sufficiently close to p, we correct our approximation by choosing 
elevations t\, t2, and so on, until y(b, td is sufficiently close to "hitting" p. (See Figure 
11.3.) 

To detennine the parameters tb suppose a boundary-value problem of the form (11.6) 
satisfies the hypotheses of Theorem 11.1. If y(x, t) denotes the solution to the initial-value 
problem (11.7), we next determine t with 

y(b, t) - fJ = O. ( 11.8) 

This is a nonlinear equation of the type considered in Chapter 2, so a number of methods 
are available. 

To use the Secant method to solve the problem, we need to choose initial approxima
tions to and t 1, and then generate the remaining tenns of the sequence by 
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Y 

y(b, t2) 

y(b, t3) 

y(b, t I) 
y(b, to) 

- f3 -------------------

a (a, a) 

a b 

Y(X, t2) 
-
Y(X, t3 ) 

y(X, t I) 
y(X, to) 
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x 

To use the more powerful Newton's method to generate the sequence {tk}, only one 
initial approximation, to, is needed. However, the iteration has the form 

y(b, tk-d - f3 
tk = tk-I - d ' 

¥,(b, tk-I) 
(11.9) 

and it requires the knowledge of (dyjdt)(b, tk-I). This presents a difficulty since an ex
plicit representation for y(b, t) is not known; we know only the values y(b, to), y(b, tl)' 
... , y(b, tt-I). 

Suppose we rewrite the initial-value problem (11.7), emphasizing that the solution 
depends on both x and the parameter t: 

y"(X, t) = f(x, y(x, t), y'(x, t», a::5 x ::5 b, yea, t) = a, y'(a, t) = t. (11.10) 

We have retained the prime notation to indicate differentiation with respect to x. Since 
we need to determine (dyjdt)(b, t) when t = tk-I, we first take the partial derivative of 
(11.10) with respect to t. This implies that 

ay" af , 
a (x,t)= (x,y(x,t),y(x,t» 

t at 

af ,ax af ,ay 
= ax (x, y(x, t), y (x, t» at + ay (x, y(x, t), y (x, t» at (x, t) 

af ,ay' 
+ (x,y(x,t),Y(X,t» (X,t). 

oy' at 

Since x and t are independent, ax j at = 0 and 

ay" af ,ay af ,ay' 
a (X,t) = a (x,y(x,t),y(x,t»a (X,t)+ a (x,y(x,t),y(x,t» (x,t), 

t y t y' at 
(11.11) 
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for a < x < b. The initial conditions give 

ay 
-(a, t) = 0 at and 

ay' 
-(a, t) = 1. at 

If we simplify the notation by using z(x, t) to denote (ay / at) (x , t) and assume that 
the order of differentiation of x and t can be reversed, (11.11) with the initial conditions 
becomes the initial-value problem 

/I af , af , , 
Z (x,t)= (x,y,y)z(x,t)+ (x,y,y)z(x,t), 

ay ay' 
(1l.l2) 

a::: x <b, z(a, t) = 0, z'(a, t) = 1. 

Newton's method therefore requires that two initial-value problems be solved for each 
iteration, (1l.l0) and (11.12). Then from Eq. (11.9), 

y(b, tk-I) - fJ 
tk = tk-I - . 

z(b, tk-I) 
(1l.l3) 

Of course, none of these initial-value problems is solved exactly; the solutions are ap
proximated by one of the methods discussed in Chapter 5. Algorithm 11.2 uses the Runge
Kutta method of order four to approximate both solutions required by Newton's method. 
A similar procedure for the Secant method is considered in Exercise 4. 

Nonlinear Shooting with Newton's Method 

To approximate the solution of the nonlinear boundary-value problem 

y" = f(x, y, y'), a::: x ::: b, yea) = IX, y(b) = fJ : 
• 

(Note: Equations (11.10) and (11.12) are written as first-order systems and solved.) 

INPUT endpoints a, b; boundary conditions IX, fJ; number of subintervals N > 2; toler
ance TOL; maximum number of iterations M. 

OUTPUT approximations WI,; to y(x;); WZ,; to y'(x;) for each i = 0,1,.,. , N or a 
message that the maximum number of iterations was exceeded. 

Step 1 Seth = (b-a)/N; 
k = 1; 
TK = (fJ - a)/(b - a). (Note: TK could also be input.) 

Step 2 While (k < M) do Steps 3-10. 

Step 3 Set WI,O = IX; 

Wz,O = TK; 
UI = 0; 
Uz = 1. 

Step 4 For i = 1, ... , N do Steps 5 and 6. 
(The Runge-Kutta method for systems is used in Steps 5 and 6.) 
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Step 5 Setx = a + (i - l)h. 

Step 6 Setkll = hWZi-l; . , 

k1,2 = hf(x, WI,i-1 WZ,i-I); 

kz,1 = h (WZ,i-1 + 1k l,z); 

kz,z = hf (x + h12, Wl,i-l + ikl,l, WZ,i-1 + ~k1,2); 
k3,1 = h (WZ,i-1 + ~kz,z); 
k3,Z = hf (x + h12, WI,i-1 + ~kZ,I' WZ,i-1 + ~k2,2); 
k4.1 = h(W2,i-l + k3.Z); 

k4.2 = hf(x + h, WI,i-1 + k3.1, WZ,i-1 + k3,2); 

WI,i = WI,i-1 + (kl,l + 2kz,1 + 2k3,1 + k 4. 1)/6; 

WZ,i = WZ,i-1 + (ki,2 + 2kz,z + 2k3,z + k4,2) /6; 

k; I = huz; , 

k;,z = h[fy(x, WI,i-l, WZ,i-I)UI 

+ f y' (x, Wl,i-I, WZ,i-1 )uz]; 

k;,1 = h [uz + ~k;,2]; 
k;,2 = h [fy(x + h/2, WI,i-l, WZ,i-l) (UI + ~k;,l) 

+ h(x + h/2, WI,i-l, WZ,i-l) (U2 + ~k;.z)]; 

k~,1 = h (uz + ~k;,2); 
k~,z = h [fy(x + h/2, WI,i-l, WZ,i-l) (UI + ~k;,I) 

+ h(x + h/2, WI,i-l, W2,i-l) (U2 + ~k;,2)]; 

k~,1 = h(U2 + k~,2); 
k~,2 = h [fy(x + h, Wl,i-I, WZ,i-l) (Ul + k~,I) 

+ h(x + h, Wl,i-I, W2,i-l) (U2 + k~,z)]; 

UI = UI + ~[k;,1 + 2k;.1 + 2k~,1 + k~.d; 
Uz = Uz + ~ [k;,2 + 2k;,2 + 2k~,2 + k~,21. 

Step 7 If IWI,N -.81 < TOL then do Steps 8 and 9. 

Step 8 For i = 0, 1, ... , N 
set x = a + ih; 
OUTPUT (x, WI,i, W2,i)· 

Step 9 (The procedure is complete.) 
STOP. 

Step 70 Set TK = TK _ wl,N -.8; 
Ul 

(Newton's method is used to compute TK.) 
k=k+l. 
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Table 11.2 
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Step 11 OUTPUT ('Maximum number of iterations exceeded'); 
(The procedure was unsuccessful.) 
STOP. • 

The value to = TK selected in Step 1 is the slope of the straight line through Ca, a) 
and C b, fJ). If the problem satisfies the hypotheses of Theorem 11.1, any choice of to will 
give convergence, but a good choice of to will improve convergence, and the procedure will 
work for many problems that do not satisfy these hypotheses. 

Consider the boundary-value problem 

1/ 1 3' Y = 8 (32 + 2x - yy ), I :::: x < 3, y(1) = 17, 
43 

y(3) = 3 ' 

which has the exact solution y(x) = x 2 + 16/x. 
Applying the Shooting method given in Algorithm 11.2 to this problem requires ap

proximating solutions to the initial-value problems 

1/ 1 3 ') Y = 8 (32 + 2x - yy , 1:::: x <3, y(1) = 17, y'(I) = tk, 

and 

" at at, 1" ) 0 ' 1 
Z = ay Z + ay'Z = - 8 (y Z + yz), 1:::: x <3, z(1 = , Z (1) = , 

Xj WI· ,I Y(Xj) IWI. , - y(xj)1 

1.0 17.000000 17.000000 
1.1 15.755495 15.755455 4.06 x 10-5 

1.2 14.773389 14.773333 5.60 x 10-5 

1.3 13.997752 13.997692 5.94 x 10-5 

1.4 13.388629 13.388571 5.71 x 10-5 

1.5 12.916719 12.916667 5.23 x 10-5 

1.6 12.560046 12.560000 4.64 x 10-5 

1.7 12.301805 12.301765 4.02 x 10-5 

1.8 12.128923 12.128889 3.14 x 10-5 

1.9 12.031081 12.031053 2.84 x 10-5 

2.0 12.(X)OO23 12.000000 2.32 x 10-5 

2.1 12.029066 12.029048 1.84 x 10-5 

2.2 12.112741 12.112727 1.40 x 10-5 

2.3 12.246532 12.246522 1.01 x 10-5 

2.4 12.426673 12.426667 6.68 x 10-6 

2.5 12.650004 12.650000 3.61 x 10-6 

2.6 12.913847 12.913845 9.17 x 10-7 

2.7 13.215924 13.215926 1.43 x 10-6 

2.8 13.554282 13.554286 3.46 x 10-6 

2.9 13.927236 13.927241 5.21 x 10-6 

3.0 14.333327 14.333333 6.69 x 10-6 
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at each step in the iteration. If the stopping technique requires 

then we need four iterations and t4 = -14.000203. The results obtained for this value of t 
are shown in Table 11.2. • 

Although Newton's method used with the shooting technique requires the solution 
of an additional initial-value problem, it will generally give faster convergence than the 
Secant method. Both me~ods are only locally convergent since they require good initial 
approximations. For a general discussion of the convergence of the shooting techniques 
for nonlinear problems, the reader is referred to the excellent book by Keller [Keller. H). 
In that reference, more general boundary conditions are discussed. It is also noted that the 
shooting technique for nonlinear problems is sensitive to roundoff errors, especially if the 
solution y(x) and z(x, t) are rapidly increasing functions of x on [a, b). 

EX ERe I S ESE T 11.2 

1. Use the Nonlinear Shooting Algorithm with h = O.S to approximate the solution to the 
boundary-value problem 

y" = _(y')2 _ Y + Inx. 1 <x < 2, y(1) = 0, y(2) = In2. 

Compare your results to the actual solution y = In x. 

2. Use the Nonlinear Shooting Algorithm with h = 0.25 to approximate the solution to the 
boundary-value problem 

" 2 3 Y = y, -1 < x :::: 0, 
1 

y(-I)=2' 

Compare your results to the actual solution y(x) = 1/(x + 3). 

1 
yeO) = 3' 

3. Use the Nonlinear Shooting method with TOL = 10-4 to approximate the solution to the fol
lowing boundary-value problems. The actual solution is given for comparison to your results. 

a. y" = y3 - yy', 1 < x < 2, y(1) = ~, y(2) = t; use h = 0.1; actual solution 
y(x) = (x + I)-I. 

b. y" = 2y 3 - 6y - 2x 3 , 1:::: x < 2, y(l) = 2, y(2) = ~; use h = 0.1; actual solution 
y(x) = x + X-I 

c. y" = y' + 2(y -lnx)3 - X-I, 2 <x < 3, y(2) = ; + In2, y(3) = ~ + In3; use 
h = 0.1; actual solution y(x) = X-I + lnx. 

d. y" = [x2(y')2 - 9y2 + 4x6J1x 5
, 1 < x < 2, y(l) = 0, y(2) = In256; use h = 0.05; 

actual solution y(x) = x 3 1nx. 

4. Change Algorithm 11.2 to incorporate the Secant method instead of Newton's method. Use 
to = (f3 - a)/(b - a) and tl = to + (f3 - y(b, to»/(b - a). 

5. Repeat Exercise 3(a) and 3(c) using the Secant algorithm derived in Exercise 4, and compare 
the number of iterations required for the two methods. 
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6. The Van der Pol equation, 

y" - f..t(y2 - l)y' + y = 0, f..t > 0, 

governs the flow of current in a vacuum tube with three internal elements. Let f..t = ~, yeO) = 
0, and y(2) = 1. Approximate the solution yet) for t = 0.2i, where I < i ::5 9. 

11.3 Finite-Difference Methods for Linear Problems 

The linear and nonlinear Shooting methods for boundary-value problems can present prob
lems of instability. The methods in this section have better stability characteristics, but they 
generally require more computation to obtain a specified accuracy. 

Methods involving finite differences for solving boundary-value problems replace 
each of the derivatives in the differential equation with an appropriate difference-quotient 
approximation of the type considered in Section 4.1. The particular difference quotient and 
step size h are chosen to maintain a specified order of truncation error. However, h cannot 
be chosen too small because of the instability of the derivative approximations. 

The finite difference method for the linear second-order boundary-value problem, 

y" = p(x)y' + q(x)y + rex), a <X < b, yea) = a, y(b) = {3, (11.14) 

requires that difference-quotient approximations be used to approximate both y' and y". 
First, we select an integer N > 0 and divide the interval [a, b] into (N + 1) equal subin
tervals whose endpoints are the mesh points Xi = a + ih, for i = 0, 1, ... , N + 1, where 
h = (b - a)j(N + 1). Choosing the step size h in this manner facilitates the application 
of a matrix algorithm from Chapter 6, which solves a linear system involving an N x N 
matrix. 

At the interior mesh points, Xi, for i = 1, 2, ... , N, the differential equation to be 
approximated is 

y" (Xi) = P (Xi) y' (Xi) + q (Xi) Y (Xi) + r (Xi)· (11.15) 

Expanding y in a third Taylor polynomial about Xi evaluated at Xi+1 and Xi-I, we have, 
assuming that y E C4

[Xi_l, xi+d, 

for some ~t in (Xi, Xi+I), and 
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for some ~i- in (Xi -I, Xi). If these equations are added, we have 

and solving for y" (Xi) gives 

The Intetmediate Value Theorem can be used to simplify this to 

(11.16) 

for some ~i in (Xi-I, Xi+l)' This is called the centered-difference formula for y"(x;). 
A centered-difference formula for y' (Xi) is obtained in a similar manner (the details 

were considered in Section 4.1), resulting in 

(11.17) 

for some '7i in (Xi-I, Xi+l)' 
The use of these centered-difference fOllnulas in Eq. (11.15) results in the equation 

y(xi+d - Y(Xi-l) + ( ) ( ) 
2h q Xi Y Xi 

A Finite-Difference method with truncation error of order O(h2) results by using this 
equation together with the boundary conditions yea) = a and y(b) = fJ to define 

and 

-Wi+1 + 2Wi - Wi-I 

h2 

for each i = 1, 2, ... , N. 

Wo = a, 

+ P(Xi) + q(Xi)Wi = -r(xi), 

In the fOlln we will consider, Eq. (11.18) is rewritten as 

(11.18) 

and the resulting system of equations is expressed in the tridiagonal N x N matrix fOlIn 

Aw = b, where (11.19) 
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h 
2 + h2q(XI) 

h 
-1 + 2 P(XI) 0:::·························· 0 

• • 

2 + h2q(X2) -1 - 2 P(X?! 
• 

• 

• 
• • • • • 

A= o. o • • • • • • • 
• 

• • • • 
• . . h • • • • • • 

• • . . -I + 2 P(XN I) 

. '. h'· . . . , 

• 
• 

• • 
• • 

• · . 
0························ ::·0 -I - 2 P (XN) . 2+h-q(XN) 

h 
I+

2
P(XI) Wo 

w= • 
• and b = • , 
• • 

The following theorem gives conditions under which the tridiagonal linear system 
(11.19) has a unique solution. Its proof is a consequence of Theorem 6.29 and is considered 
in Exercise 9. 

Suppose that p, q, and r are continuous on [a, b]. If q(x) > 0 on [a, b], then the tridi
agonal linear system (1l.19) has a unique solution provided that h < 2jL, where L 
maxa<x:cb Ip(x)l· • 

• 
It should be noted that the hypotheses of Theorem 11.3 guarantee a unique solution to 

the boundary-value problem (11.14), but they do not guarantee that y E C4 [a, b J. We need 
to establish that l4) is continuous on [a, b J to ensure that the truncation error has order 
O(h2). 

Algorithm 11.3 implements the Linear Finite-Difference method. 

Linear Finite-Difference 

To approximate the solution of the boundary-value problem 

y" = p(x)y' + q(x)y + rex), a < x <b, yea) = a, y(b) = /3 : 

INPUT endpoints a, b; boundary conditions a, /3; integer N > 2. 

OUTPUT approximations Wi to y (Xi) for each i = 0, 1, ... , N + 1. 

Step 1 Set h = (b - a)j(N + I); 
x = a + h; 
al = 2 + h2q(x); 
b l = -1 + (hj2)p(x); 
d l = -h 2r(x) + (1 + (hj2)p(x»a. 

, 
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Step 2 For i = 2, ... ,N - 1 
set x = a + ih; 

ai = 2 + h2q(X); 

b i = -1 + (h/2)p(x); 
Ci = -1 - (h/2)p(x); 
di = -h 2r(x). 

Step 3 Set x = b - h; 
aN = 2 + h2q(x); 

CN = -1 - (h/2)p(x); 
dN = -h2r(x) + (1 - (h/2)p(x»f3. 
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Step 4 Set 11 = a1; (Steps 4-8 solve a tridiagonal linear system using Algorithm 6.7.) 
UI = bl/a]; 
;:1 = d l / I]. 

Step 5 For i = 2, ... , N - 1 set Ii = a, - CiUi-l; 

Ui = bi! Ii; 
Zi = (di - CiZi-])/ Ii. 

Step 6 Set IN = aN - CNUN-I; 

ZN = (dN - CNZN-I)/ IN. 

Step 7 Set Wo = 0'; 

WN+I = f3. 

WN = ZN· 

StepB For i = N - 1, .... 1 set Wi = Zi - UiWi+]. 

Step 9 For i = 0, ... , N + 1 set x = a + i h; 
OUTPUT (x, Wi)' 

Step 10 STOP. (The procedure is complete.) • 

Algorithm 11.3 will he used to approximate the solution to the linear boundary-value prob
lem 

" 2 1 2 sin (In x) 
y = --y + -y + --::--, 

X x 2 x 2 
1 < x < 2, y(1) = 1, y(2) = 2. 

which was also approximated by the Shooting method in Example 2 of Section 11.1. For 
this example, we will use N = 9, so h = 0.1, and we have the same spacing as in Example 
2 of Section 11.1. The complete results are listed in Table 11.3 on page 664. 

These results are considerably less accurate than those obtained in Example 2 of Sec
tion 11.1. This is because the method used in that example involved a Runge-Kutta tech
nique with local truncation error of order O(h4

), whereas the difference method used here 
has local truncation error of order O(h2). • 

To obtain a difference method with greater accuracy, we can proceed in a number 
of ways. Using fifth-order Taylor series for approximating il (Xi) and i (Xi) results in a 
truncation error term involving h4. However, this process requires using multiples not only 
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ntble 113 

EXAMPLE 2 

ntble 11A 

Xj wj(h = 0.1) 

1.0 1.00000000 
1.1 1.09260052 
1,2 1.18704313 
1.3 1.28333687 
1.4 1.38140205 
1.5 1.48112026 
1.6 1.58235990 
1.7 1.68498902 
1.8 1.78888175 
1.9 1.89392110 
2.0 2.00000000 
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Xj Wj Y(Xj) !Wj - Y(Xj)! 

1.0 1.00000000 1.00000000 
1.1 1.09260052 1.09262930 2.88 x 10-5 

1.2 1.18704313 1.18708484 4.17 x 10-5 

1.3 1.28333687 1.28338236 4.55 x 10-5 

1.4 1.38140205 1.38144595 4.39 x 10-5 

1.5 1.48112026 1.48115942 3.92 x 10-5 

1.6 1.58235990 1.58239246 3.26 x 10-5 

1.7 1.68498902 1.68501396 2.49 x 10-5 

1.8 1.78888175 1.78889853 1.68 x 10-5 

1.9 1.89392110 1.89392951 8.41 x 10-6 

2.0 2.00000000 2.00000000 

of Y(Xi+l) and Y(Xi-l), but also of Y(Xi+2) and Y(Xi-2) in the approximation forlIlulas for 
y" (Xi) and y' (Xi)' This leads to difficulty at i = a and i = N. Moreover, the resulting 
system of equations analogous to (11.1 9) is not in tridiagonal fonn, and the solution to the 
system requires many more calculations. 

Instead of attempting to obtain a difference method with a higher-order truncation 
error in this manner, it is generally more satisfactory to consider a reduction in step size. 
In addition, Richardson's extrapolation technique can be used effectively for this method 
since the error tenn is expressed in even powers of h with coefficients independent of h, 
provided Y is sufficiently differentiable (see, for example, [Keller, H, p. 81]). 

Applying Richardson's extrapolation to approximate the solution to the boundary-value 
problem 

2 I 2 sin(lnx) 
y" = - - y + - y + ---;:---'-

X x2 x2' 
1 .::: X .::: 2, y(l) = 1, y(2) = 2, 

with h = O. I, 0.05, and 0.025, gives the results listed in Table 1 1.4. The first extrapolation 
• 
IS 

wj(h = 0.05) Wj (h = 0.025) ExtJj Ext2j Ext3j 

1.00000000 1.00000000 1.00000000 1.00000000 1. OOOOOOOO 
1.09262207 1.09262749 1.09262925 1.09262930 1.09262930 
1.18707436 1.18708222 1.l8708477 1.18708484 1.18708484 
1.28337094 1.28337950 1.28338230 1.28338236 1.28338236 
1.38143493 1.38144319 1.38144589 1.38144595 1.38144595 
1.48114959 1.48115696 1.48115937 1.48115941 1.48115942 
1.58238429 1.58239042 1.58239242 1.58239246 1.58239246 
1.68500770 1.68501240 1.68501393 1.68501396 1.68501396 
1.78889432 1.78889748 1.78889852 1.78889853 1.78889853 
1.89392740 1.89392898 1.89392950 1.89392951 1.89392951 
2.00000000 2.00000000 2. OOOOOOOO 2.00000000 2. OOOOOOOO 
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the second extrapolation is 

4Wi (h = 0.025) - Wi (h = 0.05) 
Ext2i = 3 ; 

and the final extrapolation is 

16Ext2i - Extli 
Ext3' = ---=---::... 

I 15 
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All the results of EXt3i are correct to the decimal places listed. In fact, if sufficient dig
its had been used, this approximation would agree with the exact solution with maximum 

error of 6.3 x 10-11 at the mesh points, an impressive improvement. -

E X ERe I S E SET 11.3 

1. The boundary-value problem 

y" = 4(y - x), 0 < x :5 I, yeO) = 0, y(l) = 2 

has the solution y(x) = e2(e4 -l)-l(e2x - e-2x ) + x. Use the Linear Finite-Difference Algo
rithm to approximate the solution, and compare the results to the actual solution. 

a. With h = ~; b. With h = !. 
c. Use extrapolation to approximate y(l/2). 

2. The boundary-value problem 

y"=y'+2y+cosx, O<x<~, y(O) =-0.3, y(~)=-O.l 

has the solution y(x) = - l~ (sin x + 3 cos x). Use the Linear Finite-Difference Algorithm to 
approximate the solution, and compare the results to the actual solution. 

a. With h = ~; b. With h = ~. 
c. Use extrapolation to approximate y(rr /4). 

3. Use the Linear Finite-Difference Algorithm to approximate the solution to the following 
boundary-value problems. 

a. y" = -3y' + 2y + 2x + 3, 0 <x < I, yeO) = 2, y(l) = I; use h = 0.1. 

b. y" = -:y' +!ry - ~ lnx, 1:5 x <2, y(l) = -i, y(2) = In2; use h = 0.05. 

c. y" = -(x + I)y' + 2y + (l - x 2)e-x
, 0:5 x < I, yeO) = -I, y(l) = 0; use h = 0.1. 

d. y" = f + .!rY + ~x - I, 1:5 x :5 2, y(l) = y(2) = 0; use h = 0.1. 

4. Although q (x) < 0 in the following boundary-value problems, unique solutions exist and are 
given. Use the Linear Finite-Difference Algorithm to approximate the solutions, and compare 
the results to the actual solutions. 

a. y" + Y = 0, 0 < x < ~,y(O) = I, y(~) = 1; use h = :0; actual solution y(x) = 

cos x + (.J2 - 1) sinx. 



666 C HAP T E R 11 • Boundary-Value Problems for Ordinary Differential Equations 

b. y" + 4y = cosx, 0 < x :'S: ~, yeO) == 0, y(~) = 0; use h = ;; actual solution 

y(x) = -j cos2x - f sin2x + j cosx. 

c. y" = - 4 y' - l.. y + 2lnx 1 < x < 2 y(l) = ! y(2) = In 2' use h = 0.05' actual x x2 x2 ' - - , 2' , , 

solution y(x) = 4 - 22 + Inx - 3
2

, 
x x , 

d. y" = 2y' - y + xeX 
- x, 0 < x < 2, yeO) = 0, y(2) = -4; use h = 0.2; actual 

solution y(x) = ~x3ex - ;xex + 2ex 
- x - 2. 

S. Use the Linear Finite-Difference Algorithm to approximate the solution y = e-lO)C to the 
boundary-value problem 

y" = lOOy, 0 <x < I, yeO) = 1, y(l) = e- IO 

Use h = 0.1 and 0.05. Can you explain the consequences? 

6. Repeat Exercise 3(a) and (b) using the extrapolation discussed in Example 2. 

7. The lead example of this chapter concerned the deflection of a beam with supported ends 
subject to uniform loading. The boundary-value problem governing this physical situation is 

d1w S qx 
dx 2 = EI W + 2EI (x -1), 0 < x < 1, 

with boundary conditions w(O) = 0 and w(l) = O. 
Suppose the beam is a WlO-type steel I-beam with the following characteristics: length 

I = 120 in., intensity of uniform load q = 100 lb/ft, modulus of elasticity E = 3.0 X 107 

lb/in. z, stress at ends S = 1000 lb, and central moment of inertia 1= 625 in.4. 

a. Approximate the deflection w (x) of the beam every 6 in. 

b. The actual relationship is given by 

w(x) = Clea;: + cze-
ax + b(x -l)x + c, 

where CI = 7.7042537 X 104, Cz = 7.9207462 x 104, a = 2.3094010 x 10-4, b 
-4.1666666 X 10-3, and C = -1.5625 X 105 . Is the maximum error on the interval 

·thi 02' ? WI n . Ill .. 

c. State law requires that maxo<x<[ w(x) < 1/300. Does this beam meet state code? 

8. The deflection of a uniformly loaded, long rectangular plate under an axial tension force is 
governed by a second·order differential equation. Let S represent the axial force and q the 
intensity of the uniform load. The deflection W along the elemental length is given by 

S -ql q 
W"(x) - D W(x) = 2D x + 2D x2 , 0 <x < I, W(O) = W(l) = 0, 

where I is the length of the plate and D is the flexual rigidity of the plate. Let q = 200 
Ib/in.z, S = 100 Ib/in., D = 8.8 X 107 lb/in., and I = 50 in. Approximate the deflection at 
I-in. intervals. 

9. Prove Theorem 11.3. [Hint: To use Theorem 6.29, first show that ; P(Xi) I < 1 implies that 

1-1 - ;P(Xi)! + I-I + ;p(xi)1 = 2.] 

10. Show that if y E C6 [a, b) and if wo, WI, ... , WN+I satisfy Eq. (11.18), then 

where A is independent of h, provided q(x) > W > 0 on [a, bJ for some w. 
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11.4 Finite-Difference Methods for Nonlinear Problems 

For the general nonlinear boundary-value problem 

y" = I(x, y, y'), a:S x < b, yea) = a, y(b) = fl, 

the difference method is similar to the method applied to linear problems in Section 11.3. 
Here, however, the system of equations will not be linear, so an iterative process is required 
to solve it. 

For the development of the procedure, we assume throughout that f satisfies the fol
lowing conditions: 

1. f and the partial derivatives fy and fy' are all continuous on 

D = {(x, y, y') I a <x < b, -00 < y < 00, -00 < y' < oo}; 

2. fy (x , y, y') > 8 on D, for some 8 > 0; 

3. Constants k and L exist, with 

k = max Ify(x, y, Y')1 and L = max Ih(x, y. y')I. 
(x,y,Y')ED (x,y,y')ED 

This ensures, by Theorem 11.1, that a unique solution exists. 
As in the linear case, we divide [a, b] into (N + 1) equal subintervals whose endpoints 

are at Xi = a + i h, for i = 0, 1, ... , N + 1. Assuming that the exact solution has a bounded 
fourth derivative allows us to replace y" (Xi) and y' (Xi) in each of the equations 

by the appropriate centered-difference fOImula given in Eqs. (11.16) and (11.17). This 
gives, for each i = 1, 2, . .. , N, 

y(xi+d -: 2Y(Xi) + y(xi-d = f 
h 2 

y(xi+d - Y(Xi-I) h
2 

'" 
Xi, y(Xj), 2h -6Y (1]i) 

• 

for some ~i and 1]i in the interval (Xi-I, Xj+l). 

As in the linear case, the difference method results when the error terms are deleted 
and the boundary conditions are employed: 

Wo = a, WN+l = fl, 

and 

Xi, Wi, 
2h 

= 0, 

for each i = 1, 2, . .. ,N. 
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The N x N nonlinear system obtained from this method, 

2 W2 - Cl 
2wI - W2 + h f XI, WI, 2h - Cl = 0, 

2 W3 - WI 
-WI + 2W2 - W3 + h f X2, W2, 2h = 0, 

• 
• (11.20) • 

2h 
= 0, 

2 f3 - WN-I 
-WN-I+2wN+hf XN,WN, 2h -f3=0 

has a unique solution provided that h < 2/ L, as shown in [Keller, H, p. 86]. 
We use Newton's method for nonlinear systems, discussed in Section 10.2, to ap

proximate the solution to this system. A sequence of iterates {( w~k), wi
k

), ... , w~))'} is 
generated that converges to the solution of system (11.20), provided that the initial appro x -
. . (0) (0) (0))' . ffi' tI I th I' ( )' d ImatlOn wI ' w 2 , ... , w N IS su clen y c ose to e so utlon WI, W2, ... , WN , an 
that the Jacobian matrix for the system is nonsingular. For system (11.20), the Jacobian 
matrix J(WI, ... , WN) is tridiagonal with ij-th entry 

h Wi+1 - Wi-I 
-1 + 2 fyl Xi, Wi, 

2h 
, for i = j - 1 and j = 2, . .. ,N, 

2 Wi+! - Wi-! 
2 + h fy Xi, Wi, 2h , for i = j and j = 1, ... , N, 

h Wi+l - Wi-l 
-1--/ / x' W, 2 y I, I, 2h , for i = j + 1 and j = 1, . .. , N - 1, 

where Wo = Cl and WN+l = f3. 
Newton's method for nonlinear systems requires that at each iteration the N x N linear 

system 

J(Wl, ... ,WN)(VI, ... ,vn )' 
• 

W2 - Cl 

2h 
, 

- WI + 2W2 - W3 + h 2 f Xz, W2, 
2h 

, . . . , 

2h 
, 

, 
-f3 

be solved for VI, V2, ... , VN, since 

w,~k) = w,(k-I) + V,' ," h 2 lor eac i = 1, , ... , N. 
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Since J is tridiagonal, this is not as fonnidable a problem as it might at first appear. The 
Crout Factorization Algorithm (6.7) can be applied. The process is detailed in Algorithm 
11.4. 

Nonlinear Finite-Difference 

To approximate the solution to the nonlinear boundary-value problem 

y" = f(x, y, y'), a::S x < b, yea) = a, y(b) = f3 : 

INPUT endpoints a, b; boundary conditions a, f3; integer N 2: 2; tolerance TOL; maxi
mum number of iterations M. 

OUTPUT approximations Wi to y(Xi) for each i = 0, 1, ... , N + lor a message that the 
maximum number of iterations was exceeded. 

Step 1 Set h = (b - a)/(N + 1); 
Wo = a; 
WN+I = f3. 

Step 2 For i = 1, ... , N set Wi = a + i 

Step 3 Set k = 1. 

Step 4 While k < M do Steps 5-16. 

Step 5 Set x = a + h; 
t = (W2 - a)/(2h); 
al = 2 + h2 fy(x, WI, t); 

f3-a 
h. 

b-a 

bl = -1 + (h/2)h(x, WI, t); 
dl = -(2wl - W2 - a + h2 f(x, WI, t)). 

Step 6 For i = 2, . .. ,N - 1 
setx=a+ih; 

t = (Wi+1 - Wi_I)/(2h); 
ai = 2 + h2 fy(x, Wi, t); 
bi = -1 + (h/2)h(x, Wi, t); 
ci = -1 - (h/2)h(x, Wi, t); 
di = -(2Wi - Wi+1 - Wi-I + h2 f(x, Wi, t)). 

Step 7 Set x = b - h; 
t = (f3 - WN_I)/(2h); 
aN = 2 + h2 fy(X, WN, t); 
CN = -1 - (h/2)h(x, WN, t); 
dN = -(2WN - wN-1 - f3 + h2 f(x, WN, t)). 

Step 8 Set II = al; (Steps 8-12 solve a tridiagonal linear system using 
Algorithm 6.7.) 

UI = bI/al; 
ZI =dI/ll. 
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Step 9 For i = 2, ... , N - 1 set Ii = ai - CiUi-l; 

Ui = hi! Ii; 
Zi = (di - CiZi-I)/li . 

Step 10 Set IN = aN - CNUN-I; 

ZN = (dN - CNZN-I)/IN. 

Step 17 Set vN = ZN; 

wN = wN + VN. 

Step 12 Fori = N -1, ... ,1 set Vi = Zi - UiVi+l; 

Wi = Wi + Vi· 

Step 13 If IIvll < TOL then do Steps 14 and 15. 

Step 14 For i = 0, ... , N + 1 set x = a + ih; 
OUTPUT (x, Wi). 

Step 15 STOP. (The procedure was successful.) 

Step 16 Set k = k + 1. 

Step 17 OUTPUT (,Maximum number of iterations exceeded'); 
(The procedure was unsuccessful.) 
STOP. • 

It can be shown (see [IK, p. 433]) that this Nonlinear Finite-Difference method is of 
order O(h2). 

Since a good initial approximation is required when the satisfaction of conditions (1), 
(2), and (3) given at the beginning of this presentation cannot be verified, an upper bound 
for the number of iterations should be specified and, if exceeded, a new initial approxima
tion or a reduction in step size considered. The initial approximations w~O) to Wi, for each 
i = 1, 2, ... , N, are obtained in Step 2 by passing a straight line through (a, a) and (b, f3) 
and evaluating at Xi. 

We apply Algorithm 11.4, with h = 0.1, to the nonlinear boundary-value problem 

1 
y" = 8 (32 + 2x 3 

- yy'), 1 :::: x :::: 3, y(1) = 17, 
43 

y(3) = 3 ' 

giving the results in Table 11.5. The stopping procedure used in this example was to iterate 
until values of successive iterates differed by less than 10-8. This was accomplished with 
four iterations. The problem in this example is the same as that considered for the Nonlinear 
Shooting method, Example 1 of Section 11.2. • 

Richardson's extrapolation procedure can also be used for the Nonlinear Finite
Difference method. Table 11.6 lists the results when this method is applied to our example 
using h = 0.1,0.05, and 0.025, with four iterations in each case. The notation is the same 
as in Example 2 of Section 11.3, and the values of Ext3i are all accurate to the places listed, 
with an actual maximum error of 3.68 x 10-10 . The values of wi(h = 0.1) are omitted 
from the table, since they were listed previously. 
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'nIble 11.5 x; W; Y(x; ) IWi - y(xi)1 

1.0 17.000000 17.000000 
1.1 15.754503 15.755455 9.520 x 10-4 

1.2 14.771740 14.773333 1.594 x 10-3 

1.3 13.995677 13.997692 2.015 x 10-3 

1.4 13.386297 13.388571 2.275 x 10-3 

1.5 12.914252 12.916667 2.414 x 10-3 

1.6 12.557538 12.560000 2.462 x 10-3 

1.7 12.299326 12.301765 2.438 x 10-3 

1.8 12.126529 12.128889 2.360 x 10-3 

1.9 12.028814 12.031053 2.239 x 10-3 

2.0 11.997915 12.000000 2.085 x 10-3 

2.1 12.027142 12.029048 1.905 x 10-3 

2.2 12.111020 12.112727 1.707 x 10-3 

2.3 12.245025 12.246522 1.497 x 10-3 

2.4 12.425388 12.426667 1.278 x 10- 3 

2.5 12.648944 12.650000 1.056 x 10-3 

2.6 12.913013 12.913846 8.335 x 10-4 

2.7 13.215312 13.215926 6.142 x 10-4 

2.8 13.553885 13.554286 4.006 x 10-4 

2.9 13.927046 13.927241 1.953 x 10-4 

3.0 14.333333 14.333333 

'nIble 11.6 Xi wi(h = 0.05) Wi (h = 0.025) Extli Ext2i Ext3i 

1.0 17.00000000 17.00000000 17.00000000 17.00000000 17.00000000 
1.1 15.75521721 15.75539525 15.75545543 15.75545460 15.75545455 
1.2 14.77293601 14.77323407 14.77333479 14.77333342 14.77333333 
1.3 13.99718996 13.99756690 13.99769413 13.99769242 13.99769231 
1.4 13.38800424 13.38842973 13.38857346 13.38857156 13.38857143 
1.5 12.91606471 12.91651628 12.91666881 12.91666680 12.91666667 
1.6 12.55938618 12.55984665 12.56000217 12.56000014 12.56000000 
1.7 12.30115670 12.30161280 12.30176684 12.30176484 12.30176471 
1.8 12.12830042 12.12874287 12.12899094 12.12888902 12.12888889 
1.9 12.03049438 12.03091316 12.03105457 12.03105275 12.03105263 
2.0 11.99948020 11.99987013 12.00000179 12.00000011 12.00000000 
2.1 12.02857252 12.02892892 12.02902924 12.02904772 12.02904762 
2.2 12.11230149 12.11262089 12.11272872 12.11272736 12.11272727 
2.3 12.24614846 12.24642848 12.24652299 12.24652182 12.24652174 
2.4 12.42634789 12.42658702 12.42666773 12.42666673 12.42666667 
2.5 12.64973666 12.64993420 12.65000086 12.65000005 12.65000000 
2.6 12.91362828 12.91379422 12.91384683 12.91384620 12.91384615 
2.7 13.21577275 13.21588765 13.21592641 13.21592596 13.21592593 
2.8 13.55418579 13.55426075 13.55428603 13.55428573 13.55428571 
2.9 13.92719268 13.92722921 13.92724153 13.92724139 13.92724138 
3.0 14.33333333 14.33333333 14.33333333 14.33333333 14.33333333 
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EXERCISE SET 11.4 

1. Use the Nonlinear Finite-Difference Algorithm with h = 0.5 to approximate the solution to 
the boundary-value problem 

y" = _(y')2 _ Y + Inx, 1 <x ~ 2, y(1) = 0, y(2) = In2. 

Compare your results to the actual solution y = In x. 

2. Use the Nonlinear Finite-Difference Algorithm with h = 0.25 to approximate the solution to 
the boundary-value problem 

y"=2l, -1 < x :::: 0, 
1 

y(-l) = -, 
2 

Compare your results to the actual solution y(x) = l/(x + 3). 

1 
yeO) = 3 

3. Use the Nonlinear Finite-Difference Algorithm with TOL = 10-4 to approximate the solution 
to the following boundary-value problems. The actual solution is given for comparison to your 
results. 

a. y" = y3 - yy', 1 < x ~ 2, y(l) = ~, y(2) = ~; use h = 0.1; actual solution 
y(x) = (x + 1)-1. 

b. y" = 2y 3 - 6y - 2x 3 , I <x ~ 2, y(l) = 2, y(2) = ~; use h = 0.1; actual solution 
y(x) = x +x- I • 

c. y" = y' + 2(y -lnx)3 - X-I, 2:::: x < 3, y(2) = ~ + In2, y(3) = j + In3; use 
h = 0.1; actual solution y(x) = X-I + In x. 

d. y" = (X
2 (y')2 - 9y2 + 4x6) /x5 , I < x <2, y(l) = 0, y(2) = In 256; use h = 0.05; 

actual solution y (x) = X 3 In x. 

4. Repeat Exercise 3(a) and (b) using extrapolation. 

5. Show that the hypotheses listed at the beginning of the section ensure the nonsingularity of the 
Jacobian matrix J for h < 2/ L. 

6. In Exercise 7 of Section 11.3, the deflection of a beam with supported ends subject to uniform 
loading was approximated. Using a more appropriate representation of curvature gives the 
differential equation 

[1 + (w'(x»2r3/2w"(x) = s w(x) + qx (x -1) for 0 < x < l. 
EI 2EI ' 

Approximate the deflection w(x) of the beam every 6 in., and compare the results to those of 
Exercise 7 of Section 11.3. 

11.5 The Rayleigh-Ritz Method 

The Shooting method for approximating the solution to a boundary-value problem replaced 
the boundary-value problem with pair of initial-value problems. The finite-difference ap
proach replaces the continuous operation of differentiation with the discrete operation of fi
nite differences. The Rayleigh-Ritz method is a variational teChnique that attacks the prob
lem from a third approach. The boundary-value problem is first refOIlllulated as a problem 
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of choosing, from the set of all sufficiently differentiable functions satisfying the boundary 
conditions, the function to minimize a certain integral. Then the set of feasible functions is 
reduced in size, to result in an approximation to the solution of the minimization problem 
and (as a consequence) an approximation to the solution of the boundary-value problem. 

To describe the Rayleigh-Ritz method, we consider approximating the solution to a 
linear two-point boundary-value problem from beam-stress analysis. This boundary-value 
problem is described by the differential equation 

d dy 
dx p(x) dx + q(x)y = I(x), for ° < x < I, (11.21) 

with the boundary conditions 

yeO) = y(1) = o. (11.22) 

This differential equation describes the deflection y(x) of a beam oflength I with variable 
cross section represented by q (x). The deflection is due to the added stresses p (x) and 
I(x). 

In the discussion that follows, we assume that p E CI[O, I] and q, I E ClO, I]. 
Further, we assume that there exists a constant 8 > ° such that 

p(x)::: 8, and that q(x)?: 0, for each x in [0,1]. 

These assumptions are sufficient to guarantee that the boundary-value problem given in 
(11.22) and (11.23) has a unique solution (see [BSW]). 

As is the case in many boundary-value problems that describe physical phenomena, 
the solution to the beam equation satisfies a variational property. The variational principle 
for the beam equation is fundamental to the development of the Rayleigh-Ritz method and 
characterizes the solution to the beam equation as the function that minimizes a certain 
integral over all functions in C5[0, 1], the set of those functions u in C2[O, 1] with the 
property that u(O) = u(l) = 0. The following theorem gives the characterization. 

Let p E CI[O, 1], q, I E C[O, 1], and 

p(x»8>0, q(x) >0, forO<xSI. 

The function y E C5[0, 1] is the unique solution to the differential equation 

d dy 
dx p(x) dx + q(x)y = I(x), for ° < x < 1, 

if and only if y is the unique function in C5[0, 1] that minimizes the integral 

I 

/[u] = {p(x)[u'(x)]2 + q(x)[u(x)]2 - 2/(x)u(x)} dx. 
o 

(11.23) 

(11.24) 

• 
Details of the proof of this theorem can be found in [Shul, pp. 88-89]. It proceeds in 

three steps. First it is shown that any solution y to (11.24) also satisfies the equation 
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I 

f(x)u(x)dx = 
I dy du 
p(x) d (x) d (x) + q(x)y(x)u(x)dx, 

o x x 
(11.25) 

o 

for all u E CUO.I]. 
The second step shows that y E CZ[O, 1] is a solution to (11.25) if and only if (11.26) 

holds for all u E CJ[O, 1]. 
The final step shows that (11.26) has a unique solution. This unique solution will also 

be a solution to (11.25) and to (11.24), so the solutions to (11.24) and (11.25) are identical. 
The Rayleigh-Ritz method approximates the solution y by minimizing the integral, not 

over all the functions in cUO, 1], but over a smaller set of functions consisting of linear 
combinations of certain basis functions ¢!, ¢z, ... , ¢n' The basis functions are linearly 
independent and satisfy 

¢;(O) = <M1) = 0, for each i = 1, 2, ... , n. 

An approximation ¢(x) = 2:,7 1 Ci¢;(X) to the solution y(x) of Eq. (11.24) is then ob
tained by finding constants CI, Cz, ... , Cn to minimize I [2:,7 1 Ci¢i]. 

From Eq. (11.25), 

n 

I[¢]=I LCi¢i ( 11.26) 
;=1 

1 n z n 2 n 

+ q(x) LCi¢;(X) 
;=1 

- 2f(x) L c;<p;(x) 
i=1 

dx, -- p(x) LC;¢;(x) 
;=1 o 

and, for a minimum to occur, it is necessary, when considering I as a function of CI, C2, 

... , Cn, to have 
I. 

BI 
-=0, 
aCj 

for each j = 1, 2, ... , n. 

Differentiating (11.27) gives 

1 n n ;11 

ac· J 

--
o 

2p(x) L Ci¢;(X)¢~(x) + 2q(x) L C;¢i(X)¢j(x) - 2f(x)¢j(x) 
;=1 ;=1 

and substituting into Eq. (11.28) yields 

n 

0=2: 
;=! 

1 

{p(x)¢;(x)¢j(x) + q (X)¢i (x)l/Jj (x)} dx Ci
o 

foreachj = 1,2, ... ,n. 

o 

(11.27) 

dx, 

(11.28) 

The normal equations described in Eq. (11.29) produce an n x n linear system Ac = b 
in the variables CI, Cz, ... , Cn, where the symmetric matrix A is given by 

1 

a;j = [p(x)¢;(x)¢j(x) + q(X)¢i(X)¢j(x)] dx, 
o 
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and b is defined by 

I 

hi = !(X)¢i (x) dx. 

° 
The simplest choice of basis functions involves piecewise-linear polynomials. The first 

step is to form a partition of [0, 1] by choosing points xo, Xl, ... ,Xn+l with 

° = Xo < Xl < ... < Xn < Xn+l = 1. 

Letting hi = Xi+l - Xi, for each i = 0,1, ... , n, we define the basis functions ¢l (x), 
¢2(X), ... , ¢n(x) by 

0, 

1 
(x - Xi-l), 

hi - l 
¢i(X) = 

1 
hi (Xi+l - x), 

0, 

for each i = 1,2, ... , n. (See Figure 11.4.) 

o 
Xi-! x" , 

if O<X<Xi-l, 

if Xi-l < x :::: Xi, 

(11.29) 

if x" < x < X"+l l _ l , 

if Xi+l<X<I, 

1 x 

Since the functions ¢i are piecewise-linear, the derivatives ¢;, while not continuous, 
are constant on (Xj, Xj+l), for each j = 0, I, ... , n, and 

0, if ° < x < Xi-I, 

1 
if Xi-l < x < Xi, , 

hi - l 
¢;(x) = (11.30) 

1 
-- if Xi < X < Xi+l, 

hi 
, 

0, if Xi+l < X < 1, 

for each i = 1, 2, ... , n . 

• 
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Because ¢i and ¢; are nonzero only on (Xi-I, XHI), 

and 

except when j is i-I, j, or i + 1. As a consequence, the linear system given by (11.29) 
reduces to an n x n tridiagonal linear system. The nonzero entries in A are 

1 

aii = {p(x)[¢;(x)f + q(X)[¢i(X)]2} dx 
o 

2 

1 
+ 

X' I 

Xj-J 

2 

for each i = 1, 2, ... , n; 

I 

p(X) dx + 
2 -1 

hi 
p(X) dx 

Xi 

2 Xi+! 2 
(Xi+I - x) q(x) dx, 

Xi 

a',i+I = {p(X)¢;(X)¢;+I(X) + q(X)¢i (X)¢i+I (X)} dx 
o 

1 - -
hi 

2 Xi+! 1 
p(x)dx+ -

X' I 
hi 

for each i = 1, 2, ... , n - 1; and 

I 

2 Xi+l 

X' I 

(xHI - x)(x - x,)q(x) dx, 

ai,i-I = {p(x )¢; (x )¢; _I (x) + q (x )¢i (X )¢i-l (x)} dx 
o 

1 2 Xi 

p(X) dx + 
1 2 Xi 

(Xi - X)(X - Xi-I)q(X) dx, 
Xj-l Xj-J hi - I hi - I 

for each i = 2, ... , n. The entries in b are 

I 1 
bi = !(X)¢i(X) dx = -

o h i - 1 

Xi 1 Xi+! 

(x - Xi-I)!(X) dx + h- (XHI - x)f(x) dx, 
Xi-l l Xi 

for each i = 1,2, ... , n. 
There are six types of integrals to be evaluated: 

1 2 xi+l 

QI,i = 
hi 

(Xi+l - x)(x - Xi)q(X) dx, for each i = I, 2, ... , n - I, 
x· I 

1 2 Xi 

(x - xi_d2q(x) dx, for each i = 1, 2, ... , n, Q2,i = 
h i - 1 Xi -J 

1 2 xi+l 

Q3 i = 
hi 

(Xi+l - x)2q (x) dx, for each i = 1, 2, ... , n, , 
Xi 
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and 

Z Xi 

1 
QS,i = h 

i-I Xj_l 

1 Xi+l 

p{X) dx, for each i = 1, 2, ... , n + 1, 
Xi-J 

(x - Xi_I)!{X) dx, foreachi = 1,2, ... ,n, 

Q6,i=-h. (Xi+I-X)!(x)dx, foreachi=I,2, ... ,n. 
I X· I 

The matrix A and the vector b in the linear system Ac = b have the entries 

Qi,i = Q4,i + Q4,i+1 + QZ,i + Q3,i, for each i = 1,2, ... , n, 

Qi,i+1 = -Q4,i+i + QI,i, for each i = 1,2, ... , n - 1, 

Qi,i-I = -Q4,i + QI,i-I, for each i = 2,3, ... , n, 

and 

hi = Q5,i + Q6,i, for each i = 1,2, ... , n. 
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The entries in c are the unknown coefficients CI, C2, ... ,Cn , from which the Rayleigh-Ritz 
n 

approximation ¢, given by ¢(x) = L Ci¢i (x), is constructed. 
i=1 

A practical difficulty with this method is the necessity of evaluating 6n integrals. The 
integrals can be evaluated either directly or by a quadrature formula such as Composite 
Simpson's rule. An alternative approach for the integral evaluation is to approximate each 
of the functions p, q, and ! with its piecewise-linear interpolating polynomial and then 
integrate the approximation. Consider, for example, the integral QI,i. The piecewise-linear 
interpolation of q is 

n+1 
Pq(x) = Lq{Xi)¢i{X), 

i=O 

where ¢I, ... , ¢n are defined in (11.30) and 

¢O{X) = 

XI -x 
, if ° < x ~ XI 

and 

X -Xn 
, 

1 -X" 
if x" ~ x ~ 1 

0, elsewhere 0, elsewhere. 

Since the interval of integration is [Xi, Xi+d, the piecewise polynomial Pq(x) reduces 
to 

This is the first-degree interpolating polynomial studied in Section 3.1. By Theorem 3.3, 

Iq(x) - Pq{x)1 = O{hf), for Xi < X ~ Xi+l, 
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if q E C2[Xi' xi+d. For i = 1,2, ... , n - 1, the approximation to QI,i is obtained by 
integrating the approximation to the integrand 

2 Xj+l 1 

h 
(Xi+1 - x)(x - x;)q(x) dx , 

1 

h , 

2 Xi+l 

(Xi+1 - x)(x - Xi) 
Xj 

hi 
= 12 [q(Xi) + q(Xi+I)]. 

Further, if q E C 2[Xi' Xi+I], then 

q(Xi)(Xi+1 - x) + q(Xi+I)(X - Xi) 

hi hi 
dx 

Approximations to the other integrals are derived in a similar manner and are given by 

hi - I 
Q2,i ~ 12 [3q(Xi) + q(Xi-I)], 

h· 
Q3,i ~ 1; [3q(Xi) + q(Xi+I)], 

hi-I 
Q4,i ~ 2 [P(Xi) + P(Xi-I)], 

h i - I 
Q5,i ~ 6 [2[(Xi) + [(Xi-I)], 

and 

Algorithm 11.5 sets up the tridiagonal linear system and incorporates the Crout Factoriza
tion Algorithm 6.7 to solve the system. The integrals Qu, ... , Q6,i can be computed by 
one of the methods mentioned previously. 

Piecewise Linear Rayleigh-Ritz 

To approximate the solution to the boundary-value problem 

d 

dx 

dy 
p(x) dx + q(x)y = [(x), o <X < 1, 

with the piecewise linear function 

n 

<p(x) = LCi<Pi(X) : 
i=1 

yeO) = y(l) = 0, 

INPUT integer n ::: 1; points Xo = 0 < XI < ... < Xn < Xn+1 = 1. 

OUTPUT coefficients CI, ... ,Cn . 

Step 1 For i = 0, ... ,n set hi = Xi+1 - Xi. 



EXAMPLE 1 

11.5 The Rayleigh-Ritz Method 

Step 2 For i = 1, ... ,n define the piecewise linear basis <Pi by 

0, 

x - Xi-I 

hi-I 
, 

<Pi(X) = 

Xi-I <X<Xi, 

Xi+1 - X 

hi 
, X" < x < X"+I I _ I , 

0, Xi+l < X < 1. 

Step3 Foreachi = 1,2, ... ,n -1 compute Qu. Q2,i. Q3,i. Q4,i. Q5,i. Q6i; 

Compute Q2.n, Q3,n, Q4,n, Q4,n+l, Q5,n, Q6,n' 

Step 4 For each i = 1.2, .... n - 1, set Cij = Q4,i + Q4,i+l + Q2,i + Q3.i; 
f3i = Qu - Q4,i+l; 
b· = Q5 + Q6" J , l , l 

Step 5 Set Cin = Q4,n + Q4,n+l + Q2,n + Q3,n; 
bn = Q5,n + Q6,n. 
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Step 6 Set al = Cil; (Steps 6-10 solve a symmetric tridiagonal linear system using 
Algorithm 6.7.) 

SI =f3I/IXI; 
Zl =bI/a). 

Step 7 For i = 2, ... ,n - 1 set ai = IXi - f3i-ISi-l; 

Si = f3d ai; 
Zi = (b i - f3i-IZi-l)/aj. 

Step 8 Set an = Cin - f3n-lSn-l; 
Zn = (bn - f3n-lZn-])/an. 

Step 9 Set Cn = Zn; 
OUTPUT (cn ). 

Step 10 For i = n - 1, ... , 1 set Ci = Zi - SiCi+l; 
OUTPUT (Ci). 

Step 11 STOP. (The procedure is complete.) • 

The following example uses Algorithm 11.5. Because of the elementary nature of this 
example, the integrals in Steps 3, 4, and 5 were found directly. 

Consider the boundary-value problem 

_y" + ;r2y = 2;r2 sin(;rx), 0:5 x <1, yeO) = y(l) = O. 

Let hi = h = 0.1, so that Xi = O.li, for each i = 0, 1, ... , 9. The integrals are 

QI,i = 100 
O.li+O.1 ;r2 

(O.li + 0.1 - x)(x - 0.li);r2 dx = 60' 
O.li 
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O.li 
QZ,i = 100 

Q3 ' = 100 ,I _ 

O.li+O.l rr2 

(O.li + 0.1 - x)ZJrz dx = 30' 
O.li 

0.1 i 

Q4,i = 100 dx = 10, 
O.li-O.1 

O.li 

Q5,i = 10 (x - O.li + 0.1)2Jr z sin Jr x dx 
O.li-O.I 

= -2Jr cosO.1Jri + 20[sin(0.lJri) - sin«O.li - O.l)Jr)], 

and 

O.li+O.1 

Q6,i = 10 (O.li + 0.1 - x )2Jr z sin Jr x dx 
O.li 

= 2Jr cosO.IJri - 20[sin«(0.Ii + O.I)Jr) - sin(O.IJri)]. 

The linear system Ac = b has 

JrZ 
ai,i = 20 + 15' for each i = 1, 2, ... , 9, 

Jrz 
ai i+1 = -10 + , for each i = 1, 2, ... , 8, , 60 

JrZ 
ai,i-I = -10 + 60' for each i = 2, 3, ... ,9, 

and 

bi = 40sin(0.IJri)[1 - cosO.lJr], for each i = 1, 2, ... , 9. 

The solution to the tridiagonal linear system is 

C9 = 0.3102866742, Cg = 0.5902003271, C7 = 0.8123410598, 

C6 = 0.9549641893, C5 = 1.004108771, C4 = 0.9549641893, 

C3 = 0.8123410598, Cz = 0.5902003271, Cl = 0.3102866742. 

The piecewise-linear approximation is 

9 

¢(x) = I>i¢i(X), 
i=] 

and the actual solution to the boundary-value problem is 

y (x) = sin Jr x . 

TaQle 11.7 lists the error in the approximation at Xi, for each i = 1, ... , 9. • 
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. 
<!> (Xi) Y(Xi) I<!> (X,) - y(X;) I I x-I 

1 0.1 0.3102866742 0.3090169943 0.00127 
2 0.2 0.5902003271 0.5877852522 0.00241 
3 0.3 0.8123410598 0.8090169943 0.00332 
4 0.4 0.9549641896 0.9510565162 0.00390 
5 0.5 1.0041087710 1.0000000000 0.00411 
6 0.6 0.9549641893 0.9510565162 0.00390 
7 0.7 0.8123410598 0.8090169943 0.00332 
8 0.8 0.5902003271 0.5877852522 0.00241 
9 0.9 0.3102866742 0.3090169943 0.00127 

It can be shown that the tridiagonal matrix A given by the piecewise-linear basis func
tions is positive definite (see Exercise 12), so, by Theorem 6.24, the linear system is stable 
with respect to roundoff error. Under the hypotheses presented at the beginning of this 
section, we have 

I<!>(x) - y(x)1 = O(h2
), for each x in [0,1]. 

A proof of this result can be found in [Schul, pp. 103-104]. 
The use of piecewise-linear basis functions results in an approximate solution to 

Eqs. (11.22) and (11.23) that is continuous but not differentiable on [0, 1]. A more com
plicated set of basis functions is required to construct an approximation that belongs to 
C5[0, 1]. These basis functions are similar to the cubic interpolatory splines discussed in 
Section 3.4. 

Recall that the cubic interpolatory spline S on the five nodes xo, Xl, XZ, X3, and X4 for 
a function f is defined by: 

a. S is a cubic polynomial, denoted by Sj' on [Xj, xj+d, for j = 0,1,2,3. (This 
gives 16 selectable constants for S, 4 for each cubic.) 

b. S(Xj) = !(Xj), for j = 0,1,2,3,4 (5 specified conditions). 

c. Sj+l (xj+d = Sj(Xj+I), for j = 0,1,2 (3 specified conditions). 

d. Sj+1 (xj+d = Sj(Xj+I), for j = 0,1,2 (3 specified conditions). 

e. S,)+I (Xj+I) = S')(Xj+I), for j = 0,1,2 (3 specified conditions). 

f. One of the following boundary conditions is satisfied: 

(i) Free: S" (xo) = s" (X4) = ° (2 specified conditions). 

(ii) Clamped: S' (xo) = f' (xo) and S' (X4) = l' (X4) (2 specified conditions). 

Since uniqueness of solution requires the number of constants in (a), 16, to equal the 
number of conditions in (b) through (f), only one of the boundary conditions in (f) can be 
specified for the interpolatory cubic splines. 

The cubic spline functions we will use for our basis functions are called B-splines, or 
bell-shaped splines. These differ from interpolatory splines in that both sets of boundary 
conditions in (f) are satisfied. This requires the relaxation of two of the conditions in (b) 
through (e). Since the spline must have two continuous derivatives on [xo, X4], we delete 
two of the interpolation conditions from the description of the interpolatory splines. In 
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particular, we modify condition (b) to 

b. S(Xj) = f(xj) for j = 0, 2,4. 

The basic B-spline S defined next and shown in Figure 11.5 uses the equally spaced 
nodes Xo = -2, Xl = -1, Xz = 0, X3 = 1, and X4 = 2. It satisfies the interpolatory 
conditions 

b. S(xo) = 0, S(X2) = 1, S(X4) = 0; 

as well as both sets of conditions 

(i) S" (xo) = s" (X4) = 0 and (ii) S' (xo) = s' (X4) = o. 

Sex) 

I 

s 

-2 -1 1 2 

As a consequence, S E C~( -00,00), and 

0, if X <-2 - , 

±(2+x)3, if -2<x<-1 - - , 
± [(2 + x)3 - 4(1 + x)3] , if - 1 < X < 0, 

Sex) = ! [(2 - x)3 - 4(1 - x)3] , if 0< x < I, 

~(2-x)3, if 1 < x < 2, 

0, if 2 < x. 

x 

(11.31) 

To construct the basis functions ¢i in CJ[O, 1], we first partition [0, I] by choosing a 
positive integer n and defining h = I/(n + 1). This produces the equally-spaced nodes 
Xi = ih, for each i = 0,1, ... , n + 1. We then define the basis functions {¢;}7+~ as 

S (::) _ 4S x + h 
h h' 

S 
x-h x+h 

-S , 
h h 

x - ih 
h 

, 

S 
x -nh 

-S 
x - (n + 2)h 

h 

S x - (n + 1)h 

h 
-4S 

h 
, 

x - (n + 2)h 

h 

if i = 0 , 

if i = 1 , 

if 2<i<n-1 - - , 

if • I=n , 

, if i=n+l. 
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It is not difficult to show that {¢i }7+d is a linearly independent set of cubic splines satisfying 
¢i (0) = ¢i (1) = 0, for each i = 0, 1, ... , n, n + 1 (see Exercise 11). The graphs of ¢i, 
for 2 < i < n - 1, are shown in Figure 11.6, and the graphs of ¢o, ¢J, ¢n, and ¢n + J are in 
Figure 11.7. 

1 

X j -2 X j - 1 

1 

¢o 

X2 

1 

1 x 

X· I 

¢j when i = 2 .... , n - 1 

Xj+l x 

rPn+ 1 

1 x 

Since ¢i(X) and ¢;(x) are nonzero only for x E [Xi-2, Xi+2], the matrix in the 
Rayleigh-Ritz approximation is a band matrix with bandwidth at most seven: 
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A= 

where 

o:~:··························o 
• • • • • 

• • • • • • • • • • 
• • • 

a20 a21 a22 a23 a24 a25 • • • • • • • • • • 

a30 a31 a32. a33. a34·. a35·. 
• • • 

• 
• • • • • • • • • . .. 0 

• • • • o .... • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
'an-2,n+l 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
an-l,n+l 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • O· . . . . . . . . . . . . . . . . . . . . . ·0 • • 
a n+l,n-2 an+l,n-1 an+l,n an+l,n+l 

I 

aij = {p(x)¢;(x)¢j(x) + q(X)¢i(X)¢j(x)J dx, 
o 

for each i, j = 0, 1, ... , n + 1. The vector b has the entries 

I 

hi = j(x)¢i(x)dx. 
o 

, 

(11.32) 

The matrix A is positive definite (see Exercise 13), so the linear system Ac = b can be 
solved by Choleski's Algorithm 6.6 or by Gaussian elimination. Algorithm 11.6 details the 
construction of the cubic spline approximation ¢(x) by the Rayleigh-Ritz method for the 
boundary-value problem (11.22) and (11.23) given at the beginning of this section. 

Cubic Spline Rayleigh-Ritz 

To approximate the solution to the boundary-value problem 

d dy 
dx p(x) dx + q(x)y = I(x), 0 < x <1, yeO) = y(1) = 0 

with the sum of cubic splines 

n+1 

¢(x) = L Ci¢i(X) : 
i=O 

INPUT integer n 2: 1. 

OUTPUT coefficients Co, ... , Cn+l. 

Step 1 Set h = l/(n + 1). 

Step 2 For i = 0, ... , n + I set Xi = ih. 
Set X-2 = X-I = 0; Xn+2 = Xn+3 = 1. 

Step 3 Define the function S by 
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0, x <-2 - , 

! (2 + x)\ -2<x<-1 - , 

! [(2+x)3 -4(1 +x)3], -l<x<O, 
S(x) = i [(2 - X)3 - 4(1 - X)3] , ° < x < 1, 

!(2-x)3, 1<x<2, -
0, 2<x 

Step4 Define the cubic spline basis (cM7+J by 

(X) X + h 
<Po(x)=S h -4S h ' 

<Pi (x) = S 
X -Xl 

h 

X -Xi 

h 

x-X n 

h 

_ S x +h 
h ' 

, for i = 2, ... ,n - 1, 

X - (n + 2)h 
-S h ' 

x - Xn+l 
<Pn+I(X)=S' h 

_ 4S x - (n + 2)h . 
h 

Step 5 For i. = 0, ... ,n + 1 do Steps 6-9. 
(Note: The integrals in Steps 6 and 9 can be evaluated using a numerical 

integration procedure.) 

Step 6 For j = i, i + 1, ... ,min{i + 3, n + 1} 
set L = max{Xj_2, OJ; 

U = min{xi+2' 1}; 

aij = fJ [p(X)<P;(X)<Pj(X) + q(X)<Pi (x)<pj (x)] dx; 

if i ! j, then set a ji = aij. (Since A is symmetric.) 

Step 7 If i ::: 4 then for j = 0, ... , i - 4 set aij = O. 

Step 8 If i :s n - 3 then for j = i + 4, ... ,n + 1 set aij = 0. 

Step 9 Set L = max{xi-2, OJ; 
U = min{Xi+2, 1}; 

bi = Ji! !(X)<Pi(X) dx. 

Step 10 Solve the linear system Ac = b, where A = (aij) , b = (bo, ... , bn+d and 

c = (co, ... ,cn+dt
. 

Step 11 For i = 0, ... , n + 1 
OUTPUT (Cj). 

Step 12 STOP. (The procedure is complete.) • 
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Consider the boundary-value problem 

-y" + rr2y = 2rr2 sin(rrx), 0 < x <1, yeO) = y(1) = o. 

In Example 1 we let h = 0.1 and generated approximations using piecewise-linear basis 
functions. Table 11.8 lists the results obtained by applying the B-splines as detailed in 
Algorithm 11.6 with this same choice of nodes. -

• 
</J (Xi) Y(Xi) IY(Xi) - <!>(xi)1 I c X, I 

0 0.50964361 x 10-5 0 0.00000000 0.00000000 0.00000000 
1 0.20942608 0.1 0.30901644 0.30901699 0.00000055 
2 0.39835678 0.2 0.58778549 0.58778525 0.00000024 
3 0.54828946 0.3 0.80901687 0.80901699 0.00000012 
4 0.64455358 0.4 0.95105667 0.95105652 0.00000015 
5 0.67772340 0.5 1.00000002 1.00000000 0.00000020 
6 0.64455370 0.6 0.95105713 0.95105652 0.00000061 
7 0.54828951 0.7 0.80901773 0.80901699 0.00000074 
8 0.39835730 0.8 0.58778690 0.58778525 0.00000165 
9 0.20942593 0.9 0.30901810 0.30901699 0.00000111 

10 0.74931285 x 10-5 1.0 0.00000000 0.00000000 0.00000000 

We recommend that the integrations in Steps 6 and 9 be performed in two steps. First, 
construct cubic spline interpolatory polynomials for p, q, and f using the methods pre
sented in Section 3.4. Then approximate the integrarids by products of cubic splines or 
derivatives of cubic splines. The integrands are now piecewise polynomials and can be 
integrated exactly on each subinterval, and then summed. This leads to accurate approxi
mations of the integrals. 

The hypotheses assumed at the beginning of this section are sufficient to guarantee 
that 

1 

Iy(x) - <!>(x)1 2 dx if O<x<l. 
o 

For a proof of this result, see [Schul, pp. 107-108]. 
B-splines can also be defined for unequally-spaced nodes, but the details are more 

complicated. A presentation of the technique can be found in rSchul, p. 73]. Another com
monly used basis is the piecewise cubic Hermite polynomials. For an excellent presentation 
of this method, again see [Schul, pp. 24ff]. 

Other methods that receive considerable attention are Galerkin, or "weak form," meth
ods. For the boundary-value problem we have been considering, 

d 

dx 

d· 
p(x) d~ + q(x)y = f(x), yeO) = y(1) = 0, O::Sx::sl, 

under the assumptions listed at the beginning of this section, the Galerkin and Rayleigh
Ritz methods are both determined by Eq. (11.29). However, this is not the case for an 
arbitrary boundary-value problem. A treatment of the similarities and differences in the 



11.5 The Rayleigh-Ritz Method 687 

two methods and a discussion of the wide application of the Galerkin method can be found 
in [Schul] and in [SF]. 

Another popular technique for solving boundary-value problems is the method of 
collocation. This procedure begins by selecting a set of basis functions {<PI, .. , ,<PN}, a set 
of numbers {Xi, ... ,xn } in [0, I], and requiring that an approximation 

N 

L Ci<Pi(X) 
i=1 

satisfy the differential equation at each of the numbers X j, for I < j < n. If, in addition, 
it is required that <Pi (0) = <Pi (l) = 0, for 1 < i < N, the boundary conditions are 
automatically satisfied. Much attention in the literature has been given to the choice of 
the numbers {x j} and the basis functions {<Pd. One popular choice is to let the <Pi be the 
basis functions for spline functions relative to a partition of [0, 1], and to let the nodes 
{x}} be the Gaussian points or roots of certain orthogonal polynomials, transformed to 
the proper subinterval. A comparison of various collocation methods and finite difference 
methods is contained in [Ru]. The conclusion is that the collocation methods using higher
degree splines are competitive with finite-difference techniques using extrapolation. Other 
references for colIocation methods are [DebS] and [LR]. 

EXERCISE SET 11.5 

1. Use the Piecewise Linear Algorithm to approximate the solution to the boundary-value prob
lem 

2 2 
/I JT JT ]'[ 

Y + -y = - cos -x 0 <x < 1, yeO) = y(l) = 0 
4 16 4' 

using Xo 0, Xl 0.3. X2 = 0.7, X3 1. Compare your results to the actual solution 

Y(x) = _1 cos !Lx - v'2 sin !Lx + 1 cos !Lx 
32 6234' 

2. Use the Piecewise Linear Algorithm to approximate the solution to the boundary-value prob
lem 

d I 2 
- (xy)+4y=4x -8x+I, O<x<I, y(O)=y(1)=O 

dx 

using Xo = 0, XI = 0.4, X2 = 0.8, Xi = 1. Compare your results to the actual solution 
y(x) = x2 - X. 

3. Use the Piecewise Linear Algorithm to approximate the solutions to the following boundary
value problems, and compare the. results to the actual solution: 

a. _X 2y"_ 2xy' + 2y = -4x2 , 0 <x < 1, yeO) = y(l) = 0; use h = 0.1; actual 
solution y(x) = x 2 

- X. 

b. - ,1x(eX y') +eXy = x + (2-x)eX
, 0 <x < 1, yeO) = y(1) = 0; use h = 0.1; actual 

solution y(x) = (x - l)(e-X - 1). 

c. -,1x (e-xy') + e-Xy = (x - I) - (x + l)e-(x-l). 0 < x < 1. yeO) = y(1) = 0: use 
h = 0.05; actual solution y(x) = x(e" - e). 

d. -(x+l)y"-/+(x+2)y = [2-(x+1)2]eln2-2eX, 0 <x< 1, yeO) = y(l) = 0; 
use h = 0.05; actual solution y(x) = eX In(x + 1) - (eln2)x. 
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4. Use the Cubic Spline Algorithm with n = 3 to approximate the solution to each of the fol
lowing boundary-value problems, and compare the results to the actual solutions given in 
Exercises I and 2: 

2 2 
a_ y" + TY = ~6 cos ~x, 0 <X < 1, yeO) = 0, y(1) = 0 

h. - ;x(xy') +4y = 4x2 
- 8x + 1, O:s x:s 1, yeO) = 0, y(l) = 0 

5. Repeat Exercise 3 using the Cubic Spline Algorithm. 

6. Show that the boundary-value problem 

d , 
- dx (p(x)y ) + q(x)y = I(x), 0 < x <1, y(O) = a, yO) = /3, 

can be transformed by the change of variable 

z = y - f3x - (1 - x)a 

into the form 

d , 
- dx (p(x)z ) + q(x)z = F(x), O:s x :s I, z(O) = 0, z(J) = o. 

7. Use Exercise 6 and the Piecewise Linear Algorithm with n = 9 to approximate the solution to 
the boundary-value problem 

-y"+y=x, O<x<l, y(O) = I, y(l)=l+e~l. 

8. Repeat Exercise 7 using the Cubic Spline Algorithm. 

9. Show that the boundary-value problem 

d , b 
- dx (p(x)Y ) + q(x)y = I(x), a < x < b, yea) = a, y() = /3. 

can be transformed into the form 

diD - dw (p(w)z ) + q(w)z = F(w), 0 < W :s I, z(O) = , 

by a method similar to that given in Exercise 6. 

z(l)=o, 

10. Show that the piecewise-linear basis functions {I/>i l7~1 are linearly independent. 

11. Show that the cubic spline basis functions {I/>i l?:J are linearly independent. 

12. Show that the matrix given by the piecewise linear basis functions is positive definite. [Hint: 

Use the definition.] 

13. Show that the matrix given by the cubic spline basis functions is positive definite. 

11.6 Survey of Methods and Software 

In this chapter we discussed methods for approximating solutions to boundary-value prob
lems. For the linear boundary-value problem 

y" = p(x)y' + q(x)y + rex), a < x <b, yea) = ct, y(b) = {3, 

we considered both a linear shooting method and a finite-difference method to approximate 
the solution. The shooting method uses an initial-value technique to solve the problems 
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y" = p(x)y' + q(x)y + rex), a:s x <b, yea) = ex, y'(a) = 0, 

and 

yl/ = p(x)y' + q(x)y, a <x < b, yea) = 0, lea) = 1. 

A weighted average of these solutions produces a solution to the linear boundary-value 
problem. 

In the finite-difference method, we replaced y" and y' with difference approximations 
and solved a linear system. Although the approximations may not be as accurate as the 
shooting method, there is less sensitivity to roundoff error. Higher-order difference meth
ods are available, or extrapolation can be used to improve accuracy. 

For the nonlinear boundary problem 

yl/=f(x,y,y'), a<x<b, y(a) = ex, y(b)=fJ, 

we also presented two methods. The nonlinear shooting method requires the solution of 
the initial-value problem 

y" = lex, y, y'), a::: x ::: b, yea) = ex, y'(a) = t, 

for an initial choice of t. We improved the choice by using Newton's method to approxi
mate the solution, t, to y(b, t) = fJ. This method required solving two initial-value prob
lems at each iteration. The accuracy is dependent on the choice of method for solving the 
initial-value problems. 

The finite-difference method for the nonlinear equation requires the replacement of y" 
and y' by difference quotients, which results in a nonlinear system. This system is solved 
using Newton's method. Higher-order differences or extrapolation can be used to improve 
accuracy. Finite-difference methods tend to be less sensitive to roundoff error than shooting 
methods. 

The Rayleigh-Ritz-Galerkin method was illustrated by approximating the solution to 
the boundary-value problem 

d 

dx 

dy 
p(x) dx + q(x)y = I(x), O<x<1. - - . yeO) = y(l) = o. 

A piecewise-linear approximation or a cubic spline approximation can be obtained. 
Most of the material concerning second-order boundary-value problems can be ex

tended to problems with boundary conditions of the form 

where laii + IfJII f= ° and la21 + IfJ21 f= 0, but some of the techniques become quite 
complicated. The reader who is interested in problems of this type is advised to consider a 
book specializing in boundary-value problems, such as [K,H], 

We mention only two of the many methods in the IMSL Library for solving boundary
value problems. The subroutine BVPFD is based on finite differences, and BVPMS is 
based on multiple shooting using IVPRK, a Runge-Kutta-Verner method for initial-value 
problems. Both methods can be used for systems of parameterized boundary-value prob
lems. 
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The NAG Library also has a multitude of subroutines for solving boundary-value prob
lems. The subroutine D02HAF is a shooting method using the Runge-Kutta-Merson initial
value method in conjunction with Newton's method. The subroutine D02GAF uses the 
finite-difference method with Newton's method to solve the nonlinear system. The sub
routine D02GBF is a linear finite-difference method, and D02JAF is a method based on 
collocation. 

The subroutines MUSL and MUSN in the ODE package contained in the Netlib library 
solve the linear and nonlinear two-point boundary-value problems, respectively. Both rou
tines are based on multiple shooting methods. 

Further information on the general problems involved with the numerical solution 
to two-point boundary-value problems can be found in Keller [Keller, H] and Bailey, 
Shampine and Waltman [BSW]. Roberts and Shipman [RS] focuses on the shooting meth
ods for the two-point boundary-value problem, and Pryce [PrJ restricts attention to StUIII1-
Liouville problems. The book by Ascher, Mattheij, and Russell [AMR] has a comprehen
sive presentation of multiple shooting and parallel shooting methods. 

, , 

• 

-, 
r 



Numerical So utions 

to Partial Oi erential 

E uations 
• • • 

A body is isotropic if the thermal conductivity at each point in the 

body is independent of the direction of heat flow through the point. The 

temperature, u ;0; u(x,y, z, t), in an isotropic body can be found by solving 

the partial differential equation 

a 
&; 

a au 
+ ~ k~ 

a 
+

&z 
au 

= cp , 
at 

where k, c, and p are functions of (x,y,z) and represent, respectively, the 

thermal conductivity, specific heat, and density of the body at the point 

(x,y,z). 

When k, c, and p are constants, this equation is known as the simple 

three-dimensional heat equation and is expressed as 

EJ2u EJ2u EJ2u cp au 
&;2 + ~2 + &z2 = kat' 

If the boundary of the body is relatively simple, the solution to this equa

tion can be found using Fourier series. In most situations where k, c, 

and p are not constant or when the boundary is irregular, the solution 

to the partial differential equation must be obtained by approximation 

techniques. An introduction to techniques of this type is presented in this 

chapter. 
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Figure 12.1 
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The partial differential equation we will consider in Section 12.1 is an elliptic equation 
known as the Poisson equation: 

a2u a2u 
ax2 (x, y) + ay2 (x, y) = I(x, y). 

In this equation we assume that I describes the input to the problem on a plane region 
R with boundary S. Equations of this type arise in the study of various time-independent 
physical problems such as the steady-state distribution of heat in a plane region, the po
tential energy of a point in a plane acted on by gravitational forces in the plane, and two
dimensional steady-state problems involving incompressible fluids. 

Additional constraints must be imposed to obtain a unique solution to the Poisson 
equation. For example, the study of the steady-state distribution of heat in a plane region 
requires that I (x, y) = 0, resulting in a simplification to 

a2 u a2u 
ax2 (x, y) + ay2 (x, y) = 0, 

which is called Laplace's equation. If the temperature within the region is deteIInined by 
the temperature distribution on the boundary of the region, the constraints are called the 
Dirichlet boundary conditions, given by 

u(x, y) = g(x, y), 

for all (x, y) on S, the boundary of the region R. (See Figure 12.1.) 

y 
s 

(x. y): Temperature is 
held constant 
at g(x, y) 

x 

In Section 12.2 we consider the numerical solution to a problem involving a parabolic 
partial differential equation of the form 

au 0 a2u 
-(x,t)-a" 2(x,t)=0. 
at ax 

The physical problem considered here concerns the flow of heat along a rod of length I 
(see Figure 12.2), which has a uniform temperature within each cross-sectional element. 
This requires the rod to be perfectly insulated on its lateral surface. The constant a is 
independent of the position in the rod and is determined by the heat-conductive properties 
of the material of which the rod is composed. 

, -
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Figure 123 
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One of the typical sets of constraints for a heat-flow problem of this type is to specify 
the initial heat distribution in the rod, 

U(x,O) = I(x), 

and to describe the behavior at the ends of the rod. For example, if the ends are held at 
constant temperatures Uj and U2, the boundary conditions have the form 

u(O, t) = Uj and u(l, t) = U2, 

and the heat distribution approaches the limiting temperature distribution 

. U2 - Uj 
hmu(x,t)=Uj + ' x. 

t--+oo 1 

If, instead, the rod is insulated so that no heat flows through the ends, the boundary condi
tions are 

au 
-(0, t) = 0 and ax 

au 
-(I, t) = 0, ax 

resulting in a constant temperature in the rod as the limiting case. The parabolic partial 
differential equation is also of importance in the study of gas diffusion; in fact, it is known 
in some circles as the diffusion equation. 

The problem studied in Section 12.3 is the one-dimensional wave equation and is an 
example of a hyperbolic partial differential equation. Suppose an elastic string of length I 
is stretched between two supports at the same horizontal level (see Figure 12.3). 

• 

u(X, t) 

1 x, fixed time t 

If the string is set to vibrate in a vertical plane, the vertical displacement u (x, t) of a 
point x at time t satisfies the partial differential equation 

a2u a2u 
a 2 2(X,t)= z(x,t), forO<x<1 and 0<1, ax at 
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12.1 

Figure 12.4 
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provided that damping effects are neglected and the amplitude is not too large. To impose 
constraints on this problem, assume that the initial position and velocity of the string are 
given by 

u(x, 0) = f(x) and 
au 
-(x,O) = g(x) , at for 0 .:S x < l. 

If the endpoints are fixed, we also have u(O, t) = 0 and u(l, t) = O. 
Other physical problems involving the hyperbolic partial differential equation occur 

in the study of vibrating beams with one or both ends clamped and in the transmission of 
electricity on a long line where there is some leakage of current to the ground. 

Partial Differential Equations 

The elliptic partial differential equation we consider is the Poisson equation, 

a2u a2u 
V

2
u(x, y) == ax2 (x, y) + ay2 (x, y) = f(x, y) (12.1) 

on R = {(x, y) I a < x < b, c < y < d}, with 

u(x, y) = g(x, y) for (x, y) E S, 

where S denotes the boundary of R. If f and g are continuous on their domains, then there 
is a unique solution to this equation. 

The method used is an adaptation of the Finite-Difference method for linear boundary
value problems, which was discussed in Section 11.3. The first step is to choose integers 
n and m and define step sizes h = (b - a)jn and k = (d - c)jm. Partition the interval 
[a, b] into n equal parts of width h and the interval [c, d] into m equal parts of width k 
(see Figure 12.4). Place a grid on the rectangle R by drawing vertical and horizontal lines 

. .....",...------

y ... =d 
, , , 

• I • • • • • • 
• • • • • • • 
• • • • • • • 

• • • , 
~ , -, , 

• • • 
_' c ; ~ 

'" Yo"'" c 

b=x 
" 

x 
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through the points with coordinates (Xi, Y j ), where 

xi=a+ih, foreachi=O,I, ... ,n, 

and 

Yj = C + jk, for each j = 0,1, ... ,m. 

The lines X = Xi and Y = Yi are grid lines, and their intersections are the mesh points 
of the grid. For each mesh point in the interior of the grid, (x; , Y j), for i = 1, 2, . .. ,n - 1 
and j = 1,2, ... , m - 1, we use the Taylor series in the variable X about Xi to generate the 
centered-difference formula 

a2u U(X;+l, Yi) - 2U(Xi, Yi) + U(Xi-l, Yi) h2 a4u . 
iJx2 (Xi, Yi) = h2 - 12 iJx 4 (~;, Yj), (12.2) 

where ~i E (Xi-I, Xi+l). We also use the Taylor series in the variable Y about Yj to generate 
the centered-difference formula 

a2u U(Xi, Yi+l) - 2u(x;. Yi) + U(Xi. Yi-I) k2 iJ4u 
ay2 (Xi, Yi) = k 2 - 12 iJy4 (Xi, 'Ii), (12.3 ) 

where 1]j E (Yi-I, Yi+d. 
Using these fonnulas in Eq. (12.1) allows us to express the Poisson equation at the 

points (Xi, Y j) as 

U(Xi+I, Yj) - 2U(Xi. Yj) + U(Xi-l, Yj) u(x;, Yj+l) - 2U(Xi, Yj) + U(Xi. Yj-d 
h2 + k 2 

h2 iJ4 u k2 iJ4u 
= I(Xi, Yj) + 12 iJx4 (~i. Yi) + 12 iJy4 (Xi, 1]j), 

for each i = 1. 2, ... , n - 1 and j = 1, 2, ... , m - 1, and the boundary conditions as 

U(Xo, Yi) = g(xo, Yi) and u(xn , Yi) = g(xn , Yj). for each j = 0.1, .. , ,m; 

U(Xi, YO) = g(Xi, Yo) and U(Xi' Ym) = g(Xi. Ym), for each i = 1.2 ..... n - 1. 

In difference-equation form, this results in the Finite-Difference method. with local 
truncation error of order O(h2 + k2): 

2 
k k 
-

(12.4) 
• 

for each i = 1, 2, ... , n - 1 and j = 1, 2, ... , m - 1, and 

WOj=g(Xo,Yj) and wni=g(xn,Yj), foreachj=O.l, ...• m; (12.5) 

WiO = g(Xi, YO) and Wim = g(Xi' Ym), for each i = 1,2, ... ,n - 1; 

where wi} approximates u(x;, Yj). 
The typical equation in (12.4) involves approximations to u(x, y) at the points 

(Xi-I, Yj), (Xi, Yj), (Xi+l, Yj), (Xi, Yi-l), and (Xi, Yj+l). 
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Figure 125 

Figure 12.6 
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Reproducing the portion of the grid where these points are located (see Figure 12.5) shows 
that each equation involves approximations in a star-shaped region about (Xi, Yj). 

If we use the infonnation from the boundary conditions (12.5) whenever appropriate 
in the system given by (12.4); that is, at all points (Xi, Y) adjacent to a boundary mesh 
point, we have an (n - l)(m - 1) x (n - l)(m - 1) linear system with the unknowns being 
the approximations Wi,) to U (Xi, y) at the interior mesh points. 

The linear system involving these unknowns is expressed for matrix calculations more 
efficiently if a relabeling of the interior mesh points is introduced. A recommended labeling 
of these points (see [Var, p. 210]) is to let 
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where l = i + (m -1 - j)(n - 1), for each i = 1,2, ... , n -1 and j = 1,2, ... , m - 1. 
This labels the mesh points consecutively from left to right and top to bottom. For example, 
with n = 4 and m = 5, the relabeling results in a grid whose points are shown in Figure 
12.6. Labeling the points in this manner ensures that the system needed to detelIIline the 
Wi .j is a banded matrix with band width at most 2n - I. 

Consider the problem of determining the steady-state heat distribution in a thin square 
metal plate with dimensions 0.5 m by 0.5 m. Two adjacent boundaries are held at O°C, and 
the heat on the other boundaries increases linearly from O°C at one corner to 100°C where 
the sides meet. If we place the sides with the zero boundary conditions along the x- and 
y-axes, the problem is expressed as 

a2u a2u 
ax2 (x, y) + ay2 (x, y) = 0, 

for (x, y) in the set R = {(x, y) I 0 < x < 0.5, 0 < y < 0.5}, with the boundary 
conditions 

u(O, y) = 0, u(x,O) = 0, u(x, 0.5) = 200x, u(0.5, y) = 200y. 

If n = m = 4, the problem has the grid given in Figure 12.7, and the difference 
equation (12.4) is 

4w· . - W '+I . - W ' _I . - W · '-1 - W· '+1 = 0 t ,l I.j l,j I.} I,) , 

for each i = I, 2, 3 and j = I, 2, 3. 
Expressing this in telIIlS of the relabeled interior grid points Wi = U (Pi) implies that 

the equations at the points Pi are: 

y 
"' 

O.~ 
u(x, 0.5) = 20Qx 

, 
PI PJ P3 , 

• 

1'4 1'-5 . P6 I 

0 u(0.5, y) u(O,y) = = 200)' 

• P7 P8 P9 
'. 

N 

, 
u(x, 0) '= 0 05 

~. x 

• • 
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PI : 

P2 : 

P3 : 

P4 : 

Ps : 

P6 : 

P7 : 

Ps : 

P9 : 

4wI - W2 - W4 = WO,3 + WI,4, 

4W2 - W3 - Wi - Ws = W24, , 

4W3 - W2 - W6 = W4,3 + W3,4, 

4W4 - Ws - Wi - W7 = WO,2, 

4ws - W6 - W4 - W2 - Ws = 0, 

4W6 - Ws - W3 - W9 = W4,2, 

4W7 - Ws - W4 = Wo 1 + WI 0, , , 

4ws - W9 - W7 - Ws = W2,O, 

4W9 - Ws - W6 = W3,O + W4.1, 

where the right sides of the equations are obtained from the boundary conditions. 
In fact, the boundary conditions imply that 

WI,O = W2,O = W3,O = WO,I = WO,2= WO,3 = 0, 

WI,4 = W4,i = 25, W2,4 = W4.2 = 50, and W3,4 = W4,3 = 75. 

The linear system associated with this problem has the form 

4 -1 0 -1 0 0 0 0 0 Wi 25 
-1 4 -1 0 -1 0 0 0 0 W2 50 

0 -1 4 0 0 -1 0 0 0 W3 150 
-1 0 0 4 -1 0 -1 0 0 W4 0 

0 -1 0 -1 4 -1 0 -1 0 Ws 0 
0 0 -1 0 -1 4 0 0 -1 W6 50 
0 0 0 -1 0 0 4 -1 0 W7 0 
0 0 0 0 -1 0 -1 4 -1 Ws 0 
0 0 0 0 0 -1 0 -1 4 W9 25 

• 

The values of Wi, W2, , .. , W9, found by applying the Gauss-Seidel method to this 
matrix, are given in Table 12. L 

• 1 2 3 4 5 6 7 8 9 I 

Wi 18.75 37.50 56.25 12.50 25.00 37.50 6,25 12.50 18.75 

These answers are exact, since the tnie solution, u (x, y) = 400x y, has 

so the truncation error is zero at each step, 
• • 

The problem we considered in Example 1 has the same mesh size, 0.125, on each axis 
and requires solving only a 9 x 9 linear system. This simplifies the situation and does not 
introduce the computational problems that are present when the system is larger. Algorithm 
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12.1 uses the Gauss-Seidel iterative method for solving the linear system that is produced 

and permits unequal mesh sizes on the axes. 

Poisson Equation Finite-Difference 

To approximate the solution to the Poisson equation 

a2u a2u 
ax

2 
(x, y) + ay2 (x, y) = f(x, y), a <x < b, c < y < d, 

subject to the boundary conditions 

u(x,y)=g(x,y) ifx=aorx=b and c<y<d 

and 

u(x, y) = g(x, y) if y = c or y = d and a < x < b : 

INPUT endpoints a, b, c, d; integers m > 3, n > 3; tolerance TOL; maximum number 

of iterations N. 

OUTPUT approximations Wi,} to u (Xi, y}) for each i = 1, ... ,n - 1 and for each j = 
1, ... , m - lora message that the maximum number of iterations was exceeded. 

Step 7 Set h = (b - a)ln; 
k=(d-c)lm. 

Step 2 For i = 1, , .. ,n - 1 set Xi = a + ih. (Steps 2 and 3 construct mesh points.) 

Step 3 For j = 1, ... ,m - 1 set y} = c + jk. 

Step 4 For i = 1, ... ,n - 1 
for j = 1, ... ,m - 1 set Wi,} = O. 

Step 5 Set)" = h21 k2; 

/1- = 2(1 + ),,); 
1=1. 

Step 6 While I < N do Steps 7-20. (Steps 7-20 peiform Gauss-Seidel iterations.) 

Step 7 Set z = (_h2 I(Xl, Ym-l) + g(a, Ym-l) + )"g(XI, d) + )"Wl,m-2 + W2,m-l) 1/1-; 

NORM = Iz - Wl,m-ll; 

wl,m-l = Z. 

Step 8 For i = 2, . .. ,n - 2 
set z = ( - h2 I(x;, Ym-l) + )"g(Xi, d) + Wi-I,m-I 

+Wi+l,m-l + )"Wi,m-2)//1-; 
if IWi,m-l - zl > NORM then set NORM = IWi,m-l - zl; 

set Wi m-l = Z. , 

Step 9 Set z = ( - h2 I(Xn-l, Ym-l) + g(b, Ym-l) + )"g(Xn-l, d) 
+Wn-2,m-l + )"Wn-l,m-2)1/1-; 
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if IWn-l,m-1 - zl > NORM then set NORM = IWn-l,m-1 - zl; 
set Wn-I m-I = Z' , 

Step 10 For j = m - 2, , " ,2 do Steps 11, 12, and 13. 

Step 11 Set z = (_h2 f(XI, Yj) + g(a, Yj) + AWI,HI + AWI,j_1 + W2,j) 1/1; 
if IWI,j - zl > NORM then set NORM = IWI,j - zl; 
set WI,j = Z' 

Step 12 For i = 2, , " , n - 2 
set z = (_h2 f(Xi, Yj) + Wi-I,j + AWi,j+1 + Wi+l,j + AWi,j_l) 1/1; 
if IWi,j - zl > NORM then set NORM = IWi,j - zl; 
set Wi,j = Z, 

Step 13 Set z = ( - h2 f(xn_l, Yj) + g(b, Yj) + Wn-2,j 

+AWn-I.HI + AWn-l,j-I)1 /1; 
if IWn-l,j - zl > NORM then set NORM = IWn-l,j - zl; 
set Wn-I,j = Z. 

Step 14 Set z = (_h2 f(Xl, Yl) + g(a, Yl) + Ag(Xl, c) + AW1,2 + W2,l) 1/1; 
if IWI,I - zl > NORM then set NORM = Iwl.1 - zl; 
set WI,I = Z' 

Step 15 For i = 2, ... , n - 2 
set z = (_h2 f(Xi, YI) + Ag(Xi, c) + Wi-I,I + AWi,2 + Wi+l,l) 1/1; 
if IWi,1 - zl > NORM then set NORM = IWi,1 - zl; , 
set Wi I = Z' , 

Step 16 Set z = (_h2 f(Xn-l, YI) + g(b, YI) + Ag(Xn-l, c) + Wn-2,1 + AWn-I,2) 1/1; 

iflwn_I,I-zl > NORM then set NORM = IWn-I.I-zl; 

set Wn-I.l = Z. 

Step 17 If NORM < TOL then do Steps 18 and 19. 

Step 18 For i = 1, ... ,n - 1 
for j = 1, ... , m - 1 OUTPUT (Xi, Yj, Wi.j)' 

Step 19 STOP. (The procedure was successful.) 

Step 20 Setl = I + 1. 

Step 21 OUTPUT (,Maximum number of iterations exceeded'); 
(The procedure was unsuccessful.) 
STOP. • 

Although the Gauss-Seidel iterative procedure is incorporated into Algorithm 12.1 for 
simplicity, it is advisable to use a direct technique such as Gaussian elimination when the 
system is small, on the order of 100 or less, since the positive definiteness ensures stability 
with respect to roundoff errors. In particular, a generalization of the Crout Factorization 
Algorithm 6.7 (see [Var, p. 221]), is efficient for solving this system since the matrix is in 
symmetric-block tridiagonal form 
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with square blocks of size (n - 1) x (n - 1). 
For large systems, an iterative method should be used-specifically, the SOR method 

discussed in Algorithm 7.3. The choice of w that is optimal in this situation comes from 
the fact that when A is decomposed into its diagonal D and upper- and lower-triangular 
parts U and L, 

A = D - L - U, 

and B is the matrix for the Jacobi method, 

B = D-I(L + U), 

then the spectral radius of B is (see [Var]) 

1 TC TC 
p(B) = 2 cos + cos • 

m n 

The value of w to be used is, consequently, 

2 4 
W= -- • 

1 + )1 - [p(B)]2 TC 
2 

1l 
2+ 4- cos - + cos 

m n 

A block technique can be incorporated into the algorithm for faster convergence of the 
SOR procedure. For a presentation of this technique, see [Var, pp. 219-223]. 

Consider Poisson's equation 

a2u a2u 
ax2 (x, y) + ay2 (x, y) = xeY , 0 < x < 2, 0 < y < 1, 

with the boundary conditions 

u(O,y) =0, u(2,y)=2eY , O::sy<l, 

u(x,O) = x, u(x, 1) = ex, 0 ::s x < 2. 

We will use Algorithm 12.1 to approximate the exact solution u(x, y) = xeY with n = 6 
and m = 5. The stopping criterion for the Gauss-Seidel method in Step 17 requires that 

w(l) _ W(l-l) < 10-10 
IJ IJ - , 

for each i = 1, ... , 5 and j = 1, ... , 4. So the solution to the difference equation was 
accurately obtained, and the procedure stopped at I - 61. The results, along with the 
correct values, are presented in Table 12.2. • 
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Table 12.2 
(611 (61) . • 

u(Xj,Yj) I } Xj Yj w· .' u(Xj, Yj) - w j.j I. } 

I 1 0.3333 0.2000 0.40726 0.40713 1.30 x 10-4 

1 2 0.3333 0.4000 0.49748 0.49727 2.08 x 10-4 

I 3 0.3333 0.6000 0.60760 0.60737 2.23 x 10-4 

1 4 0.3333 0.8000 0.74201 0.74185 1.60 x 10-4 

2 1 0.6667 0.2000 0.81452 0.81427 2.55 x 10-4 

2 2 0.6667 0.4000 0.99496 0.99455 4.08 x 10-4 

2 3 0.6667 0.6000 1.2152 1.2147 4.37 x 10-4 

2 4 0.6667 0.8000 1.4840 1.4837 3.15 x 10-4 

3 1 1.0000 0.2000 1.2218 1.2214 3.64 x 10-4 

3 2 1.0000 0.4000 1.4924 1.4918 5.80 x 10-4 

3 3 1.0000 0.6000 1.8227 1.8221 6.24 x 10-4 

3 4 1.0000 0.8000 2.2260 2.2255 4.51 x 10-4 

4 1 1.3333 0.2000 1.6290 1.6285 4.27 x 10-4 

4 2 1.3333 0.4000 1.9898 1.9891 6.79 x 10-4 

4 3 1.3333 0.6000 2.4302 2.4295 7.35 x 10-4 

4 4 1.3333 0.8000 2.9679 2.9674 5.40 x 10-4 

5 1 1.6667 0.2000 2.0360 2.0357 3.71 x 10-4 

5 2 1.6667 0.4000 2.4870 2.4864 5.84 x 10-4 

5 3 1.6667 0.6000 3.0375 3.0369 6.41 x 10-4 

5 4 1.6667 0.8000 3.7097 3.7092 4.89 x 10-4 

E X ERe I S ESE T 12.1 

1. Use Algorithm 12.1 to approximate the solution to the elliptic partial differential equation 

iJ 2u a2u 
iJx2 + ay2 = 4, 0 < x < 1, 0< Y < 2; 

u(X, 0) = x2, u(X, 2) = (x - 2)2, O<x<I' - - , 

u(0,y)=y2, u(1,y)=(y_1)2, 0<y<2. 

Use h = k = ~, and compare the results to the actual solution u (x, y) = (x _ y) 2 . 

2. Use Algorithm 12.1 to approximate the solution to the elliptic partial differential equation 

iJ 2u a2u ---:- + - 0 iJx2 ay2 - , I < x < 2, 0 < y < 1; 

u(x,0)=2lnx, u(X, 1) = In(x2 + 1), 1 < x < 2; 

u(1, y) = In(y2 + 1), u(2, y) = In(y2 + 4), 0 < y < 1. 

Use h = k = ~, and compare the results to the actual solution u(x, y) = In(x2 + y2). 

3. Approximate the solutions to the following elliptic partial differential equations, using Algo
rithm 12.1: 
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a. 

b. 

c. 

d. 

O<x<l, O<y<l; 

U(x,O) = 0, u(x, 1) = x, 

U(O,y) =0, u(l,y)=y, 

O<x<l' - - , 

Use h = k = 0.2, and compare the results to the actual solution u(x, y) = xy. 

a2u a2u 
-ax""'-2 + ay2 =-(cos(x+y)+cos(x-y», 0< x < rr, 

rr 
0<)'<-' 

2' 

u(O, y) == cosy, u(rr, y) == - cos y, 
rr 

0< y < -, - - 2 

u (x, 0) == cos x, O:s;x<rr. 

Use h == rr 15 and k == rr 110, and compare the results to the actual solution u (x, y) = 
cosx cos y. 

a2u a2u 
----:::- + == (x 2 + y2)exy 

, 
ax2 ay2 

0< x < 2, 0 < y < 1; 

u(O, y) = 1. u(2, y) = e 2y
, 

u(x,O)=1. u(x,l)=ex
, 

o < y < 1; 

0< x < 2. - -

Use h = 0.2 and k = 0.1, and compare the results to the actual solution u (x, y) = eXY • 

a2u a2u x y ----:: + - - + - 1 < x < 2, 1 < y < 2', 
ax2 ay2 - y x' 

u(x, 1) = x lnx, u(x,2) = x In(4x2), 1 <x < 2; 

u(l, y) = ylny, u(2, y) = 2yln(2y), 1 < y < 2. 

Use h = k = 0.1, and compare the results to the actual solution u (x, y) = x y In x y . 

4. Repeat Exercise 3(a) using extrapolation with ho = 0.2, hI = ho/2, and h2 = ho/4. 

5. Construct an algorithm similar to Algorithm 12.1, except use the SOR method with optimal w 
instead of the Gauss-Seidel method for solving the linear system. 

6. Repeat Exercise 3 using the algorithm constructed in Exercise 5. 

7. A coaxial cable is made of a 0.1-in.-square inner conductor and a 0.5-in.-square outer conduc
tor. The potential at a point in the cross section of the cable is described by Laplace's equation. 
Suppose the inner conductor is kept at 0 volts and the outer conductor is kept at 110 volts. 
Find the potential between the two conductors by placing a grid with horizontal mesh spacing 
h = 0.1 in. and vertical mesh spacing k == 0.1 in. on the region 

D = {(x, y) I 0 <x, y < 0.5}. 

Approximate the solution to Laplace's equation at each grid point, and use the two sets of 
boundary conditions to derive a linear system to be solved by the Gauss-Seidel method. 

8. A 6-cm by 5-cm rectangular silver plate has heat being uniformly generated at each point at 
the rate q = 1.5 cal/cm3 ·s. Let x represent the distance along the edge of the plate of length 6 
cm and y be the distance along the edge of the plate of length 5 cm. Suppose the temperature 
u along the edges is kept at the following temperatures: 
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u(x,O) = x(6 - x), u(x, 5) = 0, ° < x < 6, 

u(O, y) = y(5 - y), u(6, y) = 0, ° < y < 5, 

where the origin lies at a comer of the plate with coordinates (0,0) and the edges lie along the 
positive x- and y-axes. The steady-state temperature u = u(x, y) satisfies Poisson's equation: 

a2u a2u q 
ax2 (x, y) + ay2 (x, y) = - K' ° < x < 6, 0< y < 5, 

where K, the thermal conductivity, is 1.04 cal/cm·deg·s. Approx.imate the temperature u(x, y) 
using Algorithm 12.1 with h = 0.4 and k = ~. 

12.2 Parabolic Partial Differential Equations 

The parabolic partial differential equation we study is the heat, or diffusion, equation 

au 2 a2u 
-(X,t) = ex. 2(X,t), O<x<l, t>O, 
at ax 

(12.6) 

subject to the conditions 

u(O,t)=u(l,t)=O, t>O, 

and 

u(x, 0) = I(x), 0 <x :::: l. 

The approach we use to approximate the solution to this problem involves finite differences 
and is similar to the method used in Section 12.1. 

First select an integer m > 0 and define h = 1/ m. Then select a time-step size k. The 
grid points for this situation are (Xi, tj), where Xi = ih, for i = 0, I, ... ,m, and tj = j k, 
for j = 0, 1, .... 

We obtain the difference method using the Taylor series in t to fOlm the difference 
quotient 

au u(xi,tj+k)-u(Xi,tj) ka2u 
at (Xi, tj) = k - "2 at2 (Xi,lLj), (12.7) 

for some IL j E (tj, tj+I), and the Taylor series in X to fOIIll the difference quotient 

a2u U(Xi + h, ti) - 2U(Xi, tj) + U(Xi - h, ti) h2 a4u 
ax2 (Xi, ti) = h2 - 12 ax4 (~i' tj), (12.8) 

where ~i E (Xi-I, xi+d. 
The parabolic partial differential equation (12.6) implies that at the interior gridpoint 

(Xi, tj), foreachi = 1,2, ... , m -1 andj = 1,2, ... , we have 

au 2 a2u 
at (Xi, ti) - ex. 8x2 (Xi, ti) = 0, 
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so the difference method using the difference quotients (12.7) and (12.8) is 

Wi,j+1 - Wij 

k 

where Wij approximates U(Xi, tj). 

2 WHI,j - 2WiJ + Wi-I,j 
- ex ---"'-------::-;;-'---~ - 0 h2 - , 

The local truncation error for this difference equation is 

k a2u h2 a4u 
Tij = 2 at2 (Xi, J-Lj) - ex

2 
12 ax4 (~i' tj). 

Solving Eq. (12.9) for wi,HI gives 

Wi,j+1 = 

705 

(12.9) 

(12.10) 

(12.11) 

for each i = 1,2, ... ,m - 1 and j = 1,2, .... Since the initial condition u(x, 0) = I(x), 
for each ° S X S I, implies that Wi,O = !(Xi), for each i = 0, 1, ... ,m, these values can 
be used in Eq. (12.11) to find the valueofwi,J, for each i = 1,2, ... ,m-l. The additional 
conditions u(O, t) = 0 and u(/, t) =0 imply that WO,I = Wm,l = 0, so all the entries of 
the fOlm Wi,l can be detennined. If the procedure is reapplied once all the approximations 
Wi,] are known, the values of Wi,2, Wi,3, •.. , can be obtained in a similar manner. 

The explicit nature of the difference method implies that the (m - 1) x (m - 1) matrix 
associated with this system can be written in the tridiagonal form 

(1 - 2),,) A 0: • • • • • • • • • • • 0 • • • • • • 

(1 2),,) ).. 
• 

)... • • - • • • • • • • • • • • • • . • • • • 

A O' 
• • • '0 • • • - • • • • - • • • • , 

• • • • • • • • • • • • • • • • • • • 
• • • ')" • • • • • • • • • • • • • • • • • • • • • • :0 • 

(1 2),,) O' • • • • • • • • • • • • • ).. -

and 

w(j) = (wlj, W2j,"" Wm-l,j)l, for each j = 1,2, ... , 

then the approximate solution is given by 

w(j) = Aw(j-l), for each j = 1,2, ... , 

so w(J) is obtained from w(j-l) by a simple matrix multiplication. This is known as the 
Forward-Difference method. If the solution to the partial differential equation has four 
continuous partial derivatives in X and two in t, then Eq. (12.10) implies that the method is 
of order O(k + h2

). 
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EXAMPLE 1 Consider the heat equation 

au a2u 
-(x,t)- 2(X,t)=0, O<x<l, O<t, at ax 

with boundary conditions 

u(O, t) = u(1, t) = 0, 0 < t, 

and initial conditions 

u(x, 0) = sin(Jrx), 0 <x :s 1. 

The solution to this problem is 

u(x, t) = e-",2 r sin(Jrx). 

The solution at t = 0.5 will be approximated using the Forward-Difference method, first 
with h = 0.1, k = 0.0005, and A = 0.05, and then with h = 0.1, k = 0.01, and A = I. 
The results are presented in Table 12.3. • 

Table 12.3 

Xi 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

U (Xi. 0.5) 

0 
0.00222241 
0.00422728 
0.00581836 
0.00683989 
0.00719188 
0.00683989 
0.00581836 
0.00422728 
0.00222241 

0 

W,.lOoo Wuo 

k = 0.0005 Iu (Xi, 0.5) - Wi.1000 I k = 0.01 IU(Xi. 0.5) - w,.501 

0 0 
0.00228652 6.411 x 10-5 8.19876 X 107 8.199 X 107 

0.00434922 1.219 x 10-4 -1.55719 X 108 1.557 x 10~ 

0.00598619 1.678 x 10-4 2.13833 X 108 2.138 X 108 

0.00703719 1.973 x 10-4 -2.50642 X 108 2.506 x 108 

0.00739934 2.075 x 10-4 2.62685 X 108 2.627 X 108 

0.00703719 1.973 x 10-4 -2.49015 X 108 2.490 X 108 

0.00598619 1.678 x 10-4 2.11200 X 108 2.112 X 108 

0.00434922 1.219 x 10-4 -1.53086 X 108 1.531 X 108 

0.00228652 6.511 x 10-5 8.03604 X 107 8.036 X 107 

0 0 

A truncation error of order O(k + h2) is expected in Example 1. Although this is 
obtained with h = 0.1 and k = 0.0005, it certainly is not with h = 0.1 and k = 0.01. To 
explain the difficulty, we must look at the stability of the Forward-Difference method. 

If an error e(O) = (e;O) , eiO), ... , e~~l)t is made in representing the initial data 

(or in any particular step, the choice of the initial step is simply for convenience), an error 
of Ae(O) propagates in w(l), since 

w(1) = A(w(O) + e(O)) = Aw(O) + Ae(O). 

This process continues. At the nth time step, the error in wen) due to e(O) is A ne(O). The 
method is consequently stable precisely when these errors do not grow as n increases. But 
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this is true if and only if for any initial error e(U), we have IIAne(O) < Ile(O) II for all n. 
Hence, we must have II An II ~ I, a condition that, by Theorem 7.15, requires that p (A n) = 
(p(A»n < 1. The Forward-Difference method is therefore stable only if peA) < l. 

The eigenvalues of A can be shown (see Exercise 7) to be 

• 2 
In 

f.J-i = I - 4.:\ sin 
2m 

, for each i = I, 2 .... , m - 1. 

The condition for stability consequently reduces to determining whether 

• 
In 

peA) = max 1-4.:\ sin 
J<i<m-J 2m 

2 

< 1, 

which simplifies to 

• 2 I • sm 
In 

2m 
<-
- 2' for each i = 1,2 ..... m - I. 

Since stability requires that this inequality condition hold as h -+ 0, or, equivalently, 
as m -+ 00, the fact that 

• sm lim 
m ..... oo 

(m - l)n 

2m 

2 

= I 

means that stability will occur only if 0 ~ .:\ ~ i. Since .:\ = ex 2(kj h2), this inequality 
requires that hand k be chosen so that 

2 k I 
ex - <

h2 - 2' 

In Example 1 we have ex = 1, so this condition is satisfied when h = 0.1 and k = 0.0005. 
But when k was increased to 0.01 with no corresponding increase in h, the ratio was 

O.oI 1 
-(0-.1-=-)2 = 1 > 2' 

and stability problems became apparent. 
Consistent with the terIllinology of Chapter 5, we call the Forward-Difference method 

conditionally stable and remark that the method converges to the solution of Eq. (12.6) 
with rate of convergence O(k + h2), provided 

2 k 1 
a - <

h2 - 2 

and the required continuity conditions on the solution are met. (For a detailed proof of this 
fact, see [IK, pp. 502-505].) 

To obtain a method that is unconditionally stable, we consider an implicit-difference 
method that results from using the backward-difference quotient for (aujat)(Xi. tj) in the 
form 
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where JLj is in (tj_l , tj). Substituting this equation, together with Eq. (12.8) for a2ujax2, 

into the partial differential equation gives 

U(Xi, tj) - U(Xi, tj_l) 2u(X,+i, tj) - 2U(Xi, tj) + U(Xi - l , tj) 
~~~--~~~~-a 

k h2 

k a2u h2 a4u 
= -2 at2 (Xi, JLj) - a

2 
12 ax4 (~i' tj), 

for some ~i E (Xi -I, Xi+ I)' The Backward-Difference method that results is 

Wij - Wi,j-I _ 2 Wi+I ,j - 2Wlj + Wi-I,} _ 0 
k a h2 - , (12.12) 

for each i = I , 2, ... , m - 1 and j = I, 2, . . .. 
The Backward-Difference method involves, at a typical step, the mesh points 

(Xi, tj), (Xi, tj-i), (Xi-i, tj), and (Xi+i, tj), 

and involves approximations at the points marked with x 's in Figure 12.8. 

Since the boundary and initial conditions associated with the problem give informa
tion at the circled mesh points, the figure shows that no explicit procedures can be used to 
solve Eq. (12.12). Recall that in the Forward-Difference method (see Figure 12.9), approx
imations at 

were used, so an explicit method for finding the approximations, based on the information 
from the initial and boundary conditions, was available. 

If we again let A denote the quantity a 2(kj h2 ), the Backward-Difference method be
comes 

(1 + 2A)Wij - AWi+i,j - AWi-i,j = Wi,j-I, 
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for each i = 1. 2 •...• m - 1 and j = I, 2 •.... Using the knowledge that Wi,O = I (Xi). 

for each i = 1.2 •.... ~ - 1 and Wm,j = WO,j = O. for each j = 1.2 •...• this difference 
method has the matrix representation: 

(1 + 2),,) -).. 0: : • • • • • • • • '0 • • • • • 
• • • WI . WI,j_1 • • • • 

-).. • • • ,J 
• • • • 

• • • 
• • • • • W2 . W2,j-1 • • • • • • • • • ,J • • • 

'0 O· • (12.13) • • • • • -• -• • • • • • • • • • • • • • • • • • • • • • • • • • • -).. • • 
• • • • 

• • • 
• • • • 

• • • 
Wm-I,j Wm-I,j-l • • • • • 

O' • • • • • • • • • :0 -).. (1 + 2),,) 

or Aw(j) =w(J-I).foreachi = 1.2 •.... 
Hence, we must now solve a linear system to obtain w(j) from w(j -I). Since).. > O. the 

matrix A is positive definite and strictly diagonally dominant. as well as being tridiagonal. 
We can use either the Crout Factorization Algorithm 6.7 or the SOR Algorithm 7.3 to solve 
this system. Algorithm 12.2 solves (12.13) using Crout factorization. which is acceptable 
unless m is large. In this algorithm we assume. for stopping purposes. that a bound is given 
for t. 

Heat Equation Backward-Difference 
· 

To approximate the solution to the parabolic partial differential equation 

au 2 a2u 
-(x.t)-a 2(x.t)=0. O<x<l. O<t<T. at ax 

subject to the boundary conditions 

u(O. t) = u(l. t) = O. 0 < t < T, 

and the initial conditions 

u(x.O) = I(x). 0 <x:::: I : 

· .~. -
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INPUT endpoint!; maximum time T; constant a; integers m > 3, N > l. 

OUTPUT approximations Wi,j to u (Xi, tj) for each i = 1, ... ,m - 1 and j = 1, .... N. 

Step 1 Set h = 11m; 
k = TIN; 
A = a 2kl h2. 

Step 2 For i = 1, ... , m - 1 set Wi = f(ih). (Initial values.) 
(Steps 3-11 solve a tridiagonal linear system using Algorithm 6.7.) 

Step 3 Set II = 1 + 2A; 
UI = -AI II. 

Step 4 For i = 2, ... ,m - 2 set Ii = 1 + 2A + AUi -I; 
Ui = -AI [i. 

Step 5 Set 1m-I = 1 + 2A + AUm -2. 

Step 6 For j = 1, ... , N do Steps 7-11. 

Step 7 Set t = jk; (Current tj.) 
ZI = wd [I· 

StepB Fori = 2, ... ,m -1 setZi = (Wi +)...Zi-I)lli. 

Step9 Setwm_1 =Zm-I. 

Step 10 For i = m - 2, ... , 1 set Wi = Zi - Ui Wi+l. 

Step 11 OUTPUT (t); (Note: t = tj.) 
For i = 1, . . . , m - 1 set X = i h; 

OUTPUT (x, Wi). (Note: Wi = Wi,j.) 

Step 12 STOP. (The procedure is complete.) -

The Backward-Difference method (Algorithm 12.2) with h = 0.1 and k = 0.01 will be 
used to approximate the solution to the heat equation 

au a2u 
-(x, t) - 2 tx, t) = 0, ° < x < 1, 0< t, at ax 

subject to the constraints 

u(O, t) = u(l, t) = 0, 0 < t, u(x,O) = sinnx, ° <x < 1, 

which was considered in Example 1. To demonstrate the unconditional stability of the 
Backward-Difference method, we again compare Wi.50 to U(Xi, 0.5), where i = 0, 1, 
... , 10. 

The results listed in Table 12.4 have the same values of h and k as those in the fifth 
and sixth columns of Table 12.3, which illustrates the stability of this method. -
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Xj Wj,50 u(xj,O.5) IWj,5o - u(Xj, 0,5)1 

0.0 0 0 
0.1 0.00289802 0.00222241 6.756 x 10-4 

0.2 0.00551236 0.00422728 1.285 x 10-3 

0.3 0,00758711 0,00581836 1.769 x 10-3 

0.4 0,00891918 0,00683989 2.079 x 10-3 

0.5 0,00937818 0,00719188 2.186 x 10-3 

0.6 0.00891918 0.00683989 2,079 x 10-3 

0,7 0.00758711 0.00581836 1.769 x 10-3 

0,8 0.00551236 0.00422728 1.285 x 10-3 

0.9 0.00289802 0.00222241 6.756 x 10-4 

1.0 0 0 

The reason that the Backward-Difference method does not have the stability problems 
of the Forward-Difference method can be seen by analyzing the eigenvalues of the matrix 
A. For the Backward-Difference method (see Exercise 8), the eigenvalues are 

, 2 
. I l1r 

ILi = 1 + 4A sm 
2m 

, for each i = I, 2, ' .. , m - I, 

and since)" > 0, we have Ili > I, for all i = 1, 2, ' ... , m - I. This implies that A-I 

exists since zero is not an eigenvalue of A, An error e(O) in the initial data produces an 
error (A-Ite(O) at the nth step. Since the eigenvalues of A-I are the reciprocals of the 
eigenvalues of A, the spectral radius of A -I is bounded above by 1, and the method is 
stable, independent of the choice of A = a2 (k I h 2 ). In the terminology of Chapter S, we call 
the Backward-Difference method an unconditionally stable method. The local truncation 
error for the method is of order 0 (k + h2), provided the solution of the differential equation 
satisfies the usual differentiability conditions. In this case, the method converges to the 
solution of the partial differential equation with this same rate of convergence (see [IK, 
p. 508]). 

The weakness in the Backward-Difference method results from the fact that the lo
cal truncation error has a portion with order O(k), requiring that time intervals be made 
much smaller than spatial intervals. It would clearly be desirable to have a procedure with 
local truncation error of order O(k2 + h2). The first step in this direction is to use a differ
ence equation that has O(k2) error for Ut(x, t) instead of those we have used previously, 
whose error was O(k). This can be done by using the Taylor series in t for the function 
u(x, t) at the point (Xl, tj) and evaluating at (Xi, t}+l) and (Xi, fj_l) to obtain the Centered
Difference fOlIllula 

au U(Xi, t}+l) - U(Xi, (i-I) k2 a3u 
at (Xi, tj) = 2k + 6" at3 (Xi, Ilj), 

where Ili E (tj-I, tj+d. The difference method that results from substituting this and the 
usual difference quotient for (a 2ulax2 ), Eq. (12.8), into the differential equation is called 
Richardson's method and is given by 

W' '+1 - W' '-I I,) I,} 

2k 

2 Wi+l,j - 2Wij + Wi-I.j 
- a --'---"'------::-::-'------"- = O. 

h2 
(12.14) 
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This method has local truncation error of order O(k2 + h2), but unfortunately it also has 
serious stability problems (see Exercise 6). 

A more rewarding method is derived by averaging the Forward-Difference method at 
the jth step in t, 

k 

2 Wi+l,j - 2Wi,j + Wi-l,j 
- a -.:......:.::---::-'-'-----'"- = 0, 

h2 

W' '+1 - W' , I,} I,} 

which has local truncation error 

and the Backward-Difference method at the (j + 1)st step in t, 

W' '+1 - W' , l,} I,j 

k 

2 Wi+l.j+l - 2Wi,)+! + Wi-l,j+l 
-a 

h 2 

which has local truncation error 

If we assume that 

then the averaged-difference method, 

= 0, 

Wi,j+! - Wij 

k 

a 2 
W'+I' - 2w ' + W'-l ' ',j ',j ',j 

2 h2 
+ Wi+l,j+l - 2Wi,j+l + Wi-l,j+l 

h2 
-0 - , 

has local truncation error of order O(k2 + h2
), provided, of course, that the usual differ

entiability conditions are satisfied. This is known as the Crank-Nicolson method and is 
represented in the matrix fOlill 

AW(j+l) = Bw(j), for each j = 0,1,2, ... , (12.15) 

where 

2 k 
A = a h2 ' w(j) = (Wl,j, WZ,j, ... , Wm-l,j/, 

and the matrices A and B are given by: 

(1 + A) Ie 0: • • , • • • • • • '0 --
Z , • , , • • , • • 

Ie • • • • 
• • • 

• • • • --
2 • • • • • • • • • • • • • , • • • 

A O. • • '0 • • • - • - • • • • • • • • • • • • • • • • • 'Ie • • 
• • , , --• , 

• 2 • • • • • 
• • • • 

• 'Ie o· 0 (l + A) • • • , • • • • , --
2 
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and 

(1 A) A 0: • • • • • • • • • '0 - -
2· • 

• • • • 

A • • • • 
• • 

• • • 

2 . • • • • • • 
• • • • • • • • 

B O· • • • '0 • • • -- • • • 
• • • • • 

• • • • • • • • • • • • 'A • • • 
• • • • -• • • 2 • • • • • • • • • • 
• 'A O· 0 (l A) • • • • • • • • • - -

2 

Since A is a positive definite, strictly diagonally dominant, and tridiagonal matrix, it 
is nonsingular. Either the Crout Factorization 6.7 or the SOR Algorithm 7.3 can be used 
to obtain W(j+l) from w(j), for each j = 0, 1, 2, .... Algorithm 12.3 incorporates Crout 
factorization into the Crank-Nicolson technique. As in Algorithm 12.2, a finite length for 
the time interval must be specified to detellnine a stopping procedure. The verification 
that the Crank-Nicolson method is unconditionally stable and has order of convergence 
O(k2 + h2) can be found in [IK, pp. 508-512]. 

Crank-Nicolson 

To approximate the solution to the parabolic partial differential equation 

au 2 a2u 
-(x,t)-a 2(X,t)=0, O<x<I, O<t<T, at ax 

subject to the boundary conditions 

u(O,t) = u(l,t) = 0, 0 < t < T, 

and the initial conditions 

u(x,O) = f(x), 0::: x ::: I: 

INPUT endpoint I; maximum time T; constant a; integers m > 3, N > l. 

OUTPUT approximations Wi,j to u (Xi, t j) for each i = 1, ... ,m - 1 and .i = 1, . .. , N. 

Step 1 Set h = I/m; 
k = T/N; 
A = a 2k/ h2 ; 

Wm = O. 

Step 2 For i = 1, ... , m - 1 set Wi = f(ih). (Initial values.) 
(Steps 3-11 solve a tridiagonal linear system using Algorithm 6.7.) 

Step 3 Set II = 1 + A; 
UI = -A/(211). 

Step 4 For i = 2, ... ,m - 2 set Ii = 1 + A + AUi-J/2; 
Ui = -A/(21i ). 

Step 5 Set Im-l = 1 + A + Aum-212. 
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Step 6 For j = 1, ... , N do Steps 7-11. 

Step 7 Sett = jk; (Current tj.) 

A 
ZI = (l - A)WI + 2 W2 II' 

Step 8 For i = 2, ... , m - 1 set 

A 
Zi = (1 - A)Wi + 2 (Wi+1 + Wi-I + Zi-I) Ii. 

Step 9 Set Wm-I = Zm-I. 

Step10 Fori=m-2, ... ,lsetwi=zi-UiWi+!' 

Step 11 OUTPUT (t); (Note: t = tj.) 

For i = 1, . .. , m - 1 set x = i h ; 
OUTPUT (x, Wi). (Note: Wi = Wi.j.) 

Step 12 STOP. (The procedure is complete.) _ 

The Crank-Nicolson method will be used to approximate the solution to the problem in 
Examples 1 and 2, consisting of the equation 

au a2u 
-(x,t)- 2(x,t)=0, O<x<l O<t, at ax 

subject to the conditions 

u(O,t)=u(l,t)=O,O<t, 

and 

u(x,O) = sin(nx), 0 < x < 1. 

The choices m = 10, h = 0.1, N = 50, k = 0.01, and A = 1 are used in Algorithm 12.3, 
as they were in the previous examples. The results in Table 12.5 indicate the increase in 

Xi W I ,50 u(xi,0.5) IWi.50 - U(Xi, 0.5)1 

0.0 ° ° 0,1 0,00230512 0,00222241 8,271 x 10-5 

0,2 0.00438461 0,00422728 1.573 x 10-4 

0.3 0.00603489 0,00581836 2.165 x 10-4 

0.4 0.00709444 0,00683989 2.546 x 10-4 

0.5 0.00745954 0.00719188 2,677 x 10-4 

0,6 0.00709444 0.00683989 2.546 x 10-4 

0.7 0.00603489 0,00581836 2,165 x 10-4 

0.8 0.00438461 0.00422728 1.573 x 10-4 

0,9 0.00230512 0.00222241 8.271 x 10-5 

1.0 0 0 

• ---
• --• -
, 

, 
, 
r , 
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accuracy of the Crank-Nicolson method over the Backward-Difference method, the best of 
the two previously discussed techniques. _ 

EXERCISE SET 12.2 

1. Approximate the solution to the following partial differential equations using the Backward
Difference Algorithm. 

a. 

b. 

0< x < 2, 0 < t; 

u(O, t) = u(2, t) = 0, 0 < t. 

. Jr 0 
U (x, 0) = sm "2 x, < x < 2. 

Use m = 4, T = 0.1, and N == 2, and compare your results to the actual solution 
u(x, t) = e-<"Z(4)t sin ~x. 

au _ .l a
2
u _ 0 0 < x < I, 0 < t; at 16 ax2 - , 

u(O,t)=u(l,t) =0, O<t, 

u(x, 0) = 2sin2Jrx, 0 <x < 1. 

Use m = 3, T = 0.1, and N =:: 2, and compare your results to the actual solution 
u (x , t) = 2e-<rr

Z
(4)t sin 2Jr X. 

2. Repeat Exercise 1 using the Crank-Nicolson Algorithm. 

3. Use the Forward-Difference method to approximate the solution to the following parabolic 
partial differential equations. 

a. 

b. 

c. 

0< x < 2, 0 < t; 

u(O, t) = u(2, t) = 0, 0 < t, 

u(x,O) = sin2Jrx, 0< x < 2. - -

Use h = 0.4 and k = 0.1, and compare your results at t = 0.5 to the actual solution 
u(x, t) == e-4"Zt sin 2Jr x. Then use h = 0.4 and k = 0.05, and compare the answers. 

au a2u 
- - = 0, 0 < x < Jr, 0 < t; 
at ax2 

u(O, t) = u(Jr, t) = 0, 0 < t, 

u(x,O) = sinx, O.:s x <Jr. 

Use h = Jr /10 and k = 0.05, and compare your results at t = 0.5 to the actual solution 
( ) 

-t· u x, t == e sm x . 

au _ 4 a2u _ 0 
at ;;1' ax 2 - , 

0< x < 4, 0 < t; 

u(O, t) = u(4, t) == 0, 0 < t, 

u(x,0)==sinfx(l+2cos:x), 0<x<4. 
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d. 

Use h = 0.2 and k = 0.04, and compare your results at t = 0.4 to the actual solution 
u(x, t) = e-t sin ;x +e- t

/
4 sin ~x. 

au 1 a2u 
- - - - 0 0 < x < 1, 0 < t; at rr2 (Jx 2 - , 

U (0, t) = u (1, t) = 0, 0 < t, 

u(x,O)=cosrr(x-D, O<x<1. 

Use h = 0.1 and k = 0.04, and compare your results at t = 0.4 to the actual solution 
u(x, t) = e-t cos rr(x - ;). 

4. Repeat Exercise 3 using the Backward-Difference Algorithm. 

S. Repeat Exercise 3 using the Crank-Nicolson Algorithm. 

6. Repeat Exercise 3 using Richardson's method. 

7. Show that the eigenvalues for the (m - 1) by (m - 1) tridiagonal method matrix A given by 

).., j = i-lor j = i + 1, 

1 - 2)" , • • } = I, 

0, otherwise 

are 

J.ti = 1 - 4)" 
• Irr • 

Slll-
2m 

2 

, for each i = 1,2, ... ,m - 1, 

with corresponding eigenvectors v(i), where v ji) = sin ~. 

8. Show that the (m - 1) by (m - 1) tridiagonal method matrix A given by 

-).., j=i-lorj=i+l, 

1 + 2)", 

0, 

• • } = I, 

otherwise, 

where).. > 0, is positive definite and diagonally dominant and has eigenvalues 

. 2 Irr 
J.ti = 1 + 4)" sin-

2m 
for each i = I, 2, . .. ,m - I, 

with corresponding eigenvectors v(i), where vji) = sin i1; . 
9. Modify Algorithms 12.2 and 12.3 to include the parabolic partial differential equation 

au a2u 
- - = F(x), 0 < x < I, 0 < t; 
at ax2 

u(O, t) = u(l, t) = 0, 0 < t; 

u(x,O) = I(x), 0:::: x < I. 

10. Use the results of Exercise 9 to approximate the solution to 

au a2u 
at - ax2 = 2, 0 < x < 1, 0 < t; 

u(O, t) = u(1, t) = 0, 0< t· , 

u(x, 0) = sinrrx +x(1-x), 
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with h = 0.1 and k = 0.01. Compare your answer at t = 0.25 to the actual solution u(x, t) = 
e-,,2, sin:>rx +x(l-x). 

11. Change Algorithms 12.2 and 12.3 to accommodate the partial differential equation 

au 2 a2u 
- - a =:0 0 < x < I, 0 < t; at ax2 ' 

• 
u(O, t) =: ¢J(t), u(I, t) = Wet), 0 < t; 

u(x, 0) =: f(x), 0:::: x :::: 1, 

where f(O) = ¢J(O) and f(I) = w(O). 

12. The temperature u(x, t) of a long, thin rod of constant cross section and homogeneous con
ducting material is governed by the one-dimensional heat equation. If heat is generated in the 
material, for example, by resistance to current or nuclear reaction, the heat equation becomes 

a2u Kr au 
8x 2 + pC = Kat, 0 < x < 1, 0 < t, 

where I is the length, p is the density, C is the specific heat, and K is the thennal diffusivity 
of the rod. The function r = r (x, t, u) represents the heat generated per unit volume. Suppose 
that 

1= 1.5 em, K = 1.04 callcm . deg . s, 

p = 10.6 g/cm3
, C = 0.056 cal/g . deg, 

and 

rex, t, u) = 5.0 caVcm3 . s. 

If the ends of the rod are kept at O°C, then 

u(O, t) = u(l, t) = 0, t > O. 

Suppose the initial temperature distribution is given by 

. :>rx 
u(x, 0) = sm I' 0:::: x :::: I. 

Use the results of Exercise 9 to approximate the temperature distribution with h = 0.15 and 
k = 0.0225. 

13. Sagar and Payne [SP] analyze the stress-strain relationships and material properties of a cylin
der alternately subjected to heating and cooling and consider the equation 

1 a2T 1 aT 1 aT 
~+- = , 
ar2 r ar 4K at 

2 < r < 1, 0 < T, 

where T = T (r, t) is the temperature, r is the radial distance from the center of the cylinder, t 
is time, and K is a diffusivity coefficient. 

a. Find approximations to T (r, 10) for a cylinder with outside radius 1, given the initial and 
boundary conditions: 

T(l, t) = 100 + 40t, 0 < t :::: 10; 

1 
T 2 ,t = t, 0:::: t :::: 10; 

T(r,O) = 200(r - 0.5), 0.5 < r < 1. - -
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Use a modification of the Backward-Difference method with K = 0.1, k = 0.5, and 
h = t.r = 0.1. 

b. Use the temperature distribution of part (a) to calculate the strain I by approximating the 
integral 

1 

1= etTer, t)r dr, 
0.5 

where et = 10.7 and t = 10. Use the Composite Trapezoidal method with n = 5. 

12.3 Hyperbolic Partial Differential Equations 

In this section, we consider the numerical solution to the wave equation, an example of 
a hyperbolic partial differential equation. The wave equation is given by the differential 
equation 

aZu aZu 
---,:-z(x,t)-a2 z(x,t)=O, O<x<l, t>O, at ax (12.16) 

subject to the conditions 

u(O, t) = u(l, t) = 0, for t > 0, 

u(x,O) = I(x), and 
au 
-at (x, 0) = g(x), for 0 < x < t, 

where a is a constant. Select an integer m > 0 and time-step size k > O. With h = 11m, 
the mesh points (Xi, tj) are defined by 

Xi = ih and t '-J'k ] - , 

for each i = 0, I, ... , m and j = 0, 1, .... At any interior mesh point (Xi, tj), the wave 
equation becomes 

(12.17) 

The difference method is obtained using the centered-difference quotient for the sec
ond partial derivatives given by 

whereJ-Lj E (tj_l,tj+l) and 
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where ~i E (Xi-I. Xi+l). Substituting these into Eq. (12.17) gives 

U(Xi. li+r) - 2U(Xi. Ii) + U(Xi. fi-I) zU(Xi+l. Ii) - 2U(Xi. fi) + U(Xi-l. tj) 
k2 - a h2 

1 2 a4u 2 2 a4u 
12 k at4 (Xi, J-tj) - a h ax4 (~i, tj) . 

Neglecting the error teIIll 

1 
r· . --

I,J - 12 

leads to the difference equation 

wi,HI - 2Wi,j + Wi,j-I 2 Wi+l,j - 2Wi,j + Wi-I,j - a -'-:..::.:..::.--7-'------'----"-"'- = O. 
k 2 h2 

If )... = akj h, we can write the difference equation as 

W· '+1 - 2w' , + W '-I - )...2W'+1 ' + 2)...2w· ' - )...ZW'_I ' = 0 I,j I,j I,j I ,J I.J 1 ,j 

and solve for Wi,j+!, the most advanced time-step approximation, to obtain 

Wi,j+1 = 2(1 - )...2)Wi,j + )...2(Wi+l,j + Wi-I,j) - Wi,j-I. (12.18) 

This equation holds for each i = 1,2, ... , m - 1 and j = 1,2, .... The boundary condi
tions give 

WO,j = Wm,j = 0, for each j = 1,2,3, ... , (12.19) 

and the initial condition implies that 

Wi,O = I(x;), for each i = 1,2, ... , m - 1. (12.20) 

Writing this set of equations in matrix form gives 

0: .......... 0 
• • • 

• • 

)...2 )...Z 
• 

Wl,j+l 2(1 _ )...2) • • • 
• • • • • • • • • • 

W2,j+1 • • • • • • • • • • • o .. • • • 0 - • • • - • • 
• • • • 

WI ' Wl,j-l ,J 

Wz ' WZ.j-l ,J 
• • • • • • • • • • • • • • • • 

• • • • • • • • ·)...z • • • • • • 

Wm-l,j+1 • • • • • • • • • • • 

• • 

Wm-l,j Wm-l,j-l 
• · • • • • 

·)...Z )...2) O· • :0 2(1 • • • • • • • • • • • • • • -

(12.21 ) 

Equations (12.18) and (12.19) imply that the (j +- 1)8t time step requires values from 
the jth and (j -1)st time steps. (See Figure 12.10.) This produces a minor starting problem 
since values for j = 0 are given by Eq. (12.20), but values for j = 1, which are needed in 
Eq. (12.18) to compute Wi,2, must be obtained from the initial-velocity condition 

au 
-(X,O)=g(x), O:5X:5I. at 
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One approach is to replace au/at by a forward-difference approximation, 

au 0 U(Xi,tI)-U(Xi,O) ka2u -
at (Xi, ) = k . - 2 at2 (Xi, l1-i), (12.22) 

for some ili in (0, td. Solving for U(Xi, t1) gives 

au k2 a2u 
U(Xi, tl) = U(Xi, 0) + k at (Xi, 0) + '2 at2 (Xi, iii) 

e a2u 
= U(Xi, 0) + kg(Xi) + '2 ot2 (Xi, ili). 

As a consequence, • 

Wi,1 = Wi,O + kg (Xi), for each i = 1, ... , m - 1. (12.23) 

However, this gives an approximation that has error of only O(k). A better approximation 
to U(Xi, 0) can be obtained. Consider the equation 

ou k2 a2u k 3 a3u 
U(Xi,tl)=U(Xi,O)+k (Xi,O)+- 2(Xi,0)+- 3 (xi,fli), 

at 2 at 6 at 

for some fli in (0, tI), which comes from expanding U(Xi, tl) in a second Maclaurin poly
nomial in t. If f" exists, then 

and 
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producing an approximation with error O(k3 ): 

ex 2k2 

Wi! = WiO + kg(Xi) + 2 !"(Xi)' 

If ! E C4[O, 1] but f" (Xi) is not readily available, we can use the difference equation 
in Eq. (4.9) to write 

!"(Xi) = !(XHI) - 2!h~i) + !(Xi-I) _ ~~!(4)(~i)' 

-
for some ~i in (Xi -I, Xi + I)' This implies that 

k2 2 
ex 3 2 2 

U(Xi, tl) = U(Xi, 0) + kg (x;) + 2h2 [!(XHI) - 2!(Xi) + !(Xi-l)] + O(k + h k ). 

Letting).. = (kexj h), we have 

)..2 3 2 2 
U(Xi, tl) = U(Xi, 0) + kg(Xi) + 2[f(Xi+l) - 2!(Xi) + !(Xi-I)] + O(k + h k ) 

2 )..2 ).. 
2 

3 2 2 
= (1 -).. )!(Xi) + 2!(Xi+l) + 2 !(xi-d + kg(Xi) + O(k + h k ). 

Thus, the difference equation, 

(12.24) 

can be used to find Wi I, for each i = 1,2, ... ,m - 1. , 

Algorithm 12.4 uses Eq. (12.24) to approximate Wi,l, although Eq. (12.23) could also 
be used. It is assumed that there is an upper bound for the value of t to be used in the 
stopping technique, and that k = T j N, where N is also given. 

Wave Equation Finite-Difference 

To approximate the solution to the wave equation 

a2u a2u 
---=-2(x,t)-ex2 2(x,t)=O, O<x<l, O<t<T, at ax 

subject to the boundary conditions 

u(O,t)=u(l,t)=O,O<t<T, 

and the initial conditions 

U(X,O) = !(x), 

au at (x, 0) = g(x), 

O<x:s:l, 

O<x:s:l: 

INPUT endpoint I; maximum time T; constant ex; integers m > 2, N ::: 2. 
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OUTPUT approximations Wi,j to U(Xi, tj) for each i = 0, ... ,m and j = 0, ... , N. 

Step 1 Set h = 11m; 
k=TIN; 
).. = kctl h. 

Step 2 For j = 1, ... ,N set WO,j = 0; 
Wm,j = 0; 

Step 3 Set wo,o = f(O); 
Wm,o = f(l)· 

Step 4 For i = 1, ... ,rn - 1 (Initialize for t = ° and t = k.) 
set Wi,O = f(ih); 

)..2 
Wi,! = (l - )..2)f(ih) + 2[f((i + l)h) + f((i - l)h)] + kg(ih), 

Step 5 For j = 1, ' ,. ,N - 1 (Perform matrix multiplication,) 
for i = 1, ' " ,m - I 

set Wi,j+I = 2(1 - )..2)Wi,J + )..2(Wi+I,j + Wi-l,j) + Wi,j-I' 

Step 6 For j = 0, . ,. ,N 
sett=jk; 
for i = 0, ' .. ,m 

set x = ih; 
OUTPUT (x, t, Wi,j), 

Step 7 STOP. (The procedure is complete.) 

Consider the hyperbolic problem 

a2
U a2 u 

-----:0-2 (x,t) -4 2(x, t) = 0, ° < x < 1, 0< t, at ax 
with boundary conditions 

u(O, t) = u(l, t) = 0, for 0< t, 

and initial conditions 

u(x,O) = sin(nx), O<x<1 - - , and 
au 
-::-(x,O) = 0, at 

It is easily verified that the solution to this problem is 

u (x, t) = sin n x cos 2n t, 

o<x<1. - -

• 

The Finite-Difference Algorithm 12.4 is used in this example with m = 10, T = 1, 
and N = 20, which implies that h = 0.1, k = 0.05, and ).. = 1. Table 12.6 lists the results 
of the approximation Wi,N for i = 0, 1, .. , , 10. The values listed in the table are conect to 
the places given, • 
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Xi Wi,20 

0,0 0.0000000000 
0.1 0,3090169944 
0.2 0.5877852523 
0,3 0.8090169944 
0.4 0.9510565163 
0,5 1,0000000000 
0.6 0,9510565163 
0,7 0.8090169944 
0,8 0.5877852523 
0.9 0.3090169944 
1.0 0.0000000000 

The results of the example were very accurate, more so than the truncation error 
O(k2 + h2

) would lead us to believe. This is because the true solution to the equation 
is infinitely differentiable. When this is the case, using Taylor series gives 

and 

U(Xi+l, tj) - 2U(Xi, tj) + U(Xi-l, tj) 

h2 

U(Xi, tj+l) - 2U(Xi. tj) + U(Xi, tj-l) 

k2 

Since U (x, t) satisfies the partial differential equation, 

=2 

However, differentiating the wave equation gives 

(12.25) 
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and we see that since A 2 = (a 2k 2
/ h 2

) = 1, we have 

Continuing in this manner, all the tenns on the right-hand side of (12.25) are 0, implying 
that the local truncation error is 0. The only errors in Example 1 are those due to the 
approximation of Wi,! and to roundoff. 

As in the case of the Forward-Difference method for the heat equation, the Explicit 
Finite-Difference method for the wave equation has stability problems. In fact, it is nec
essary that A = ak/ h < I for the method to be stable. (See [IK, p. 489].) The explicit 
method given in Algorithm 12.4, with A < 1, is O(h 2 + k2) convergent if f and g are 
sufficiently differentiable, For verification of this, see [IK, p. 491]. 

Although we will not discuss them, there are implicit methods that are unconditionally 
stable. A discussion of these methods can be found in [Am, p. 199], [Mi], or [Sm,B]. 

E X ERe I S ESE T 12.3 

1. Approximate the solution to the wave equation 

0< x < I, 0< t· , 

u(O, t) = u(1, t) = 0, 0 < t, 

u(x, 0) = sin;rrx, 0 <x < I, 

au 
-(x,O) = 0, 0 < x < I, at 

using the Finite-Difference Algorithm 12.4 with m = 4, N = 4, and T = 1.0. Compare your 
results at t = 1.0 to the actual solution u(x, t) = cos;rrt sin;rr x. 

2. Approximate the solution to the wave equation 

I a2u 
-:-::--::- -- = 0, 0 < x < 0.5, 0 < t; 
1671'2 ax2 

u(O, t) = u(0.5, t) = 0, 0 < t, 

u (x, 0) = 0, 0 ::s x < 0.5, 

au 
-::-(x, 0) = sin 471' X , 0 <x < 0.5, at 

using the Finite-Difference Algorithm withm = 4, N = 4 and T = 0.5. Compare your results 
at t = 0.5 to the actual solution u(x, t) = sint sin4;rrx. 

3. Approximate the solution to the wave equation 

a2u ..,...-::- = 0, 0 < x < 71', 0 < t; ax2 

u(O, t) = u(;rr, t) = 0, 0 < t, 
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u(x,O) = sinx, ° <x:;: 7f, 

au 
-(x,O)=O,O:;:x<7f, at 

using the Finite-Difference Algorithm with h = 7f /10 and k = 0.05, with h = 7f /20 and 
k = 0.1, and then with h = 7f /20 and k = 0.05. Compare your results at t = 0.5 to the actual 
solution u(x, t) = cos t sinx. 

4. Repeat Exercise 3, using in Step 4 of Algorithm 12.4 the approximation 

Wi. I = Wi,O + kg (Xi ), for each j = I, ... ,m - 1. 

5. Approximate the solution to the wave equation 

a2u 
---::;- - 0 0 < x < I, 0 < t·, ax2 - , 

u (0, t) = u (1, t) = 0, 0 < t, 

u(x,O) = sin 27fx, O::s x < 1, 

au 
- (x, 0) = 2n sin 27f x, 0 ::s x < 1, at 

using Algorithm 12.4 with h = 0.1 and k = 0.1, Compare your results at t = 0.3 to the actual 
solution u(x, t) = sin 27f x(cos 27ft + sin 27ft). 

6. Approximate the solution to the wave equation 

a2u 
-=- = 0, 0 < x < 1, 0 < t; ax2 

u (0, t) = u (1, t) = 0, ° < t, 

1, 
u(x,O) = 

-I, 

au 
-(x,O) = 0, at 

O<x::s~, 
~<x:;:I, 

O<x::sl. 

using Algorithm 12.4 with h = 0.1 and k = 0.1. 
7. The air pressure p(x, t) in an organ pipe is governed by the wave equation 

a2 P 1 a2 P 
--''::- = - ,0 < x < t, 0 < t, ax2 c2 at2 

where I is the length of the pipe, and c is a physical constant. lithe pipe is open, the boundary 
conditions are given by 

p(O, t) = Pc and p(l, t) = po· 

If the pipe is closed at the end where x = I, the boundary conditions are 

p(O, t) = po and 
8p 
--=-(t, t) = O. ax 

Assume that c = I, l = 1, and the initial conditions are 

p(x,O) = Po cos 27fx, and 
8p 
-(x,O) = 0, at o :;: x ::s 1. 
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a. Approximate the pressure for an open pipe with Po = 0.9 at x = ~ for t = 0.5 and t = 1, 
using Algorithm 12.4 with h = k = 0.1. 

b. Modify Algorithm 12.4 for the closed-pipe problem with Po = 0.9, and approximate 
p(0.5, 0.5) and p(0.5, 1) using h = k = 0.1. 

8. In an electric transmission line of length t that carries alternating current of high frequency 
(called a "Iossless" line), the voltage V and current i are described by 

a2v a2 v 
-::-::- = LC , 0 < x < t, 0 < t; ax2 at 2 

a2 i a2i .,....-;:- = LC , 0 < x < t, 0 < t; ax2 at 2 

where L is the inductance per unit length, and C is the capacitance per unit length. Suppose 
the line is 200 ft long and the constants C and L are given by 

C = 0.1 farads/ft and L = 0.3 henries/ft. 

Suppose the voltage and current also satisfy 

and 

V(O, t) = V(2oo, t) = 0, 0</' , 
o 

:rrx 
V (x, 0) = II 0 sin 200 ' 0 < x < 200; 

av 
-(x,0)=0,0<x<200; at 
i(O, t) = i(2OO, t) = 0, 

:rrx 
i (x, 0) = 5.5 cos 200' 

o < t; 

0< x < 200' - - , 

ai 
-(x,O)=O, 0<x<200. at 

Approximate the voltage and current at t = 0.2 and t = 0.5 using Algorithm 12.4 with h = 10 
and k = 0.1. 

12.4 An Introduction to the Finite-Element Method 

The Finite-Element method is similar to the Rayleigh-Ritz method for approximating the 
solution to two-point boundary-value problems that was introduced in Section 11.5. It was 
originally developed for use in civil engineering, but it is now used for approximating the 
solutions to partial differential equations that arise in all areas of applied mathematics. 

One advantage of the Finite-Element method over finite-difference methods is the rel
ative ease with which the boundary conditions of the problem are handled. Many physical 
problems have boundary conditions involving derivatives and irregularly shaped bound
aries. Boundary conditions of this type are difficult to handle using finite-difference tech
niques since each boundary condition involving a derivative must be approximated by a 
difference quotient at the grid points, and irregular shaping of the boundary makes placing 
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the grid points difficult. The Finite-Element method includes the boundary conditions as 
integrals in a functional that is being minimized, so the construction procedure is indepen
dent of the particular boundary conditions of the problem. 

In our discussion, we consider the partial differential equation 

a au 
ax p(x'Y)ax 

a au 
+ ay q(x, y) ay + rex, y)u(x, y) = I(x, y), 

with (x, y) E :D, where :D is a plane region with boundary .8. 
Boundary conditions of the form 

u(x, y) = 8(x, y) 

(12.26) 

(12.27) 

are imposed on a portion, .8" of the boundary. On the remainder of the boundary, .82, the 
solution u (x, y) is required to satisfy 

au au 
p(x,y) (x,y)cos8,+q(x,y) (x, y)cos82 + 8,(x, y)u(x, y) = g2(X, y), 

ax CJy 
(12.28) 

where 8, and (h are the direction angles of the outward nonnal to the boundary at the point 
(x, y). (See Figure 12.11.) 

y 

Normal 

x 

Physical problems in the areas of solid mechanics and elasticity have associated partial 
differential equations similar to Eq. (12.26). The solution to a problem of this type typically 
minimizes a certain functional, involving integrals, over a class of functions detennined by 
the problem. 

Suppose p, q, r, and f are all continuous on /D U .8, p and q have continuous first 
partial derivatives, and 8, and g2 are continuous on .82. Suppose, in addition, that p(x, y) > 
0, q(x, Y) > 0, rex, y) S 0, and 8,(x, y) > 0. Then a solution to Eq. (12.26) uniquely 
minimizes the functional 
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I[w] = 
1 aw 2 

2" p(x,y) ax +q(x,y) 

1 2 
-g2(X , y)w + 2"g,(x, y)w 

'&2 
+ 

aw 
ay 

dS 

2 

- rex, y)w2 + f(x, y)w dx dy 

(12.29) 

over all twice continuously-differentiable functions w satisfying Eq. (12.27) on -8,. The 
Finite-Element method approximates this solution by minimizing the functional lover a 
smaller class of functions, just as the Rayleigh-Ritz method did for the boundary-value 
problem considered in Section 11.5. 

The first step is to divide the region into a finite number of sections, or elements, of a 
regular shape, either rectangles or triangles. (See Figure 12.12.) 

The set of functions used for approximation is generally a set of piecewise polynomials 
of fixed degree in x and y, and the approximation requires that the polynomials be pieced 
together in such a manner that the resulting function is continuous with an integrable or 
continuous first or second derivative on the entire region. Polynomials of linear type in x 
and y, 

¢J (x, y) = a + bx + cy, 

are commonly used with triangular elements, whereas polynomials of bilinear type in x 
and y, 

¢J(x, y) = a + bx + cy + dxy, 

are used with rectangular elements. 
For our discussion, suppose that the region :D has been subdivided into triangular. 

elements. The collection of triangles is denoted D, and the vertices of these triangles are 
called nodes. The method seeks an approximation of the form 

m 

¢J(x, y) = LYi¢Ji(X, y), 
i=l 



12.4 An Introduction to the Anlte-Element Method 729 

where ¢1, rh, ... , ¢m are linearly independent piecewise-linear polynomials, and YI, Y2, 
... , Ym are constants. Some of these constants, for example, Yn+l, Yn+2, ... , Ym, are used 
to ensure that the boundary condition, 

¢(x, y) = 8(X, Y), 
, 

is satisfied on -81, and the remaining constants, YI, Y2, ... , Yn, are used to minimize the 
functional I [L~=I Yi¢i]. 

From Eq. (12.29), the functional is of the form 

i=1 

--
1 m a¢i 2 

3) 2 p(x, y) B Yi ax (x, y) + q(x, y) 
m a¢i 2 

LYi a (x, y) 
i=1 Y 

m 2 m 

- r(x, y) LYi¢i(X, y) + f(x, y) LYi¢i(X, Y) dydx 
i=1 i=1 

+ 
m 1 m 2 

-82(X,y)LYi¢i(X,y)+281(X,y) LYi¢i(X,y) dS. (12.30) 
i=1 i=1 

For a minimum to occur, considering I as a function of YI, Y2, ... , Yn, it is necessary to 
have 

aI 
- =0, foreachj = 1,2, ... ,n. 
aYj 

Differentiating (12.30) gives 

aI m a¢i a¢j 
p(x, y) LYi a (x, y) a (x, y) 

3) i=1 X X 

m a¢i a¢. 
+q(x,y)LYi 8 (x,y) 8 J(x,y) 

i=1 y y 

m 

- r(x, y) LYi¢i(X, y)¢j(x, y) + f(x, Y)¢j(x, y) dx dy 
i=1 

m 

+ - 82(X, Y)¢j(x, y) + 81 (x, y) LYi¢i(X, Y)¢j(x, y) dS, 
i=l 

so 

m 

O=L 
i=1 

8¢i a¢ . a¢i 8¢ . 
p(x, y) ax (x, y) 8; (x, y) + q(x, y) 8y (x, y) a; (x, y) 

- r(x, Y)¢i(X, Y)¢j(x, y) dx dy 
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+ gl (x, Y)¢i(X, Y)¢j(x, y) dS Yi 
-82 

+ f(x, Y)¢j(x, y) dx dy - g2(X, Y)¢j(x, y) dS, 
/l) -82 

for each j = 1,2, ... , n. This set of equations can be written as a linear system: 

Ac = b, 

where c = (YI, ... , Yn)l, and where A = (aij) and b = (fh, . " , f3n)t are defined by 

O¢i o¢ . O¢i a¢ . 
p(x, y) ax (x, y) a; (x, y) + q(x, y) ay (x, y) a; (x, y) (12.31) 

- rex, Y)¢i(X, Y)¢j(X, y) dx dy + gl(X, Y)¢i(X, Y)¢j(x, y) dS, 
-82 

for each i = 1, 2, ... , nand j = 1, 2, ... , m, and 

f3i = - f(x, Y)¢i(X, Y) dx dy + 
/l) 

for each i = 1, ... , n. 

gz(X, Y)¢i(X, y) dS-
-82 

m 

L ( 12.32) 
k=n+1 

The particular choice of basis functions is important since the appropriate choice 
can often make the matrix A positive definite and banded. For the second-order problem 
(12.26), we assume that 9) is polygonal, so that 9) = D, and that -8 is a contiguous set of 
straight lines. 

To begin the procedure, we divide the region D into a collection of triangles TI , T2 , 

. .. , T M, with the i th triangle having three vertices, or nodes, denoted 

V Ci) _ ((i) (i)) 
j - Xj , Yj , forj=I,2,3. 

To simplify the notation, we write Vr simply as Vj = (x j, Y j) when working with the 
fixed triangle Ii. With each vertex Vj we associate a linear polynomial 

where 

This produces linear systems of the form 

I XI YI 
1 Xz Y2 -
1 X3 Y3 

o 
1 
o 

, 

1, if j = k, 

if j i= k. 

with the element 1 occurring in the jth row in the vector on the right (here j = 2). 
Let E 1, ••• , En be a labeling of the nodes lying in D U -8. With each node Eb we 

associate a function ¢k that is linear on each triangle, has the value I at Ek, and is 0 at each 
of the other nodes. This choice makes ¢k identical to Ny) on triangle Ii when the node Ek 

is the vertex denoted V?). 
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Suppose that a finite-element rroblem contains the triangles T( and T2 shown in Figure 
12.13. The linear function N}I (x, y) that assumes the value 1 at (1, 1) and the value 0 at 
both (0, 0) and (-1, 2) satisfies 

and 

ail) + bill (1) + ci l) (1) = 1, 

ail) + bil) (-1) + ci l) (2) = 0, 

v(1 ) 

(-1,2) 2 

- 1 

S (1) (I) 2 (I) I 
oal =O,b l =3,cI =3,and 

y 

2 

1 x 

In a similar manner, the linear function N?\x, y) that assumes the value 1 at (l, 1) 
and the value 0 at both (0, 0) and (1, 0) satisfies 

and 

a?) + bi2) (1) + ci2)(l) = 1, 

a~2) + bi2) (0) + ci2) (0) = 0, 

• 
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Figure 12.14 
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so a~2) = 0, b~2) = 0, and C~2) = 1. As a consequence, N?)(x, y) = y. Note that on the 

common boundary of TI and T2, N?) (x, y) = N~2) (x, y) since y = x. • 

Consider Figure 12.14, the upper left portion of the region shown in Figure 12.12 on 
page 728. We will generate the entries in the matrix A that correspond to the nodes shown 
in this figure. 

For si mplicity, we assume that E 1 is not one of the nodes on .82 . The relationship between 
the nodes and the vertices of the triangles for this portion is 

EI = V
3
(1) = V?), E4 = vi2

) , E3 = V
2
(1) = V?), and E2 = V?). 

Since ¢I and ¢3 are both nonzero on TI and T2, the entries a1,3 = a3,1 are computed by 

a¢1 a¢3 + a¢1 a¢3 A.. A.... 
P q - rY'IYJ dx dy 

D ax ax ay ay 

a¢1 a¢3 + a¢1 a¢3 A. A.... 

TI P ax ax q ay ay - rY'IYJ dx dy --

+ 
a¢1 o¢3 O¢I o¢3 ..I. ..I. 

T2 P ox ox + q oy oy - rY'IY'3 dx dy. 

On triangle T1, 

and 

• 
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so for all (x, y), 

a<p1 _ b(l) a<P1 
ax - 3 ' ay 

Similarly, on T2, 

and 

and 
ay 

(2) (2) (2) (2) 
¢3(x,y)=N3 (x,y)=a3 +b3 X+C3 y, 

so for all (x, y), 

Thus, 

a<P1 _ b(2) a<P1 
ax - I ' ay 

(2) 
= C 1 ' 

- b(l)b(l) 
aI,3 - 3 2 p dx dy + c~I) c~1) 

Tj 

and 

qdx dy 
Tj 

~(,(II 
-2 . 

r(ajl) + b~l)x + cjl)y)(ail ) + bil)x + C~I)y) dx dy 
Tj 

T2 

p dx dy + C;2) cj2) 
T2 

q dx dy 
T2 

r(a;2) + b;2)x + c;Z)y)(aj2) + bj2)x + cj2)y) dx dy. 

733 

All the double integrals over D reduce to double integrals over triangles. The usual 
procedure is to compute all possible integrals over the triangles and accumulate them into 
the correct entry aij in A. Similarly, the double integrals ofthe form 

f(x, y)<Pi(X, y) dx dy 
D 

are computed over triangles and then accumulated into the correct entry f3i of the vector b. 
For example, to deteImine fh, we need 

- f(x, Y)<PI(X, y) dx dy =
D Tj 

T2 

f(x, y)[ajl) + bj\)x + cjl)y] dx dy 

f(x, y)[a;2) + b;2)x + ci2)y] dx dy. 

Since E I is a vertex of both Tj and h part of f31 is contributed by <PI restricted to TI 
and the remainder by <PI restricted to T2 . In addition, nodes that lie on -82 have line integrals 
added to their entries in A and b. 

Algorithm 12.5 perfoIms the Finite-Element method on a second-order elliptic differ
ential equation. The algorithm sets all values of the matrix A and vector b initially to 0 
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and, after all the integrations have been perfOImed on all the triangles, adds these values to 
the appropriate entries in A and b. 

Finite-Element 

To approximate the solution to the partial differential equation 

a ( aU) a ( au) ax p(x'Y)ax +ay q(x'Y)ay. +r(x,y)u=f(x,y), (x, y) ED 

subject to the boundary conditions 

u(x, y) = g(x, y), (x, y) E $1 

and 

au au 
p(x, y) ax (x, y) cos el + q(x, y) ay (x, y) cos e2 + gl (x, y)u (x, y) = g2 (x, y). 

(x, y) E ~2. 

where $1 U $2 is the boundary of D, and el and e2 are the direction angles of the normal to 
the boundary: 

Step a Divide the region D into triangles TI , . .. , T M such that: 
TI , .•• , TK are the triangles with no edges on $1 or .82 ; 

(Note: K = 0 implies that no triangle is interior to D.) 
T K + I, •.• , TN are the triangles with at least one edge on -82 ; 

TN + I, . . . , T M are the remaining triangles. 
(Note: M = N implies that all triangles have edges on -82 .) 

Label the three vertices of the triangle T; by 

( XU) yCi») (xU) yU») and (xU) yCi») 
1'1' 2'2' 3'3' 

Label the nodes (vertices) E I , •.• , Em where 
E I, ... , En are in D U $2 and En+ I, ... , Ern are on $1· 

(Note: n = m implies that $1 contains no nodes.) 

INPUT . . (U) Ci») (i) (i») (i) (i)') f'or each Integers K, N, M, n, m; vertIces XI ' YI ' X 2 ' Y2 ' X3 ' Y3 

i = 1, , " , M; nodes E} for each j = 1, , . , , m. 

(Note: All that is needed is a means of corresponding a vertex (x2), yii)) to a node E j = 

(X), Yj).) 

OUTPUT constants Yl, ... , Ym; aji), bji), cji) for each j = 1,2,3 and i =: 1, ... ,M, 

Step 1 For 1= n + 1, ... , m set Yl = g(XI, Yl). (Note: El = (Xl, Yl).) 

Step 2 For i = 1, ... , n 

set f3i = 0; 
for j = 1, ... , n set Ct.i,} = O. 
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Step 3 For i = 1, ... , M 

1 

set !':!. i = det 1 

1 

(i) 
YI 

Y
(i) . 

"2 ' 
(i) 

Y3 

(i) (i) (i) (i) 
(i) XI Y2 - YI X z . 

a3 = 
!':!.i 

, 

for j = 1,2,3 

(I) (1') 

b
(i) _ Yz - Y3 . 
I - , 

C1i 
(i) (i) 

b
(i) _ Y3 - YI . 
2 - , 

!':!.i 

b (i) -
3 -

define Nll(x, y) = ajil + bji\ + cY)y. 

735 

(i) (i) 
(i) X3 - Xz c I = ; 

!':!.i 

(i) (i) 
(i) XI - X3 . 

Cz = 
!':!. i ' 

(i) (i) 

(
Jil _ x 2 - X I . 
3 - , 

!':!.i 

Step 4 For i = 1, ... , M (The integrals in Steps 4 and 5 can be evaluated using 
numerical integration.) 

for}=1,2,3 
for k = 1, ... , j (Compute all double integrals over the triangles.) 

setzy.~ =bY)bii ) ff p(x,y)dxdy+cY)cl
i
) ffq(x,y)dxdy 

~ ~ 

(i) (i) -ffr(x,y)Nj (x,y)Nk (x,y)dxdy; 
T, , 

set Hr = - f f f(x, y)NY)(x, y)dxdy. 
T [ 

Step 5 For i = K + 1, ... , N (Compute all line integrals.) 
for j = 1, 2, 3 

for k = 1, ... ,j 

(i) 
setJ· k = J, 

set /(i) = 
) 

<52 

gz(x, y)NYlcx, y) dS. 

Step 6 For i = 1, ... , M do Steps 7-12. (Assembling the integrals over each triangle 
into the linear system.) 

Step 7 For k = 1,2,3 do Steps 8-12. 

Step 8 Find I so that Ez = (4), yiil) . 
Step 9 If k > 1 then for j ::::: 1, ... , k - 1 do Steps 10, 11. 

Step 10 Find t so that Et = (xjil, yyl). 
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Step 11 If! < n then 
of th (i) 

Step 12 

1 t < n en set air = air + Zk,j; 

else 

(i) 
atl = atl + Zk,j 

(') 
else set fJl = fJl - Yrz/j 

Of th R R (i) 
1 t < n en set pr = pr - YIZk,j' 

(') 
If 1 < n then set all = all + Zk' k; 

• 
(i) 

fJI = fJl + Hk ° 

Step 13 For i = K + 1, ° o. , N do Steps 14-19. (Assembling the line integrals into the 
linear system.) 

Step 14 For k = 1,2,3 do Steps 15-19. 

Step 15 Find I so that El = (Xki) , Yk i ») . 

Step 16 If k > 1 then for j = 1, ... ,k - 1 do Steps 17,18. 

St 17 F· d th E (i) (i») ep m t so at r = X j ,Y j . 

Step 18 If I < n then 
'f th J(i) 

Step 19 

1 t < n en set alt = alt + k,j; 

else 

(i) 
arl = atl + Jk •j 

(') 
else set fJl = fJl - Yr Jk :j 

if t < n then set fJt = fJt - Yl Ji:j· 
(') 

If 1 < n then set all = all + Jk'k; , 
(i) 

fJI = fJl + Ik . 

Step 20 Solve the linear system Ac = b where A = (a/,l), b = (fJl) and c = (Yt) for 
1 < 1 < n and 1 < t < n. - - --

Step 21 OUTPUT(Yl, ... ,Ym). 

( h k 1 1 A.. N(i) T. ifE (i) (i») For eac =, ... , m et 'l'k = j on ilk = X j ,Y j . 

Then ¢(x, y) = 'L; 1 Yk¢k(X, y) approximates u(x, y) on D U ~1 U -82.) 

Step 22 For i = 1, ... ,M 

for j = 1,2,3 OUTPUT (a(i) b(i) c(i») 
] ' ] 'J . 

Step 23 STOP. (The procedure is complete.) 

The temperature, u(x, y), in a two-dimensional region D satisfies Laplace's equation 

a2u a2u 
ax2 (x, y) + ay2 (x, y) = 0 on D. 

• 
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(0,0.4) 

(0.2,0.2) (0 0.2) 

(0.5,0.1) 
(0.6, 0.1) 

• 

, 
Consider the region D shown in Figure 12.15 with boundary conditions given by 

u(x, y) = 4, 

au 
an(x,y)=x, 

au 
an(x,y)=y, 

au x + y 
an (x, y) = ..fi ' 

for (x, y) E L6 and (x, y) E L7; 

for (x, y) E L2 and (x, y) E L4; 

for (x,y) E Ls; 

for (x, y) ELI and (x, y) E L3 ; 

737 

where au/an denotes the directional derivative in the direction of the nOimal to the bound
ary of the region D at the point (x, y). 

We first subdivide D into triangles with the labeling suggested in Step 0 of the algo
rithm. For this example, -81 = L6 U L7 and -82 = LI U L2 U L3 U L4 U Ls. The labeling of 
triangles is shown in Figure 12.16. 

The boundary condition u(x, y) = 4 on L6 and L7 implies that y, = 4 when t = 
6, 7, ... , 11. To determine the values of Yl for I = 1, 2, ... , 5, apply the remaining steps 
of the algorithm and generate the matrix 

2.5 0 -1 0 0 
0 1.5 -1 -0.5 0 

A= -1 -1 4 0 0 
0 -0.5 0 2.5 -0.5 
0 0 0 -0.5 1 
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and the vector 

-
6.0666 -
0.0633 

b= 8.0000 • -6.0566 
-

2.0316 

The solution to the equation Ac = b is 

Yl 4.0383 

Y2 4.0782 
c= Y3 - 4.0291 - , 

Y4 4.0496 

Ys 4.0565 

which gives the following approximation to the solution of Laplace's equation and the 
boundary conditions on the respective triangles: 

T1 : ¢(x, y) = 4.0383(1 - 5x + 5y) + 4 .0291(-2 + 1Ox) + 4(2 - 5x - 5y), 

T2 : ¢(x, y) = 4.0782(-2 + 5x + 5y) + 4.0291(4 - 1Ox) + 4( -1 + 5x - 5y), 

T3: 4> (x , y) = 4( -1 + 5y) + 4(2 - 5x - 5y) + 4 .0383(5x), 

T4 : 4> (x , y) = 4.0383(1 - 5x + 5y) + 4.0782( -2 + 5x + 5y) + 4.0291 (2 - 1Oy), 

T5: 4>(x, y) = 4.0782(2 - 5x + 5y) + 4.0496(-4 + lOx) + 4(3 - 5x - 5y), 

T6: 4> (x , y) = 4.0496(6 - lOx) + 4.0565( -6 + lOx + lOy) + 4(1 - lOy), 

-



Table 12.7 

12.4 An Introduction to the Finite-Element Method 

T7: ¢(X, y) = 4( -5x + 5y) + 4.0383(5x) + 4(1 - 5y), 

T8: ¢(x, y) = 4.0383(5y) + 4(1 - 5x) + 4(5x - 5y), 

T9: ¢(x, y) = 4.0291 (lOy) + 4(2 - 5x - 5y) + 4( -1 + 5x - 5y), 

TIO: ¢(x, y) = 4.0496(lOy) + 4(3 - 5x - 5y) + 4(-2 + 5x - 5y). 
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The actual solution to the boundary-value problem is u(x, y) = xy + 4. Table 12.7 
compares the value of u to the value of ¢ at E;, for each i = 1, ... , 5. • 

x y ¢(x, y) u(x, y) I¢(x, y) - u(x, y)1 

0.2 0.2 4.0383 4.04 0.0017 
0.4 0.2 4.0782 4.08 0.0018 
0.3 0.1 4.0291 4.03 0.0009 
0.5 0.1 4.0496 4.05 0.0004 
0.6 0.1 4.0565 4.06 0.0035 

Typically, the error for elliptic second-order problems of the type (12.26) with smooth 
coefficient functions is O(h2), where h is the maximum diameter of the triangular ele
ments. Piecewise bilinear basis functions on rectangular elements are also expected to give 
o (h 2) results, where h is the maximum diagonal length of the rectangular elements. Other 
classes of basis functions can be used to give O(h4

) results, but the construction is more 
complex. Efficient error theorems for finite-element methods are difficult to state and ap
ply because the accuracy of the approximation depends on the continuity properties of the 
solution and the regularity of the boundary. 

The Finite-Element method can also be applied to parabolic and hyperbolic partial 
differential equations, but the minimization procedure is more difficult. A good survey on 
the advantages and techniques of the Finite-Element method applied to various physical 
problems can be found in a paper by [FiJ. For a more extensive discussion, refer to [SF], 
[ZM], or [AB]. 

E X ERe I S ESE T 12.4 

1. Use Algorithm 12.5 to approximate the solution to the following partial differential equation 
(see the figure): 

a 2au 
- y -(x, y) ax ax 

a 
+ay 

au 
i-ex, y) - yu(x, y) = -x, oy (x, y) ED. 

u (x, 0.5) = 2x, 0< x < 0.5, - - u(O, y) = 0, 0.5<y<1, 

au au .fi 
y2 (x, y) cos 01 + i-ex, y) cos O2 = (y - x) for (x, y) E J.i2. ax ay 2 
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Y 

1 

.81 

0.5 -t-........ .....,; 
~1 

0.5 x 

Let M = 2; TI have vertices (0,0.5), (0.25,0.75), (0, 1); and T2 have vertices (0,0.5), 
(0.5, 0.5), and (0.25, 0.75). 

2. Repeat Exercise 1, using instead the triangles 

T1 : (0,0.75), (0, 1), (0.25,0.75); 

T2 : (0.25,0.5), (0.25,0.75), (0.5,0.5); 

T3: (0,0.5), (0,0.75), (0.25,0.75); 

T4 : (0,0.5), (0.25,0.5), (0.25,0.75). 

3. Approximate the solution to the partial differential equation 

a2u a2u 511' 511' 
~2 (x, y) + 2 (x, y) - 12.511'2u(x, y) = -2511'2 sin 2 x sin 2 y, 0 < x, y < 0.4, ax ay 

subject to the Dirichlet boundary condition 

u(x, y) = 0, 

using the Finite-Element Algorithm 12.5 with the elements given in the accompanying figure. 
Compare the approximate solution to the actual solution, 

• 511' . 511' 
u(x, y) = 8m 2 x 8m 2 y, 

at the interior vertices and at the points (0.125,0.125), (0.125,0.25), (0.25,0.125), and 
(0.25,0.25). 

0.4 ,.------.:--.... -----.,,---..., 

0.3 

0.2 

0.1 

0.1 0.2 0.3 0.4 
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4. Repeat Exercise 3 with I(x, y) = -25Jr2 cos 5; X cos 5; y, using the Neumann boundary con
dition 

The actual solution for this problem is 

au 
-(x, y) = o. an 

5Jr 511' 
u(x, y) = cos 2 x cos 2 y. 

5. A silver plate in the shape of a trapezoid (see the accompanying figure) has heat being uni
formly generated at each point at the rate q = 1.5 caVcrn3 . s. The steady-state temperature 
u (x, y) of the plate satisfies the Poisson equation 

y 

o 5 x 

where k, the thermal conductivity, is 1.04 caVcm·deg·s. Assume that the temperature is held 
at 15°C on L2, that heat is lost on the slanted edges L1 and L3 according to the boundary 
condition au/an = 4, and that no heat is lost on L4 ; that is, au/an = O. Approximate the 
temperature of the plate at 0, 0), (4,0), and (~, .../3/2) by using Algorithm 12.5. 

12.5 Survey of Methods and Software 

In this chapter, methods to approximate solutions to partial differential equations were con
sidered. We restricted our attention to Poisson's equation as an example of an elliptic partial 
differential equation, the heat or diffusion equation as an example of a parabolic partial dif
ferential equation, and the wave equation as an example of a hyperbolic partial differential 
equation. Finite-difference approximations were discussed for these three examples. 

Poisson's equation on a rectangle required the solution of a large sparse linear sys
tem, for which iterative techniques, such as the SOR method, are recommended. Four 
finite-difference methods were presented for the heat equation. The Forward-Difference 
and Richardson's methods had stability problems, so the Backward-Difference method 
and the Crank-Nicolson methods were introduced. Although a tridiagonal linear system 
must be solved at each time step with these implicit methods, they are more stable than 
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the explicit Forward-Difference and Richardson's methods. The Finite-Difference method 
for the wave equation is explicit and can also have stability problems for certain choice of 
time and space discretizations. 

In the last section of the chapter, we presented an introduction to the Finite-Element 
method for a self-adjoint elliptic partial differential equation on a polygonal domain. Al
though our methods will work adequately for the problems and examples in the textbook, 
more powerful generalizations and modifications of these techniques are required for com
mercial applications. 

We consider two subroutines from the IMSL Library. The subroutine MOLCH is used 
to solve the partial differential equation 

au . au a2u 
-=F x,t,u, , 2 at ax ax , 

with boundary conditions 

au 
a(x, t)u(x, t) + {3(x, t) (x, t) = y(x, t). 

ax 

The method is based on collocation at Gaussian points on the x-axis for each value of t 
and uses cubic Hermite splines as basis functions. 

The subroutine FPS2H is used to solve Poisson's equation on a rectangle. The method 
of solution is based on a choice of second- or fourth-order finite differences on a uniform 
mesh. 

The NAG Library has a number of subroutines for partial differential equations. The 
subroutine D03EAF is used for Laplace's equation on an arbitrary domain in the xy-plane. 
The subroutine D03PCF is used to solve a single parabolic partial differential equation by 
the method of lines. 

There are specialized packages, such as NASTRAN, consisting of codes for the Finite
Element method. These packages are popular in engineering applications. The package 
FISHPACK in the Netlib library is used to solve separable elliptic partial differential equa
tions. General codes for partial differential equations are difficult to write because of the 
problem of specifying domains other than common geometrical figures. Research in the 
area of solution of partial differential equations is currently very active. 

We have only presented a small sample of the many techniques used for approximating 
the solutions to the problems involving partial differential equations. Further information 
on the general topic can be found in Lapidus and Pinder [LP], Twizell [Tw], and the re
cent book by Morton and Mayers [MM]. Software infonnation can be found in Rice and 
Boisvert [RB] and in Bank [Ban]. 

Books that focus on finite-difference methods include Strikwerda [Strik], Thomas 
[Th], and Shashkov and Steinberg [ShS]. Strange and Fix [SF] and Zienkiewicz and Mor
gan [ZM] are good sources for information on the finite-element method. Time-dependent 
equations are treated in Schiesser [Schi] and in Gustafsson, Kreiss, and Oliger [GKO]' and 
Birkhoff and Lynch [BL] and Roache [Ro] discuss the solution to elliptic problems. 

Multigrid methods use coarse grid approximations and iterative techniques to pro
vide approximations on finer grids. References on these techniques include Briggs [Brigg], 
Mc Connick [Me], and Bramble [Bram]. 
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Answers or Se ecte 

Exercises 

Exercise Set 1.1 (Page IS) 

1. For each part, / E C[a, b] on the given interval. Since /Ca) and feb) are of opposite sign, the Intennediate Value 
Theorem implies that a number e exists with fCe) = O. 

3. For each part, f E era, b], f' exists on (a, b) and f(a) = feb) = O. Rolle's Theorem implies that a number e 
exists in (a, b) with f'(e) = O. For part (d), we can use [a, b] = [-1,0] or [a, b] = [0,2]. 

5. For x < 0, /(x) < 2x + k < 0, provided that x < - ~k. Similarly, for x > 0, f(x) > 2x + k > 0, provided that 
x > -~k. By Theorem 1.13, there exists a number e with fee) = o. If fee) = 0 and f(e') = 0 for some e' "e, 
then by Theorem 1.7, there exists a number p between e and e' with f'(p) = O. However, f'(x) = 3x2 + 2> 0 for 
all x. 

7. a. P2(X) = 0 

b. R2(0.5) = 0.125; actual error = 0.125 

c. Pz(x) = 1 + 3(x - 1) + 3(x - 1)2 

d. R2(0.5) = -0.125; actual error = -0.125 

9. Since 

P2(X) = 1 +x and 
-2e~(sin~ +cos~) 3 

R2 (x) = 6 x 

for some ~ between x and 0, we have the following: 

a. P2 (0.5) = 1.5 and If(0.5) - P2(0.5)1 < 0.0532; 

b. If(x) - P2(X) I < 1.252; 

c. fo! / (x) dx "" 1.5; 

d. I fd f(x) dx - fo! P2 (x) dxl < fd IR2 (x)ldx < 0.313, and the actual error is 0.122. 

11. P3(x) = (x - 1)2 - ~ (x - 1)3 

a. P3 (0.5) = 0.312500, /(0.5) = 0.346574. An error bound is 0.2916, and the actual error is 0.034074. 

b. I/(x) - P3(x)1 < 0.2916 on [0.5, 1.5] 

C. fOI;' P3(x) dx = 0.083, fO!;5 CX -l)lnx dx = 0.088020 

d. An error bound is 0.0583, and the actual error is 4.687 x 10-3 

13. P4 (x) = x + x 3 

a. If(x) - P4 (x)1 < 0.012405 

b. fo0 4 P4 (x) dx = 0.0864, fo0 4 
xex2 dx = 0.086755 
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c. 8.27 X 10-4 

d. P;(0.2) = 1.12, 1'(0.2) = 1.124076. The actual error is 4.076 x 10-3 . 

15. Since 42° = trr /30 radians, use Xo = rr /4. Then 

( !!. _ 7" )n+1 (0.053)n+1 
< 4 30 < . 

(n + I)! (n + 1)! 

For IRn(;~)1 < 10-6
, it suffices to take n = 3. To 7 digits, cos42° = 0.7431448 and 

P3(42°) = P3(;~) = 0.7431446, so the actual error is 2 x 10-7
. 

17. a. P3 (x) = In(3) + ~(x - I) + ~(x - I)z - ~~(x - 1)3 

b. maxO<x<1 If(x) - P3 (x)1 = If(O) - P3 (0) I = 0.02663366 

c. j\(x) = In(2) + ~xz 
- -

d. maXV<x<1 If(x) - P3 (x)1 = If(1) - P3 (1)1 = 0.09453489 
-

e. P3 (0) approximates frO) better than P3 (1) approximates f(1). 
n I 

19. Pn(x) = L _,xk
• n > 7 

k=O k. 

21. A bound for the maximum error is 0.0026. 

23. Since R2(l) = !e', for some ~ in (0, I), we have IE - Rz(l)1 = ~II - e<1 < !(e -1). 

25. a. Let Xo be any number in [a, b). Given € > 0, let 8 = E/ L. If Ix - xol < 8 and a < x < b, then 
If(x) - f(xo)1 < Llx - xul < E. 

b. Using the Mean Value Theorem, we have 

for some ~ between Xl and Xz, so 

c. One example is f(x) = x lj3 on [0, I). 

27. a. Since f is continuous at p and f(p) 1= 0, there exists a 8 > 0 with 

If(x) - f(p)1 < 'fi)', 

for Ix - pi < 8 and a < X < b. We restrict 8 so that [p - 8, p + 8) is a subset of [a, b). Thus, for 
x E [p-8,p+8), we have x E [a, b). So 

and 

If f(p) > 0, then 

_If(p)1 < f(x) _ f(p) < If(p)1 
2 2 

f(p) - If(p)1 < f(x) < f(p) + If(p)1 . 
2 2 

f( ) - If(p)1 = f(p) > ° 
p 2 2 ' so f(x) > f(p) - If(p)1 > 0. 

2 

If f(p) < 0, then If(p)1 = - f(p), and 

f(x) < f(p) + If(p)1 = f(p) _ f(p) = f(p) < 0. 
2 2 2 

In either case, f(x) 1= 0, for x E [p - 8, P + 8). 
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b. Since I is continuous at p and I (p) = 0, there exists a 8 > 0 with 

I/(x) - I(p)i < k, for Ix - pi < 8 and a < x < b. 

We restrict () so that [p - 8, p + 8] is a subset of [a, b]. Thus, for x E [p - 8, p + 8], we have 

I/(x)1 = I/(x) - l(p)1 < k. 

Exercise Set 1.2 (Page 26) 

1. Absolute Error Relative Error 

a. 0.001264 4.025 x 10-4 

b. 7.346 X 10-6 2.338 X 10-6 

c. 2.818 X 10-4 1.037 X 10-4 

d. 2.136 X 10-4 1.510 X 10-4 

e. 2.647 x 101 1.202 X 10-3 

f. 1.454 X 101 1.050 X 10-2 

g. 420 1.042 x 10-2 

h. 3.343 X 103 9.213 X 10-3 

3. The largest intervals are a. (149.85,150.15) b. (899.1,900.9) c. (1498.5,1501.5) d. (89.91,90.09) 

5. 

7. 

9. 

a. 
b. 
C. 

d. 
e. 
f. 
g. 
h. 

a. 
b. 
C. 

d. 
e. 
f. 
g. 
h. 

a. 
b. 

Approximation 

134 
133 
2.00 
1.67 
1.80 

-\5.1 
0.286 
0.00 

Approximation 

133 
132 
1.00 
1.67 
3.55 

-15.2 
0.284 

0 

Approximation 

3.14557613 
3.14162103 

Absolute Error 

0.079 
0.499 
0.327 
0.003 
0.154 
0.0546 

2.86 x 10.-4 

(y'0215 

Absolute Error 

0.921 
0.501 
0.673 
0.003 
1.60 
0.0454 
0.00171 
0.02150 

Absolute Error 

3.983 X 10-3 

2.838 X 10-5 

Relative Error 

5.90 x 10-4 

3.77 x 10-) 
0.195 

1.79 x 10-) 

0.0786 
3.60 x 10-) 

10-3 

1.00 

Relative Error 

6.88 x 10-3 

3.78 x 10-3 

0.402 
1.79 x 10-3 

0.817 
0'()0299 
0.00600 

1 

Relative Error 

1.268 X 10-3 

9.032 X 10-6 

-----_ .. _----------------
x cosx - sin x -x sinx - sinx - x cos x -2 cos x + x sin x 2 

11. a. lim = lim = lim = lim = -
x->o X - sin x <->0 I - cos x x->o sin x x->o cos x 

b. -1.941 

755 
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x(i - .I. X
2 ) - (x - .I. X

3 ) 
C. 2 6 = -2 

x - (x - !X3) 
d. The relative error in part (b) is 0.029. The relative error in part (c) is 0.00050. 

13. XI Absolute Error Relative Error X2 Absolute Error Relative Error 

a. 92.26 0.01542 
h. 0.005421 l.264 x 10-6 

c. 10.98 6.875 x 10-3 

d. -0.001149 7.566 x 10-8 

15. The machine numbers are equivalent to 

a. 3224 

h. -3124 

c. l.32421875 

l.672 x 10-4 0.005419 
2.333 X 10-4 -92.26 
6.257 X 10-4 0.001149 
6.584 X 10-5 -10.98 

d. 1.3242187500000002220446049250313080847263336181640625 

6.273 x 10- 7 1.157 X 10-4 

4.580 x 10- 3 4.965 X 10-5 

7.566 x 10-8 6.584 X 10-5 

6.875 x 10-3 6.257 x 10-4 

17. b. The first formula gives -0.00658, and the second formula gives -0.0100. The true three-digit value is 
-0.0116. 

19. The approximate solutions to the systems are a. x = 2.451, Y = -l.635 h. x = 507.7, Y = 82.00 

21. a. In nested form, we have 

f(x) = «(l.01ex - 4.62)eX 
- 3.11)eX + 12.2)eX 

- 1.99. 

h. -6.79 c. -7.07 

23. a. n = 77 h. n = 35 

25. a. m = 17 

h. m = m' =m(m-l) ... (m-k-l)(m-k)!=('m) 
k k!(m - k)! k!(m - k)! k 

c. m = 181707 

d. 2,597,000; actual error 1960; relative error 7.541 x 10-4 

m -I 

k - I 
. ' . 

m - k - I 

I 

, 

27. a. 124.03 h. 124.03 c. -124.03 d. -124.03 e. 0.0065 f. 0.0065 g. -0.0065 h. -0.0065 

Exercise Set 1.3 (Page 37) 

1. a. The approximate sums are 1.53 and 1.54, respectively. The actual value is 1.549. Significant roundoff error 
occurs earlier with the first method. 

3. a. 2000 terms h. 20,000,000,000 terms 

S. 3 terms 

7. The rates of convergence are: 
a. O(h2) h. O(h) C. O(h2) d. O(h) 

13. a. If Ian - ai/(ilnP ) < K, then Ian - al < K(lln P ) < K(lln q
) since 0 < q < p. Thus, Ian - al/(l/nP

) < K 

and (an};;" I ---7 a with rate of convergence O(l/n P
). 

h. n lin l/n2 I/n 3 I/n5 

5 0.2 0,04 0.008 0.0016 
10 0.1 om 0.001 0.0001 
50 0.D2 0.0004 8 x 10-6 1.6 X 10-7 

100 om 10-4 10-6 10-8 

0(1 I n4
) is the most rapid convergence rate. 
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15. Suppose that for sufficiently small Ixl we have positive constants kl and kz independent of x, for which 

iFl(X) - L1I < Kdxl" and iF2(X) - L21 < K 2 Ixl,'!. 

Let c = max Ci cIi , Iczl, 1), K = max(K] , K2), and 8 = max(a, fJ). 

a. We have 

IF(x) - cIL, - C2L21 = Ic,(Fl(x) - L l ) + c2(F2(x) - L 2)1 

< IcdKdxl" + IC2IK2Ixl,'! 

< cK[lxl a + Ixlil] 

< cKlxlY[1 + Ixlo- y] 

-
for sufficiently smalllxl and some constant K. Thus, F(x) = c]L] + C2L2 + O(xY). 

b. We have 

IG(x) - Ll - L21 = iFl(CIX) + F2(c2X) - Ll - L21 

< K]icJxl a + K21c2X lil 

< Kco[lxla + Ixl,'!] 

< KcolxJY[1 + Ixlo- y ] 

-
for sufficiently smalllxl and some constant K. Thus, G(x) = L] + L2 + O(x Y ). 

17. a. 354224848179261915075 

b. 0.3542248538 x 102] 

c. The result in part (a) is computed using exact integer arithmetic, and the result in part (b) is computed using 
10-digit rounding arithmetic. 

d. The result in part (a) required traversing a loop 98 times. 

e. The result is the same as the result in part (a). 

Exerdse Set 2.1 (Page 53) 

1. P3 = 0.625 
3. The Bisection method gives: a. P7 = 0.5859 b. Ps = 3.002 c. P7 = 3.419 

5. The Bisection method gives P9 = 4.4932. 

7. The Bisection method gives: 

a. P17 = 0.641182 

b. P]7 = 0.257530 

c. For the interval [-3, -2], we have P17 = -2.191307, and for the interval [-1,0], we have PI7 = -0.798164. 

d. For the interval [0.2,0.3], we have P14 = 0.297528, and for the interval [1.2, 1.3], we have P14 = 1.256622. 

9. a. 2 b. -2 c. -1 d. 1 

11. The third root of 25 is approximately PI4 = 2.92401, using [2,3]. 

13. A bound is n :::: 14, and Pl4 = 1.32477. 
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15. Since Iimn--+oo(Pn - Pn-d = Iimn--+ oo lin = 0, the difference in the terms goes to zero. However, pn is the nth term 
of the divergent harmonic series, so liIDn--+oo Pn = 00. 

17. The depth of the water is 0.838 ft. 

Exerdse Set 2.2 (Page 63) 

1. For the value of x under consideration we have 

a. x = (3 + x - 2x2)1/4 {} x4 = 3 + x - 2x2 ¢} fix) = 0 

b. x = 

C. x = 

x + 3 - X4 

2 

x+3 

x 2 + 2 

1/2 

1/2 

{} 2x2 = X + 3 - x4 ¢} fix) = 0 

{} X
2(x 2 +2) = x +3 {} f(x) = 0 

3x4 + 2x2 + 3 
d. x = 3 1 {'.} 4X4 + 4x2 - X = 3x4 + 2x2 + 3 ¢} fix) = 0 

4x +4x-

3. The order in descending speed of convergence is (b), (d), (a). The sequence in (c) does not converge. 

5. With g(x) = (3x 2 + 3)1/4 and Po = I, P6 = 1.94332 is accurate to within 0.01. 

7. Since g'(x) = ! cos ~, g is continuous and g' exists on [0, 27l']. Further, g'(x) = 0 only when x = 7l', so that 
g(O) = g(27l') = 7l' < g(x) =< g(7l') = 7l' + ~ and Ig'(x)1 < i, for 0 <x < 27l'. Theorem 2.2 implies that a unique 
fixed point P exists in [0, 27l'). With k = ~ and Po = 7l', we have PI = 7l' + ~. Corollary 2.4 implies that 

k" 2 1 n 

IPn - pi :::: 1 _ k Ipi - pol = 3 4 ; 

For the bound to be less than 0.1, we need n > 4. However, P3 = 3.626996 is accurate to within 0.01. 

9. For Po = 1.0 and g(x) = 0.5(x + ;), we have .J3 :::::: P4 = 1.73205. 

11. a. With [0, 1) and Po = 0, we have P9 = 0.257531. 

b. With [2.5, 3.0] and Po = 2.5, we have P17 = 2.690650. 

c. With [0.25, 1] and Po = 0.25, we have PI4 = 0.909999. 

d. With [0.3,0.7) and Po = 0.3, we have P39 = 0.469625. 

e. With [0.3,0.6] and Po = 0.3, we have P4S = 0.448059. 

f. With [0, IJ and Po = 0, we have P6 = 0.704812. 

13. For g(x) = (2x2 - lOcosx)/(3x), we have the following: 

Po = 3 => Ps = 3.16193; Po = -3 => ps = -3.16193. 

For g(x) = arccos(-O.lx2), we have the following: 

Po = 1 => PII = 1.96882; Po = -1 => PII = -1.96882. 

15. With g(x) = ; arcsin ( - I) + 2, we have P5 = 1.683855. 

17. One of many examples is g(x) = J2x - I on [~, I]. 

21. Replace the second sentence in the proof with: "Since g satisfies a Lipschitz condition on [a, b] with a Lipschitz 
constant L < I, we have, for each n, 

IPn - pi = Ig(Pn-l) - g(p)1 :::: LIPn-1 - pl·" 

The rest of the proof is the same, with k replaced by L. 
23. With get) = 501.0625 - 201.0625e-O.4t and Po = 5.0, P3 = 6.0028 is within 0.01 s of the actual time. 
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Exercise Set 2.3 (Page 74) 

1. P2 = 2.60714 

3. a. 2.45454 b. 2.44444 c. Part (b) is better. 

5. a. For Po = 2, we have P5 = 2.69065. 

b. For Po = -3, we have P3 = -2.87939. 

c. For Po = 0, we have P4 = 0.73909. 

d. For Po = 0, we have P3 = 0.96434. 

7. Using the endpoints of the intervals as Po and PI, we have: 

i. a. Pll = 2.69065 b. P7 = -2.87939 c. P6 = 0.73909 d. P5 = 0.96433 

ii. a. PI6 = 2.69060 b. P6 = -2.87938 c. P7 = 0.73908 d. P6 = 0.96433 

9. For Po = 1, we have P5 = 0.589755. The point has the coordinates (0.589755,0.347811). 

11. The equation of the tangent line is 

To complete this problem, set y = 0 and solve for x = Pn. 

759 

13. a. For Po = -1 and PI = 0, we have PI7 = -0.04065850, and for Po = 0 and PI = 1, we have P9 = 0.9623984. 

b. For Po = -I and PI = 0, we have P5 = -0.04065929, and for Po = 0 and PI = I, we have 
PI2 = -0.04065929. 

c. For Po = -0.5, we have P5 = -0.04065929, and for Po = 0.5, we have P21 = 0.9623989. 

15. This formula involves the subtraction of nearly equal numbers in both the numerator and denominator if Pn-l and 
Pn-2 are nearly equal. ' 

17. Seven iterations are required. 

19. For I(x) = In(x2 + 1) - eO.4x COS1TX, we have the following roots. 

a. For Po = -0.5, we have P3 = -0.4341431. 

b. For Po = 0.5, we have P3 = 0.4506567. 
For Po = 1.5, we have P3 = 1.7447381. 
For Po = 2.5, we have P5 = 2.2383198. 
For Po = 3.5, we have P4 = 3.7090412. 

c. The initial approximation n - 0.5 is quite reasonable. 

d. For Po = 24.5, we have P2 = 24.4998870. 

21. The two numbers are approximately 6.512849 and 13.487151. 

23. The borrower can afford to pay at most 8.10%. 
25. a. solve(3-(3*x+1)-7*5-(2*x) ,x) and fsolve(3-(3*x+1)-1*5-(2*x) ,x) both fail. 

b. plotC3-C3*x+l)-7*5-C2*x) ,x=a .. b) generally yields no useful information. However, a = 10.5 and 
b = 11.5 in the plot command show that I(x) has a root near x = 11. 

c. With Po = 11, P5 = 11.0094386442681716 is accurate to 10- 16 . 

d _ In(3!7) 
• P - In(25/27) 

27. We have PL = 265816, c = -0.75658125, and k = 0.045017502. The 1980 population is P(30) = 222,248,320, 
and the 2010 popUlation is P(60) = 252,967,030. 

29. Using Po = 0.5 and PI = 0.9, the Secant method gives P5 = 0.842. 

Exercise Set 2.4 (Page 85) 

1. a. For Po = 0.5, we have Pl3 = 0.567135. 

b. For Po = -1.5, we have P23 = -1.414325. 
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c. For Po = 0.5, we have pzz = 0.641166. 

d. For Po = -0.5, we have P23 = -0.183274. 

3. Newton's method with Po = -0.5 gives PI3 = -0.169607. Modified Newton's method in Eq. (2.11) with 
Po = -0.5 gives Pli = -0.169607. 

5. a. For k > 0, 

1 

I· Ip.+1 - 01 I' (.+1)1 -_ lim 1m = 1m -'--':,.-'-
'-+00 IPn - 01 n-+oo ± n-+OO 

n 

so the convergence is linear. 

h. We need to have N > l(Y"/k. 

7. Typical examples are a. pn = 10-3" b. Pn = lO-a" 

9. This follows from the fact that 

11. If lin±l-I~I = 0.75 and Ipo - pi = 0.5, then 
Pn-P 

n 

n+l 

Ip. - pi = (0.75)<3"-I)/zlpo _ pI3". 

To have iPn - pi ::: 10-8 requires that n > 3. 

Exerdse Set 2.5 (Page 90) 

1. The results are listed in the following table. 

a b c d 
, 

0.258684 0.907859 0.548101 0.731385 Po , 
0.257613 0.909568 0.547915 0.736087 PI , 
0.257536 0.909917 0.547847 0.737653 pz 

, 
0.257531 0.909989 0.547823 0.738469 P3 , 
0.257530 0.910004 0.547814 0.738798 P4 

, 
0.257530 0.910007 0.547810 0.738958 Ps 

3. pal) = 0.826427 

5. p~o) = 1.5 

7. For g(x) = 1 + 1 and Po = 1, we have P3 = 1.32472. x 

9. For g(x) = 0.5(x + l) and Po = 0.5, we have P4 = 1.73205. x -
11. Aitken's Ll 2 method gives: a. PIO = 0.045 b. Pz = 0.0363 

13. We have 

k 

-1 - , 

Ip.+1 - p.1 = IPn+1 - P + P - p.1 = Pn+1 - P _ 1 
IPn - pi IPn - pi P. - P , 

so 

lim .:,:1 P.c;.'c.:..+.:...1 _-....;p":'.'-'.I = lim P.+! - P - 1 = 1. 
n-+oo IPn - pi .-+00 Pn - P 

15. a. Hint: First show that Pn - P = - (n~l)!e~ x·+ I , where; is between 0 and 1. 



Answers for Selected Exercises 

b. n 
, 

p" p" 

0 1 3 
1 2 2.75 

-
2 2.5 2.72 

-
3 2.6 2.71875 

- -
4 2.7083 2.7183 

-
5 2.716 2.7182870 

-
6 2.71805 2.7182823 
7 2.7182539 2.7182818 
8 2.7182787 2.7182818 
9 2.7182815 

10 2.7182818 

Exercise Set 2.6 (Page 99) 

1. a. For Po = 1, we have P22 = 2.69065. 

b. For Po = 1, we have Ps = 0.53209; for Po = -1, we have P3 = -0.65270; and for Po = -3, we have 
P3 = -2.87939. 

c. For Po = 1, we have Ps = 1.32472. 

d. For Po = 1, we have P4 = 1.12412; and for Po = 0, we have Ps = -0.87605. 

e. For Po = 0, we have P6 = -0.47006; for Po = -1, we have P4 = -0.88533; and for Po = -3, we have 
P4 = -2.64561. 

f. For Po = 0, we have PIO = 1.49819. 

3. The following table lists the initial approximation and the roots. 

Po PI P2 Approximate Roots 

a -1 0 1 P7 = -0.34532 - 1.31873i 
0 1 2 P6 = 2.69065 

b 0 1 2 P6 = 0.53209 
1 2 3 P9 = -0.65270 

-2 -3 -2.5 P4 = -2.87939 

c 0 1 2 Ps = 1.32472 
-2 -1 0 P7 = -0.66236 - 0.56228i 

d 0 1 2 Ps = 1.12412 
2 3 4 PI2 = -0.12403 + 1.74096i 

-2 0 -1 Ps = -0.87605 

e 0 1 2 PIO = -0.88533 
1 0 -0.5 Ps = -0.47006 

-1 -2 -3 Ps = -2.64561 

f 0 1 2 P6 = 1.49819 
-1 -2 -3 PIO = -0.51363 - 1.09156i 

1 0 -1 P8 = 0.26454 - 1.32837i 

Complex Conjugate Roots 

-0.34532 + 1.31873i 

-0.66236 + 0.56228i 

-0.12403 - 1.74096i 

-0.51363 + 1.09156i 
0.26454 + 1.32837i 

5. a. The roots are 1.244, 8.847, and -1.091, and the critical points are 0 and 6. 

b. The roots are 0.5798, 1.521, 2.332, and -2.432, and the critical points are 1, 2.001, and -1.5. 

761 
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7. Let CI = (2+ ~.j129)-1/3 and C2 = (2+ ~.j129)1f3. The roots are C2 - ~CI' ~;C2+ ~CI + ~.j3(C2+ jCI)i, and 
_lc2 + 2CI - l.J3(C2 + iclO)i 

2 3 2 3' 

9. The methods all find the solution 0.23235. 

11. The minimal material is approximately 573.64895 cm2 . 

Exerdse Set 3.1 (Page 119) 

1. a. PI (x) = -0.148878x + I; P2 (x) = -0.452592x2 - 0.0131 oo9x + I; PI (0.45) = 0.933005; 
1/(0.45) - PI (0.45)1 = 0.032558; P2(0.45) = 0.902455; 1/(0.45) - P2 (0.45) 1 = 0.002008 

b. PI (x) = 0.46725 Ix + I; P2(x) = -0.078oo26x2 + 0.490652x + I; PI (0.45) = 1.210263; 
1/(0.45) - PI (0.45)1 = 0.006104; P2(0.45) = 1.204998; 1/(0.45) - P2 (0.45)1 = 0.000839 

C. PI (x) = 0.874548x; P2(x) = -0.26896Ix2 + 0.955236x; PI (0.45) = 0.393546; 
1/(0.45) - PI (0.45)1 = 0.0212983; P2(0.45) = 0.375392; 1/(0.45) - P2 (0.45) 1 = 0.003828 

d. PI(x) = 1.031121x; P2(x) = 0.615092x2 +0.846593x; PI (0.45) = 0.464004; 1/(0.45) - PI (0.45)1 = 0.019051; 
P2(0.45) = 0.505523; 1/(0.45) - P2(0.45) 1 = 0.022468 

3. a. n xo, Xl, ... , Xn 

1 8.3, 8.6 
2 8.3, 8.6, 8.7 
3 8.3, 8.6, 8.7, 8.1 

c. n XO, Xl, ... , Xn 

I 0.2, 0.3 
2 0.2, 0.3, 0.4 
3 0.2, 0.3, 0.4, 0.1 

5 . .j3 ~ P4 (~) = 1.7083 

7. a. n 

I 
2 

C. n 

I 
2 

9. Y = 4.25 

Actual Error 

0.00118 
1.367 X 10-5 

Actual Error 

5.9210 X 10-3 

1.7455 X 10-4 

Pn(8.4) 

17.87833 
17.87716 
17.87714 

Pn(0.25) 

-0.13869287 
-0.13259734 
-0.13277477 

Error Bound 

0.00120 
1.452 X 10-5 

Error Bound 

6.0971 X 10-3 

1.8128 X 10-4 

b. n 

I 
2 
3 

d. n 

b. n 

1 
2 

d. n 

I 
2 

I 
2 
3 

XO, Xl, .•. , Xn Pn (-1/3) 

-0.5, -0.25 0.21504167 
-0.5, -0.25, 0.0 0.16988889 

-0.5, -0.25, 0.0, -0.75 0.17451852 

XO,XI",o,Xn 

0.8, 1.0 
0.8, 1.0, 0.7 

0.8, 1.0, 0.7, 0.6 

Actual Error 

4.0523 x 10-2 

4.6296 X 10-3 

Actual Error 

2.7296 X 10-3 

5.1789 x 10-3 

Pn (0.9) 

0.44086280 
0.43841352 
0.44198500 

Error Bound 

4.5153 X 10-2 

4.6296 X 10-3 

Error Bound 

1.4080 X 10-2 

9.2215 X 10-3 

11. 1(1.09) ~ 0.2826. The actual error is 4.3 x 10-5, and an error bound is 7.4 x 10-6 . The discrepancy is due to the 
fact that the data are given to only four decimal places, and only four-digit arithmetic is used. 

13. P2 = 1(0.7) = 6.4 

15. a. P2(x) = -11.22388889x2 + 3.810500000x + I , and an error bound is 0.11371294. 

b. P2(x) = -0. 13063441 67x2 + 0.8969979335x - 0.63249693, and an error bound is 9.45762 x 10-4 . 

c. P3(x) = 0.197oo56667x 3 - 1.06259055x2 + 2.532453 I 89x - 1.666868305, and an error bound is 10-4 . 

d. P3(x) = -0.07932x3 - 0.545506x 2 + 1.0065992x + I, and an error bound is 1.591376 x 10-3 . 

17. The largest possible step size is 0.004291932, so 0.04 would be a reasonable choice. 

19. PO,I,2,3(2.5) = 2.875 
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21. The first ten terms of the sequence are 0.038462, 0.333671, 0.116605, -0.371760, -0.0548919, 0.605935, 
0.190249, -0.513353, -0.0668173, and 0.448335. Since f(1 + v'TI5) = 0.0545716, the sequence does not appear 
to converge. 

25. a. Sample I: 
P6(x) = 6.67 - 42.6434x + 16.1427x2 - 2.09464xl + 0.126902x4 - 0.00367168xs + O.0000409458x6

; Sample 
2: P6 (x) = 6.67 - 5.67821x + 2.91281x 2 

- 0.413799xl + 0.0258413x4 
- 0.OOO752546x 5 + 0.OOOOO836160x 6 

b. Sample I: 42.71 mg; Sample 2: 19.42 mg 

27. Since g(x) = g(xo) = 0, there exists a number~] between x and xo, for which g/(~]) = O. Also, g/(xo) = 0, so 
there exists a number ~z between Xo and ~I' for which gil (~2) = O. The process is continued by induction to show 
that a number ~n+] between Xo and ~n exists with g(n+I)(~n+l) = O. The error formula for Taylor polynomials 
follows. 

29. a. (i) B3(X) = x (ii) B3(X) = I 

Exerdse Set 3.2 (Page 137) 

1. a. PI (x) = 16.9441 + 3.1041(x - 8.1); PI (8.4) = 17.87533 
P2(x) = PI (x) + O.06(x - 8.1)(x - 8.3); P2(8.4) = 17.87713 
P3(X) = P2 (x) + -0.OO208333(x - 8.1)(x - 8.3)(x - 8.6); P3(8.4) = 17.87714 

b. p] (x) = -0.1769446 + 1. 9069687 (x - 0.6); PI (0.9) = 0.395146 
P2 (x) = PI (x) + 0.959224(x - 0.6)(x - 0.7); P2 (0.9) = 0.4526995 
Pl(x) = P2 (x) - 1.785741 (x - 0.6)(x - 0.7)(x - 0.8); Pl (O.9) = 0.4419850 

3. In the following equations, we have s = h (x - x n ). 

a. PI(S) = 1.101 +0.7660625s; !(-!) ~ PI(-~) = 0.07958333 
Pz(s) = PI (s) + 0.406375s(s + 1)/2; f( -;) ~ P2( - j) = 0.1698889 
p)(s) = P2(S) + 0.09375s(s + 1)(s + 2)/6; f( - ~) ~ Pl (- j) = 0.1745185 

b. PI(S) = 0.2484244 + 0.2418235s; f(0.25) "'" P](-1.5) = -0.1143108 
P2 (s) = PI (s) - 0.04876419s(s + 1)/2; f(0.25) ~ P2(-1.5) = -0.1325973 
PJ(s) = P2(s) - 0.00283891s(s + 1)(s + 2)/6; f(0.25) "'" P3(-1.5) = -0.1327748 

5. a. f(0.05) ~ 1.05126 b. f(0.65) ~ 1.91555 c. f(0.43) ~ 1.53725 

7. a. P(-2) = Q(-2) = -1, P(-I) = Q(-l) = 3, prO) = Q(O) = 1, P(l) = Q(l) = -1, P(2) = Q(2) = 3 

b. The fonnat of the polynomial is not unique. If P(x) and Q(x) are expanded, they are identical. There is only 
one interpolating polynomial if the degree is less than or equal to four for the given data. However, it can be 
expressed in various ways depending on the application. 

9. The coefficient of x 2 is 3.5. 

11. The approximation to f(0.3) should be increased by 5.9375. 

13. f[xoJ = f(xo) = 1, f[xd = f(xl) = 3, f[xo, xd = 5 

15. Since f[X2J = f[xoJ + ![xo, Xd(X2 - xo) + a2(x2 - XO)(X2 - XI), 

f[X2J - f[xoJ f[xo, xd 
a2 = -. 

(X2 - XO)(X2 - xil (X2 - XI) 

This simplifies to f[xo, XI, X2]. 

17. Let ?ex) = ![XioJ + L~~I ![Xio"" ,Xik](X - Xio)'" (x - Xik) and . -
P(x) = f[xoJ + L:Z=I f[xo, ... , xd(x - xo)" . (x - Xk)' The polynomial P(x) interpolates f(x) at the nodes 

• 
Xio"" , Xi., and the polynomial P(x) interpolates lex) at the nodes Xo, ... , xn. Since both sets of nodes are the - . -
same and the interpolating polynomial is unique, we have P(x) = P(x). The coefficient of xn in P(x) is 

• 
f[Xio"" ,Xi.J, and the coefficient of xn in P(x) is ![XQ, ... ,xnJ. Thus, f[Xio"" . Xi.J = f[xo •... . xnl· 
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Exercise Set 3.3 (Page 139) 

1. The coefficients for the polynomials in divided-difference form are given in the following tables. For example, the 
polynomial in part (a) is 

H 3(x) = 17.56492 + 3. 116256(x - 8.3) + 0.05948(x - 8.3)2 - 0.00202222(x - 8.3)2(X - 8.6). 

a b c d 

17.56492 0.22363362 -0.02475 -0.62049958 
3.116256 2.1691753 0.751 3.5850208 
0.05948 0.01558225 2.751 -2.1989182 

-0.00202222 -3.2177925 1 -0.490447 
0 0.037205 
0 0.040475 

-0.0025277777 
0.0029629628 

3. a. We have sin 0.34 "" Hs (0.34) = 0.33349. 

b. The formula gives an error bound of 3.05 x 10- 14 , but the actual error is 2.91 x 10-6 . The discrepancy is due to 
the fact that the data are given to only five decimal places. 

c. We have sinO.34 "" H7(0.34) = 0.33350. Although the error bound is now 5.4 x 10-20 , the accuracy of the 
given data dominates the calculations. This result is actually less accurate than the approximation in part (b), 
since sin 0.34 = 0.333487. 

5. For 2(a), we have an error bound of 5.9 x 10-8• The error bound for 2(c.) is 0 since f(nl(x) = 0, for n > 3. 

7. The Hermite polynomial generated from these data is 

H9 (x) = 75x + 0.222222x2(x - 3) - 0.0311111x2(x - 3)2 - 0.OO644444x2(x - 3)2(X - 5) 

+ 0.00226389x2(x - 3)2(X - 5)2 - 0.000913194x2(x - 3)2(X - 5)2(X - 8) 

+ 0.OOO130527x2(x - 3)2(x - 5)2(x - 8)2 - 0.OOOO202236x2(x - 3)2(x - 5)2(X - 8)2(x - 13). 

a. The Hermite polynomial predicts a position of H9(1O) = 743 ft and a speed of H~(10) = 48 ftis. Although the 
position approximation is reasonable, the low speed prediction is suspect. 

-
h. To find the first time the speed exceeds 55 miJh = 80.6 ftis, we solve for the smallest value of t in the equation 

80.6 = H~ex). This gives x "" 5.6488092. 

c. The estimated maximum speed is H~(12.37187) = 119.423 ftis "" 81.425 rniIh. 

9. Let 

H(x) = j[zo] + f[zo, zdex - xo) + f[zo, Zl, Z2](X - XO)2 + f[zo, Zl, Z2, Zl](X - XO)2(X - Xl). 

Substituting j[zo] = f(xo), j[zo, zd = f'(xo), 

f(xI) - f(xo) - f'(xo)(xJ - xo) f [zo, Z I, Z2] = ~...:.:..---=.....:......::.:.-.-:.......:.....:.:....:.....:...........:.....:.:... 
XI - Xo 
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into H (x) and simplifying gives 

H(x) = f(xo) + f'(xo)(x _ xo) + f(XI) - f(xo) - f'(XO)(XI - xo) (x _ xo)2 
(Xl - XO)2 

f'(XI)(XI - Xo) - 2f(XI) + 2f(xo) + f'(XO)(XI - Xo) 2 
+ (Xl _ xo)3 (X - Xo) (X - Xl). 

Thus, H(xo) = f(xo) and 

Further, 

so 

H(XI) = f(xo) + f'(XO)(XI - xo) + [f(XI) - f(xo) - f'(XO)(XI - xo)] 

= f(xd. 

H'(x) = f'(xo) + 2 f(XI) - f(xo) - f'(:O)(XI - xv) (x - Xo) 
(Xl - Xo) 

f'(XI)(XI - xo) - 2f(XI) + 2f(xo) + f'(XO)(XI - XO) 2 
+ )3 [2(x - Xo)(X - Xl) + (x - Xo) ], 

(Xl - Xo 

HI (xo) = f' (xo) and 

H'(xd = f'(xo) + 2f(x\) _ 2f(xo) _ 2f'(xo) + f'(XI) _ 2f(XI) + 2f(xo) + f'(xo) 
Xl - Xo Xl - Xo Xl - Xo Xl - Xo 

Thus, H satisfies the requirements of the cubic Hennite polynomial H3 , and the uniqueness of H3 implies that 
H3 = H. 

Exerdse Set 3.4 (Page 152) 

1. Sex) = X on [0,2J 

3. The equations of the respective free cubic splines are 

for X in [Xi, xi+d, where the coefficients are given in the following tables. 

. 
a. I 

o 

b. i 

o 

. 
C. I 

° 1 

ai 

17.564920 

ai 

0.22363362 

ai 

-0.02475000 
0.33493750 

bi 

3.13410000 

2.17229175 

b· I 

1.03237500 
2.25150000 

Ci 

0.00000000 

Ci 

0.00000000 

Ci 

0.00000000 
4.87650000 

di 

0.00000000 

di 

0:00000000 

di 

6.50200000 
-6.50200000 

• 
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d. i 

o 
1 
2 
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a , 

-0.62049958 
-0.28398668 

0.00660095 

3.45508693 
3.18521313 
2.61707643 

Ci 

0.00000000 
-2.69873800 
-2.98262900 

5. The equations of the respective clamped cubic splines are 

-8.9957933 
-0.94630333 

9.9420966 

for x in [Xi, xi+Il, where the coefficients are given in the following tables. 

• a. I 

o 

b. i 

o 
• 

C. I 

o 
1 

d. i 

o 
1 
2 

a· I 

17.564920 

0.22363362 

-0.02475000 
0.33493750 

a· I 

-0.62049958 
-0.28398668 

0.006600950 

7. b = -1, C = -3, d = 1 

3.1162560 

b I 

2.1691753 

b I 

0.75100000 
2.18900000 

3.5850208 
3.1403294 
2.6666773 

9. B = !, D = !, b = -;, d = ! 
11. The equation of the spline is 

C' I 

0.0600867 

Ci 

0.65914075 

C' , 

2.5010000 
3.2510000 

Ci 

-2.1498407 
-2.2970730 
-2.4394481 

d I 

-0.00202222 

-3.2177925 

di 

,1.0000000 
1.0000000 

-0.49077413 
-0.47458360 
-0.44980146 

S(x) = Sj(x) = aj + bj(x - Xi) + Cj(x - Xj)2 + dJx - Xi)3, 

for X in [Xi, Xi+!l, where the coefficients are given in the following table. 

Xi ai bi Ci di 

0 1.0 -0.7573593 0.0 -6.627417 
0.25 0.7071068 -2.0 -4.970563 6.627417 
0.5 0.0 -3.242641 0.0 6.627417 
0.75 -0.7071068 -2.0 4.970563 -6.627417 

fo1 S(x) dx = 0.000000, S' (0.5) = -3.24264, and S" (0.5) = 0.0 

13. The equation of the spline is 

for X in [Xi, Xi+Il, where the coefficients are given in the following table. 
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Xi ai hi Ci di 

0 1.0 0.0 -S.193321 2.028118 
0.2S 0.7071068 -2.216388 -3.672233 4.896310 
O.S 0.0 -3.134447 0.0 4.896310 
0.75 -0.7071068 -2.216388 3.672233 2.028118 

fo! sex) dx = 0.000000, s'(O.S) = -3.13445, and s"(O.S) = 0.0 

15. Let f(x) = a + bx + cx2 + dx 3. Clearly, f satisfies properties (a), (c), (d), and (e) of Definition 3.10, and f 
interpolates itself for any choice of Xo, ... ,xn • Since (ii) of property (f) in Definition 3.10 holds, f must be its 
own clamped cubic spline. However, f"(x) = 2c + 6dx can be zero only at X = -c/3d. Thus, part (i) of property 
(f) in Definition 3.10 cannot hold at two values Xo and xn • Thus, f cannot be a natural cubic spline. 

17. The piecewise linear approximation to f is given by 

We have 

20(eo.! - l)x + 1 
F(x) = ' 

20(eO.2 _ eO·!)x + 2eOl _ eO.2, 
for x in [0, O.OS] 

for x in (0.05, 1]. 

fO! 
1o F(x) dx = 0.1107936 

fO! 
and 10 f(x) dx = 0.1107014. 

21. a. On [0,0.05], we have sex) = 1.000000 + 1.999999x + 1.998302x2 + 1.4013lOx3, and on (0.05,0.1], we have 

23. 

sex) = 1.1 OS 170 + 2.210340(x - O.OS) + 2.208498(x - O.ow + I.S487S8(x - 0.OS)3. 

b. foOl sex) dx = 0.110701 
c. 1.6 x 10-7 

d. On [0, O.OS], we have Sex) = 1 + 2.04811x + 22.12184x3
, and on (0.05,0.1], we have 

Sex) = 1.10S171 + 2.214028(x - O.OS) + 3.318277(x - O.ow - 22.12184(x - 0.OS)3. S(0.02) = 1.041139 and 
S(0.02) = 1.040811. 

2x - x 2
, 

Sex) = 
1 + (x - 1)2, 

O<x<1 - -
l<x<2 - -

25. The spline has the equation 

sex) = Si(X) = Qi + bi(x - Xi) + Ci(X - Xi)2 + di(x - Xi)3, 

for x in [Xi, xi+il, where the coefficients are given in the following table. 

Xi a· I hi Ci di 

0 0 7S -0.659292 0.219764 
3 22S 76.9779 1.31858 -0.IS3761 
5 383 80.4071 0.396018 -0.177237 
8 623 77.9978 -1.19912 0.0799115 

The spline predicts a position of s(lO) = 774.84 ft and a speed of s'(lO) = 74.16 ftis. To maximize the speed, we 
find the single critical point of s'(x), and compare the values of sex) at this point and the endpoints. We find that 
max s'(x) = s'(S.7448) = 80.7 ftJs = 5S.02 miJh. The speed 55 miJh was first exceeded at approximately S.S s. 
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27. The equation of the spline is 

Sex) = Si(X) = ai + bi(x - Xi) + Ci(X - Xi)2 + di(x - Xi)3, 

for X in [Xi, Xi+tl, where the coefficients are given in the following table. 

Sample 1 Sample 2 

Xi a· I bi Ci d I ai bi C I d I 

0 6.67 -0.44687 0 0.06176 6.67 1.6629 0 -0.00249 
6 17.33 6.2237 1.1118 -0.27099 16.11 1.3943 -0.04477 -0.03251 

10 42.67 2.1104 -2.1401 0.28109 18.89 -0.52442 -0.43490 0.05916 
13 37.33 -3.1406 0.38974 -0.01411 15.00 -1.5365 0.09756 0.00226 
17 30.10 -0.70021 0.22036 -0.02491 10.56 -0.64732 0.12473 -0.01113 
20 29.31 -0.05069 -0.00386 0.00016 9.44 -0.19955 0.02453 -0.00102 

29. The three natural splines have equations of the form 

Si (x) = ai + bi (x - Xi) + Ci (X - Xi)2 + d;(x - x;)3, 

for X in [Xi, Xi+tl, where the values of the coefficients are given in the following tables. 

Spline 1 
· ai = I(Xi) bi di I Xi Ci 

0 1 3.0 0.786 0.0 -0.086 
I 2 3.7 0.529 -0.257 0.034 
2 5 3.9 -0.086 0.052 0.334 
3 6 4.2 1.019 1.053 -0.572 
4 7 5.7 10408 -0.664 0.156 
5 8 6.6 0.547 -0.197 0.024 
6 10 7.1 0.049 -0.052 -0.003 
7 13 6.7 -0.342 -0.078 0.007 
8 17 4.5 

Spline 2 
• 

ai = I(Xi) bi di I Xi Ci 

0 17 4.5 1.106 0.0 -0.030 
I 20 7.0 0.289 -0.272 0.025 
2 23 6.1 -0.660 -0.044 0.204 
3 24 5.6 -0.137 0.567 -0.230 
4 25 5.8 0.306 -0.124 -0.089 
5 27 5.2 -1.263 -0.660 0.314 

6 27.7 4.1 

Spline 3 
• a; = I(x;) bi di I Xi Ci . 

0 . 27.7 4.1 0.749 0.0 -0.910 
1 28 4.3 0.503 -0.819 0.116 
2 29 4.1 -0.787 -0.470 0.157 

3 30 3.0 
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Exercise Set 3.5 (Page 162) 

1. a. x(t) = -lOt3 + I4t 2 + t, yet) = -2t3 + 3t2 + t 
b. x(t) = -lOt3 + I4.5t 2 + O.5t, yet) = -3t3 + 4.5t2 + 0.5t 

c. x(t) = -lOt 3 + I4t2 + t, y(t) = -4t3 + 5t2 + t 
d. x(t) = -lOt3 + 13t2 + 2t, yet) = 2t 

3. a. x(t) = -I1.5t3 + I5t 2 + 1.5t + I, yet) = -4.25t3 + 4.5t2 + 0.75t + I 
• 

b. x(t) = -6.25t3 + 1O.5t2 + 0.75t + I, yet) = -3.5t3 + 3t2 + 1.5t + 1 

c. For t between (0,0) and (4,6), we have 

x(t) = -5t3 + 7.5t2 + 1.5t, yet) = -13.5t3 + 18t2 + 1.5t, 

and for t between (4,6) and (6, I), we have 

x(t) = -5.5t3 + 6t 2 + 1.5t + 4, yet) = 4t3 
- 6t2 

- 3t + 6. 

d. For t between (0,0) and (2, 1), we have 

x(t) = -5.5t3 + 6t 2 + 1.5t, yet) = -0.5t3 + 1.5t, 

for t between (2, 1) and (4,0), we have 

x(t) = -4t3 + 3t2 + 3t + 2, yet) = _t 3 + 1, 

and for t between (4,0) and (6, -I), we have 

x(t) = -8.5t3 + 13.5t2 
- 3t + 4, yet) = -3.25t3 + 5.25t2 

- 3t. 

Exercl5#! Set 4.1 (Page 175) 
• 

1. From the forward-backward difference formula (4.1), we have the following approximations: 

a. j'(0.5) "" 0.8520, 1'(0.6) "" 0.8520, 1'(0.7) "" 0.7960 

b. /,(0.0) "" 3.7070, /'(0.2) "" 3.1520, /'(0.4) "" 3.1520 

3. For the endpoints of the tables, we use Formula (4.4). The other approximations come from Formula (4.5). 

a. /,(1.1) "" 17.769705, 1'(1.2) ~ 22.193635,1'(1.3) "" 27.107350,1'(1.4) "" 32.150850 

b. j'(8.1) "" 3.092050, 1'(8.3) ~ 3.116150, 1'(8.5) ~ 3.139975, 1'(8.7) ~ 3.163525 

c. j'(2.9) ~ 5.101375, 1'(3.0) ~ 6.654785, 1'(3.1) ~ 8.216330, 1'(3.2) ~ 9.786010 

d. j'(2.0) ~ 0.13533150, 1'(2.1) ~ -0.09989550, 1'(2.2) ~ -0.3298960, 1'(2.3) ~ -0.5546700 

5. The approximations and the formulas used are: 

a. j'(2.1) ~ 3.899344 from (4.7) 1'(2.2) ~ 2.876876 from (4.7) j'(2.3) ~ 2.249704 from (4.6) 
j'(2.4) "" 1.837756 from (4.6) 1'(2.5) ~ 1.544210 from (4.7) 1'(2.6) ~ 1.355496 from (4.7) 
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b. /,(-3.0) ~ -5.877358 from (4.7) 1'(-2.8) ~ -5.468933 from (4.7) 1'(-2.6) ~ -5.059884 from (4.6) 
j'(-2.4) ~ -4.650223 from (4.6) 1'(-2.2) ~ -4.239911 from (4.7) 1'(-2.0) ~ -3.828853 from (4.7) 

7. 1'(3) ~ i2[f(l) - 8f(2) + 8f(4) - f(5)] = 0.21062, with an error bound given by 

1J<5)(x)lh4 23 -
max < - = 0.76. 
19:55 30 - 30 

9. From the forward-backward difference formula (4.1), we have the following approximations: 

a. j'(0.5) ~ 0.852, 1'(0.6) ~ 0.852, f'(0.7) ~ 0.7960 

b. f'(O.O) ~ 3.707, f'(0.2) ~ 3.153, f'(0.4) ~ 3.153 
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11. For the endpoints of the tables, we use Formula (4.7). The other approximations come from Formula (4.6). 

a. /'(2.1) "'" 3.884 /,(2.2) "'" 2.896 /,(2.3) ~ 2.249 /,(2.4) ~ 1.836 /,(2.5) ~ 1.550 /'(2.6) ~ 1.348 

b. /,(-3.0) ~ -5.883 ['(-2.8) "'" -5.467 ['(-2.6) "'" -5.059 /,(-2.4) "'" -4.650 /,(-2.2) "'" -4.208 
/,(-2.0) ~ -3.875 

13. The approximation is -4.8 x 10-9 . f" (0.5) = O. The error bound is 0.35874. The method is very accurate since 
the function is symmetric about x = 0.5. 

15. a. /,(0.2) ~ -0.1951027 b. /,(1.0) ~ -1.541415 c. /'(0.6) ~ -0.6824175 

17. /,(0.4) ~ -0.4249840 and /,(0.8) ~ -1.032772. 

19. The three-point formulas give the results in the following table. 

Time o 3 5 8 10 13 

Speed 79 82.4 74.2 76.8 69.4 71.2 

21. The approximations eventually become zero since the numerator becomes zero. 

23. Since e'(h) = -BI hZ + hM 13, we have e'(h) = 0 if and only if h = ~3BI M. Also, e'(h) < 0 if h < ~3BI M and 
e'(h) > 0 if h > ~3BIM, so an absolute minimum for e(h) occurs at h = ~3BIM. 

Exercise Set 4.2 (Page 784) 

1. a. /'(l) "'" 1.0000109 b. /,(0) ~ 2.0000000 c. /,(1.05) ~ 2.2751459 d. /,(2.3) ~ -19.646799 

3. a. /,(1) "'" 1.001 b. /,(0) "'" 1.999 c. /,(1.05) ~ 2.283 d. /,(2.3)::;:; -19.61 

5. fo" sinx dx "'" 1.999999 

9. Let Nz(h) = N (~) + (NWZ-N(h)) and N3(h) = N z (;) + (N2(VS-
N2 (hl). Then N 3(h) is an O(h3) approximation 

to M. 

11. Let N(h) = (1 + h)l/h, Nz(h) = 2N (~) - N(h), N 3 (h) = N z (~) + ~ (Nz (~) - N 2 (h». 

a. N(0.04) = 2.665836331, N(0.02) = 2.691588029, N(O.OI) = 2.704813829 

b. N2(0.04) = 2.717339727, Nz(0.02) = 2.718039629. The OW) approximation is N3 (0.04) = 2.718272931. 

c. Yes, since the errors seem proportioned to h for N(h), to h2 for Nz(h), and to h3 for N3 (h). 

15. c. k 4 8 16 32 64 128 256 512 

Pk 2./i 3.0614675 3.1214452 3.1365485 3.1403312 3.1412723 3.1415138 3.1415729 

Pk 4 3.3137085 3.1825979 3.1517249 3.144184 3.1422236 3.1417504 3.1416321 

e. Values of Pk and Pk are given in the following tables, together with the extrapolation results: 
For Pk 

2.8284271 
3.0614675 3.1391476 
3.1214452 3.1414377 3.1415904 
3.1365485 3.1415829 3.1415926 3.1415927 
3.1403312 3.1415921 3.1415927 3.1415927 3.1415927 

For Pk 

4 
3.3137085 3.0849447 
3.1825979 3.1388943 3.1424910 
3.1517249 3.1414339 3.1416032 3.1415891 
3.1441184 3.1415829 3.1415928 3.1415926 3.1415927 
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Exercise Set 4.3 (Page 195) 

1. The Trapezoidal rule gives the following approximations. a. 0.265625 b. -0.2678571 c. -0.17776434 
d. 0.1839397 e. -0.8666667 f. -0.1777643 g. 0.2180895 h. 4.1432597 

3. Simpson's rule gives the following approximations. a. 0.1940104 b. -0.2670635 c. 0.1922453 
d. 0.16240168 e. -0.7391053 f. -0.1768216 g. 0.1513826 h. 2.5836964 

5. The Midpoint rule gives the following approximations. a. 0.1582031 b. -0.2666667 c. 0.1743309 
d. 0.1516327 e. -0.6753247 f. -0.1768200 g. 0.1180292 h. 1.8039148 

7. f(l) = ; 
9. The degree of precision is 3. 

11 1 4 1 
• Co = 3' CI = 3' C2 = 3 

13. Co = C 1 = ; gives the highest degree of precision, 1. 

15. The following approximations are obtained from Formula (4.23) through Formula (4.30), respectively. 

a. 0.1024404, 0.1024598, 0.1024598, 0.1024598, 0.1024695, 0.1024663, 0.1024598, and 0.1024598 

b. 0.7853982, 0.7853982, 0.7853982, 0.7853982, 0.7853982, 0.7853982, 0.7853982, and 0.7853982 

c. 1.497171, 1.477536, 1.477529, 1.477523, 1.467719, 1.470981, 1.477512, and 1.477515 

d. 4.950000, 2.740909, 2.563393, 2.385700, 1.636364, 1.767857, 2.074893, and 2.116379 

e. 3.293182, 2.407901,2.359772, 2.314751, 1.965260, 2.048634, 2.233251, and 2.249001 

f. 0.5000000,0.6958004,0.7126032,0.7306341,0.7937005, 0.7834709, 0.7611137, and 0.7593572 

771 

17. The errors in Exercise 16 are 1.6 x 10-6 , 5.3 X 10-8 , -6.7 X 10-7 , -7.2 X 10-7, and -1.3 x 10-6, respectively. 

19. If E(Xk) = 0, for all k = 0, 1, ... ,n and E (xn+l) 1= 0, then with Pn+1 (x) = x n+l , we have a polynomial of degree 
n + 1 for which E (Pn+1 (x» 1= o. Let p(x) = anxn + ... + alx + ao be any polynomial of degree less than or equal 
to n. Then E(p(x» = QnE(xn) + ... + aIE(x) + aoE(l) = O. Conversely, if E(p(x» = 0, for all polynomials of 
degree less than or equal to n, it follows that E (Xk) = 0, for all k = 0, 1, ... , n. Let pn+ 1 (x) = Qn+1 xn+ 1 + ... + Qo 

be a polynomial of degree n + I for which E(Pn+1 (x» 1= O. Since an+1 1= 0, we have 

n+1 I an n ao 
x = Pn+I(X)- X -".- . 

an+1 an+1 an+1 

Then 

+1 1 an n ao 
E(xn ) = E(Pn+I(X» - E(x ) - ... - E(1) 

an+1 Qn+1 Qn+1 

1 
- -E(Pn+I(X» 1= O. 

an+1 

Thus, the quadrature formula has degree of precision n. 

Exerdse Set 4.4 (Page 203) 

1. The Composite Trapezoidal rule approximations are: a. 0.639900 b. 31.3653 c. 0.784241 d. -6.42872 
e. -13.5760 f. 0.476977 g. 0.605498 h. 0.970926 

3. The Composite Midpoint rule approximations are: a. 0.633096 b. 11.1568 c. 0.786700 d. -6.11274 
e. -14.9985 f. 0.478751 g. 0.602961 h. 0.947868 

5. et=0.75 

7. a. The Composite Trapezoidal rule requires h < 0.000922295 and n > 2168. 

b. The Composite Simpson's rule requires h < 0.037658 and n > 54. 

c. The Composite Midpoint rule requires h < 0.00065216 and n > 3066. 
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9. a. The Composite Trapezoidal rule requires h < 0.04382 and n > 46. The approximation is 0.405471. 

b. The Composite Simpson's rule requires h < 0.44267 and n ~ 6. The approximation is 0.405466. 

c. the Composite Midpoint rule requires h < 0.03098 and n > 64. The approximation is 0.405460. 

11. a. Because the right and left limits at 0.1 and 0.2 for f, !" and f" are the same, the functions are continuous on 
[0,0.3]. However, 

is discontinuous at x = O. 1. 

6, 0 < x < 0.1 

flll(X)= 12, 0.I<x<0.2 

12, 0.2 < x < 0.3 

b. We have 0.302506 with an error bound of 1.9 x 10-4 . 

c. We have 0.302425, and the value of the actual integral is the same. 

13. a. For the Composite Trapezoidal rule, we have 

where t,Xj = Xj+l - Xj = h for each j. Since L~=l f"(~j)t,Xj is a Riemann sum for 

t rex) dx = f'(b) - f'(a), we have 

h2 

E(f) :::::: -12 [f'(b) - j'(a)]. 

b. For the Composite Midpoint rule, we have 

h3 "/2 h2 "/2 

E(f) = "3 L f"(~j) = "6 L f"(~j)(2h). 
j=l j=l 

But L~/21 r(~j)(2h) is a Riemann sum for t rex) dx = !,(b) - !'(a), so 

h2 

E(f) :::::: "6 [f'(b) - f'ea)]. 

15. a. The estimate using the Composite Trapezoidal rule is - ~ h2 In 2 = -6.296 x 10-6 . 

b. The estimate using the Composite Simpson's rule is -2!oh2 --: -3.75 x 10-6
. 

c. The estimate using the Composite Midpoint rule is !h2 1n2 = 6.932 x 10-6
• 

17. The length is approximately 15.8655. 

19. Composite Simpson's rule with h = 0.25 gives 2.61972 s. 

21. The length is approximately 58.47082, using n = 100 in the Composite Simpson's rule. 

Exercise Set 4.5 (Page 211) 

1. Romberg integration gives R3•3 as follows: a. 0.1922593 b. 0.1606105 c. -0.1768200 d. 0.08875677 
e. 2.5879685 f. -0.7341567 g. 0.6362135 h. 0.6426970 

3. Romberg integration gives: a. 0.19225936 with n = 4 b. 0.16060279 with n = 5 c. -0.17682002 with n = 4 
d. 0.088755284 with n = 5 e. 2.5886286 with n = 6 f. -0.73396918 with n = 6 g. 0.63621335 with n = 4 
h. 0.64269908 with n = 5 

5. R33 = 11.5246 

7. f (2.5) :::::: 0.43459 



9. Rli = 5 

11. We have 

Answers for Selected Exercises 

R _ 4Rk,1 - Rk-I,I 
k,2 - 3 

1 
= -

3 

2k - 2 

Rk-I,I + 2hk_1 L f(a + (i - 1/2»hk_I) , 
;=1 

1 h 
2k-2_1 

k-I "" 2 (f(a) + feb»~ + hk- I Lt f(a + ihk_I) 
i=1 

--
3 

2k- 2 

from (4.35), 

+ 2hk_1 L f(a + (i - 1/2)hk_I) , from (4.34) with k - 1 instead of k, 

h M-I M 

= 3 f(a) + feb) + 2 L f(a + 2ih) + 4 L f(a + (2i - l)h) , 
i=1 ;=1 

where h = hk and M = 2k-2. 

13. Equation (4,35) follows from 

• 2k-I_1 

f(a) + feb) + 2 L f(a + ihk) 
;=1 

2,-1_1 . 

- h2k f(a) + feb) + 2 L f(a + ~hk-d 
;=1 

2,-1_ I 2k - 2 

=; f(a) + feb) + 2 L f(a + ihk- 1) + 2 L f(a + (i - 1/2)hk _ I) 
;=1 ;=1 

1 hk- 1 

2 2 

2,-2_1 

f(a) + feb) + 2 L f(a + ihk_ l ) 

;=1 

2,-2 
1 

- - Rk-I,I + hk- I L f(a + (i - 1/2)hk_ l ) . 
2 ;=1 

Exercise Set 4.6 (Page 219) 

1. Simpson's rule gives 

2k- 2 

+ hk- I L f(a + (i - 1/2)hk_ l ) 

;=1 

a. S(l, 1.5) = 0.19224530, S(I, 1.25) = 0.039372434, S(1.25, 1.5) = 0,15288602, and the actual value is 
0.19225935. 

773 

b. S(O, 1) = 0,16240168, S(O,O.5) = 0.028861071, S(0.5,1) = 0.13186140, and the actual value is 0.16060279. 

c. S(O, 0.35) = -0.17682156, S(O, 0.175) = -0.087724382, S(0.175, 0.35) = -0.089095736, and the actual 
value is -0.17682002, 
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d. S(O, ~) = 0.087995669, S(O, ~) = 0.0058315797, S( ~, ~) = 0.082877624, and the actual value is 
0.088755285. 

e. S(O, ~) = 2.5836964, S(O,;) = 0.33088926, S(;,~) = 2.2568121, and the actual value is 2.5886286. 

f. S(1, 1.6) = -0.73910533, S(I, 1.3) = -0.26141244, S(1.3, 1.6) = -0.47305351, and the actual value is 
-0.73396917. 

g. S(3, 3.5) = 0.63623873, S(3, 3.25) = 0.32567095, S(3.25, 3.5) = 0.31054412, and the actual value is 
0.63621334. 

h. S(O, ~) = 0.64326905, S(O, ;) = 0.37315002, SCi, :) = 0.26958270, and the actual value is 0.64269908. 

3. Adaptive quadrature gives: a. 108.555281 b. -1724.966983 c. -15.306308 d. -18.945949 

5. Adaptive quadrature gives 

1
2 1 

sin - dx = 1.1454 
0.1 x 

and 1
2 1 

cos - dx = 0.67378. 
0.1 x 

7. Joh 
u(t) dt ~ 0.00001 

9. t c(t) set) 

0.1 0.0999975 0.000523589 
0.2 0.199921 0.00418759 
0.3 0.299399 0.0141166 
0.4 0.397475 0.0333568 
0.5 0.492327 0.0647203 
0.6 0.581061 0.110498 
0.7 0.659650 0.172129 
0.8 0.722844 0.249325 
0.9 0.764972 0.339747 
1.0 0.779880 0.438245 

Exercise Set 4.7 (Page 226) 

1. Gaussian quadrature gives: a. 0.1922687 b. 0.1594104 c. -0.1768190 d. 0.08926302 e. 2.5913247 
f. -0.7307230 g. 0.6361966 h. 0.6423172 

3. Gaussian quadrature gives: a. 0.1922594 b. 0.1606028 c. -0.1768200 d. 0.08875529 e. 2.5886327 
f. -0.7339604 g. 0.6362133 h. 0.6426991 

5. a = 1, b = 1, c = ;, d = -~ 

Exercise Set 4.8 (Page 239) 

1. Algorithm 4.4 with n = rn = 4 gives: a. 0.3115733 b. 0.2552526 c. 16.50864 d. 1.476684 

3. Algorithm 4.4 with n = 4 and rn = 8, n = 8 and rn = 4, and n = rn = 6 gives: 

a. 0.5119875, 0.5118533, 0.5118722 

b. 1.718857, 1.718220, 1.718385 

c. 1.001953, 1.000122, 1.000386 

d. 0.7838542, 0.7833659, 0.7834362 

e. -1.985611, -1.999182, -1.997353 

f. 2.004596, 2.000879, 2.000980 

g. 0.3084277, 0.3084562, 0.3084323 

h. -22.61612, -19.85408, -20.14117 
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S. Algorithm 4.5 with n = m = 2 gives: a. 0.3115733 b. 0.2552446 c. 16.50863 d. 1.488875 

7. Algorithm 4.5 with n = m = 3, n = 3 and m = 4, n = 4 and m = 3, and n = m = 4 gives: 

a. 0.5118655,0.5118445,0.5118655,0.5118445,2.1 x 10-5, 1.3 X 10-7,2.1 X 10-5,1.3 X 10-7 

b. 1.718163, 1.718302, 1.718139, 1.718277, 1.2 x 10-4 , 2.0 X 10-5 , 1.4 x 10-4, 4.8 X 10-6 

C. 1.000000, 1.000000, 1.0000000, 1.000000, 0, 0, 0, 0 

d. 0.7833333,0.7833333,0.7833333,0.7833333,0,0,0,0 

e. -1.991878, -2.000124, -1.991878, -2.000124,8.1 x 10-3,1.2 X 10-4 , 8.1 X 10-3 , 1.2 X 10-4 

f. 2.001494, 2.000080, 2.001388, 1.999984, 1.5 x 10-3, 8 X 10-5 , 1.4 X 10-3, 1.6 X 10-5 

g. 0.3084151,0.3084145,0.3084246,0.3084245, 10-5,5.5 x 10-7, 1.1 X 10-5,6.4 X 10-7 

h. -12.74790, -21.21539, -11.83624, -20.30373,7.0,1.5,7.9,0.564 

9. Algorithm 4.4 with n = m = 14 gives 0.1479103, and Algorithm 4.5 with n = m = 4 gives 0.1506823. 

11. The approximation to the center of mass is (x,)I), where x = 0.3806333 and y = 0.3822558. 

13. The area is approximately 1.0402528. 

15. Algorithm 4.6 with n = m = p = 2 gives the first listed value. The second is the exact result. 

a. 5.204036, e(eO.5 - 1)(e - 1)2 

b. 0.08429784, 1~ 

c. 0.08641975, 1~ 

d. 0.09722222, t 
e. 7.103932, 2 + ~ 7l'2 

f. 1.428074, ~ (e2 + 1) - e 

17. Algorithm 4.6 with n = m = p = 4 gives the first listed value. The second is from Algorithm 4.6 with 
n = m = p = 5. 
a. 5.206447, 5.206447 

b. 0.08333333,0.08333333 

c. 0.07142857,0.07142857 

d. 0.08333333,0.08333333 

e. 6.934912,6.934801 

f. 1.476207, 1.476246 

19. The approximation 20.41887 requires 125 functional evaluations. 

Exercise Set 4.9 (Page 245) 

1. The Composite Simpson's rule gives: a. 0.5284163 b. 4.266654 c. 0.4329748 d. 0.8802210 

3. The Composite Simpson's rule gives: a. 0.4112649 b. 0.2440679 c. 0.05501681 d. 0.2903746 

S. The escape velocity is approximately 6.9450 mils. 
00 

7. a. e-x f(x)dx ~ 0.8535534 f(0.5857864) + 0.1464466 f(3.4142136) 

° 
b. laoo 

e-x f(x) dx ~ 0.7110930 f(0.4157746) + 0.2785177 f(2.2942804) + 0.0103893 f(6.2899451) 

9. n = 2: 2.9865139 
n = 3: 2.9958198 

775 
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Exercise Set 5.7 (Page 255) 

1. a. Since f (t, y) = y cos t, we have * (t, y) = cos t, and f satisfies a Lipschitz condition in y with L = 1 on 

D = {(t, y)IO :'5 t < I, -00 < y < oo}. 

Also, f is continuous on D, so there exists a unique solution, which is y(t) = eSint • 

h. Since f (t, y) = ; y + t 2et
, we have * = ~, and f satisfies a Lipschitz condition in y with L = 2 on 

D = {(t, y)II < t < 2, -00 < y < oo}. 

Also, f is continuous on D, so there exists a unique solution, which is yet) = t2(et - e). 

c. Since f (t, y) = -; y + t2 e' , we have * = -;, and f satisfies a Lipschitz condition in y with L = 2 on 

D = {(t, y)II < t < 2, -00 < y < oo}. 

Also, f is continuous on D, so there exists a unique solution, which is 

d. Since f(t, y) = ;~,L we have * = 1~:4' and f satisfies a Lipschitz condition in y with L = 2 on 

D = {(t, y)IO < t :'5 I, -00 < y < oo}. 

Also, f is continuous on D, so there exists a unique solution, which is yet) = 1 + t4. 

3. a. Differentiating y3t + yt = 2 gives 3y2y't + yl + y't + Y = O. Solving for y' gives the original differential 
equation, and setting t = 1 and y = 1 verifies the initial condition. To approximate y(2), use Newton's method 
to solve the equation y3 + y - 1 = O. This gives y(2) ~ 0.6823278. 

h. Differentiating y sin t + t 2eY + 2y - 1 = 0 gives y' sin t + y cos t + 2teY + t 2eY y' + 2y' = O. Solving for y' gives 
the original differential equation, and setting t = 1 and y = 0 verifies the initial condition. To approximate y(2), 
use Newton's method to solve the equation (2 + sin 2)y + 4eY - 1 = O. This gives y(2) ~ -0.4946599. 

5. Let (tl, YI) and (t2, Y2) be in D, with a :'5 tl < b, a <t2 ::: b, -00 < YI < 00, and -00 < Y2 < 00. For 0 < )" < 1, 
we have (1 - ),,)a :'5 (1 - ),,)tl < (1 - A)b and Aa < At2 :'5 Ab. Hence, a = (1 - A)a + Aa :'5 (1 - A)tl + )"t2 :'5 
(1 - A)b + Ab = b. Also, -00 < (1 - A)YI + AY2 < 00, so D is convex. 

7. a. Since y' = f(t, y(t», we have 

[ y'(z) dz = [ fez, y(z» dz. 

So 

yet) - yea) = [ fez, y(z» dz 

and 

t 

y(t) = a + fez, y(z» dz. 
a 

The iterative method follows from this equation. 

h. We have yo(t) = I, Yl(t) = 1 + ;t2, Y2(t) = 1 + ;t2 - ~t3, and Y3(t) = 1 + ft2 - ~t3 + ~t4. 
Ul h ( ) 1 I 2 I 3 + I 4 1 5 + c. He ave y t = + 2t - 5t 24t - 120t ...• 
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Exercise Set 5.2 (page 263) 

1. Euler's method gives the approximations in the following table. 

a. I 

c. 

I 
2 

• 
I 

1 
2 
3 
4 

ti 

0.500 
1.000 

ti 

1.250 
1.500 
1.750 
2.000 

0.0000000 
1.1204223 

Wi 

2.7500000 
3.5500000 
4.3916667 
5.2690476 

y(ti) 

0.2836165 
3.2190993 

y(ti) 

2.7789294 
3.6081977 
4.4793276 
5.3862944 

b. i 

1 
2 

d. i 

1 
2 
3 
4 

3. Euler's method gives the approximations in the following tables. 

yet;) b. • a. j ti W' I , 

2 1.200 1.0082645 1.0149523 2 
4 1.400 1.0385147 1.0475339 4 
6 1.600 1.0784611 1.0884327 6 
8 1.800 1.1232621 1.1336536 8 

10 2.000 1.1706516 1.1812322 10 

• yet;) d. • c. I t· Wi I , 

2 00400 -1.6080000 -1.6200510 2 
4 0.800 -1.3017370 -1.3359632 4 
6 1.200 -1.1274909 -1.1663454 6 
8 1.600 -1.0491191 -1.0783314 8 

10 2.000 -1.0181518 -1.0359724 10 

5. Euler's method gives the approximations in the following table. 

• 

a. I ti W' I y(ti) 

I 1.1 0.271828 0.345920 
5 1.5 3.18744 3.96767 

6 1.6 4.62080 5.70296 
9 1.9 11.7480 14.3231 

10 2.0 15.3982 18.6831 

ti 

2.500 
3.000 

ti 

0.250 
0.500 
0.750 
1.000 

t· , 

1.400 
1.800 
2.200 
2.600 
3.000 

ti 

0.2 
0.4 
0.6 
0.8 
1.0 

• 

b. Linear interpolation gives the approximations in the following table. 

t 

1.04 
1.55 
1.97 

Approximation 

0.108731 
3.90412 

[4.3031 

yet) 

0.119986 
4.78864 

17.2793 

• 

Error 

0.01126 
0.8845 
2.976 

W' I 

2.0000000 
2.6250000 

Wi 

1.2500000 
1.6398053 
2.0242547 
2.2364573 

Wi 

0.4388889 
1.0520380 
1.8842608 
3.0028372 
4.5142774 

Wi 

0.1083333 
0.1620833 
0.3455208 
0.6213802 
0.9803451 

y(tJ 

1.8333333 
2.5000000 

yeti) 

1.3291498 
1.7304898 
2.0414720 
2.1179795 

y(ti) 

0.4896817 
1.1994386 
2.2135018 
3.6784753 
5.8741000 

yet;) 

0.1626265 
0.2051118 
0.3765957 
0.6461052 
1.0022460 
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c. h < 0.00064 

7. a. Euler's method produces the following approximation to y(5) ::::: 5.00674. 

h ::::: 0.2 h ::::: 0.1 h ::::: 0.05 

5.00377 5.00515 5.00592 

b. h ::::: J2 X 10-6 "'" 0.0014142. 

9. a. h ::::: 1O-n
/
2 h. The minimal error is 1O-nf2 (e - 1) + 5e1O-n - l . 

c. 
t 

0.5 
1.0 

w(h ::::: 0.1) 

0.40951 
0.65132 

w(h ::::: 0.01) 

0.39499 
0.63397 

yet) 

0.39347 
0.63212 

Error 
(n ::::: 8) 

1.5 X 10-4 

3.1 X 10-4 

11. b. W50::::: 0.10430 "" p(50) c. Since pet) ::::: 1 - 0.99e-0002t
, p(50) ::::: 0.10421. 

Exercise Set 5.3 (Page 271) 

1. a. ti 

C. 

3. a. 

b. 

c. 

0.50 
1.00 

ti 

1.25 
1.50 
1.75 
2.00 

• 
I 

1 
2 

• 
I 

1 
2 

• 
I 

1 
2 
3 
4 

ti 

1.1 

1.2 

0.5 
1.0 

ti 

1.5 
2.0 
2.5 
3.0 

Wi 

0.12500000 
2.02323897 

Wi 

2.78125000 
3.61250000 
4.48541667 
5.39404762 

Order 2 
W· I 

1.214999 
1.465250 

Order 2 

Wi 

0.5000000 
1.076858 

Order 2 
Wi 

-2.000000 
-1.777776 
-1.585732 
-1.458882 

yeti) b. ti Wi 

0.28361652 
3.21909932 

y(ti) d. 

2.77892944 
3.60819766 
4.47932763 
5.38629436 

Order 4 

Wi 

1.215883 
1.467561 

Order 4 
Wi 

0.5156250 
1.091267 

Order 4 

Wi 

-2.000000 
-1.6790l2 
-1.484493 
-1.374440 

2.50 
3.00 

1.75000000 
2.42578125 

ti Wi 

0.25 1.34375000 
0.50 
0.75 
1.00 

y(ti) 

1.215886 
1.467570 

yet;) 

1.77218707 
2.11067606 
2.20164395 

0.5158868 
1.091818 

yeti ) 

-1.500000 
-1.333333 
-1.250000 
-1.200000 

yeti) 

1.83333333 
2.50000000 

y(ti) 

1.32914981 
1.73048976 
2.04147203 
2.11797955 

• 

· · , 
, 

• 
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d. Order 2 Order 4 
• 

y(ti) I t· Wj Wi I 

1 0.25 1.093750 1.086426 1.087088 
2 0.50 1.312319 1.288245 1.289805 
3 0.75 1.538468 1.512576 1.513490 
4 1.0 1.720480 1.701494 1.701870 

5. a. Taylor's method of order two gives the results in the following table. 

• 
I ti Wi y(ti) 

1 1.1 0.3397852 0.3459199 
5 1.5 3.910985 3.967666 
6 1.6 5.643081 5.720962 
9 1.9 14.15268 14.32308 

10 2.0 18.46999 18.68310 

b. Linear interpolation gives y(1.04) "'" 0.1359139, y(1.55) "'" 4.777033, and y(1.97) "'" 17.17480. Actual values 
are y(1.04) = 0.1199875, y(1.55) = 4.788635, and y(1.97) = 17.27930. 

c. Taylor's method of order four gives the results in the following table. 

· I ti W, 
I 

1 1.1 0.3459127 
5 1.5 3.967603 
6 1.6 5.720875 
9 1.9 14.32290 

10 2.0 18.68287 

d. Cubic Hennite interpolation gives y(1.04) "'" 0.1199704, y(1.55) "'" 4.788527, and y(1.97) "'" 17.27904. 

7. a. • 
I t I Order 2 

2 0.2 5.86595 
5 0.5 2.82145 
7 0.7 0.84926 

10 1.0 -2.08606 

b. 0.8 s 

Exerdse Set 5.4 (Page 280) 

1. a. t 

c. 

0.5 
1.0 

t 

1.25 
1.50 
1.75 
2.00 

Modified Euler 

0.5602111 
5.3014898 

Modified Euler 

2.7750000 
3.6008333 
4.4688294 
5.3728586 

Order 4 

5.86433 
2.81789 
0.84455 

-2.09015 

y(t) 

0.2836165 
3.2190993 

yet) 

2.7789294 
3.6081977 
4.4793276 
5.3862944 

b. t 

d. 

2.5 
3.0 

t 

0.25 
0.50 
0.75 
1.00 

Modified Euler 

1. 8125000 
2.4815531 

Modified Euler 

1.3199027 
1.7070300 
2.0053560 
2.0770789 

yet) 

1.8333333 
2.5000000 

yet) 

1.3291498 
1.7304898 
2.0414720 
2.1179795 
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3. a. t Midpoint y (t) b. t Midpoint yet) 

0.5 
1.0 

0.2646250 
3.1300023 

0.2836165 
3.2190993 

2.5 
3.0 

1.7812500 
2.4550638 

1.8333333 
2.5000000 

C. t Midpoint y(t) d. t Midpoint yet) 

1.25 2.7777778 2.7789294 0.25 1.3337962 1.3291498 
1.50 3.6060606 3.6081977 0.50 1.7422854 1.7304898 
1.75 4.4763015 4.4793276 0.75 2.0596374 2.0414720 
2.00 5.3824398 5.3862944 1.00 2.1385560 2.1179795 

5. a. 1.0221167"'" y( 1.25) = 1.0219569, 1.1640347 "'" y(1.93) = 1.1643901 

b. 1.9086500"'" y(2.1) = 1.9249616, 4.3105913 "'" y(2.75) = 4.3941697 

c. -1.1461434"'" y(1.3) = -1.l382768, -1.0454854"'" y(1.93) = -1.0412665 

d. 0.3271470"'" y(0.54) = 0.3140018, 0.8967073"'" y(0.94) = 0.8866318 

7. a. 1.0225530"'" y(l.25) = 1.0219569, 1.1646155 "'" y(1.93) = 1.1643901 

b. 1.9132167"'" y(2.1) == 1.9249616, 4.3246152"'" y(2.75) = 4.3941697 

c. -1.1441775"'" y(1.3) = -1.1382768, -1.0447403"'" y(1.93) = -1.0412665 

d. 0.3251049"'" y(0.54) = 0.3140018, 0.8945125"'" y(0.94) = 0.8866318 

9. a. 1.0227863"'" y(l.25) = 1.0219569, 1.1649247"'" y(1.93) = 1.1643901 

b. 1.9153749"'" y(2.1) = 1.9249616, 4.3312939"'" y(2.75) = 4.3941697 

c. -1.1432070"'" yO.3) = -1.1382768, -1.0443743"'" y(1.93) == -1.0412665 

d. 0.3240839"'" y(0.54) = 0.3140018, 0.8934152"'" y(0.94) = 0.8866318 

11. a. The Runge-Kutta method of order four gives the results in the following tables. 

t Runge-Kutta yet) b. t Runge-Kutta yet) 

1.2 1.0149520 1.0149523 1.4 0.4896842 0.4896817 

1.4 1.0475336 1.0475339 1.8 1.1994320 1.1994386 

1.6 1.0884323 1.0884327 2.2 2.2134693 2.2135018 

1.8 1.1336532 1.1336536 2.6 3.6783790 3.6784753 

2.0 1.1812319 1.1812322 3.0 5.8738386 5.8741000 

C. t Runge-Kutta yet) d. t Runge-Kutta yet) 

0.4 -1.6200576 -1.6200510 0.2 0.1627655 0.1626265 
. 

0.8 -1.3359824 -1.3359632 0.4 0.2052405 0.2051118 

1.2 -1.1663735 -1.1663454 0.6 0.3766981 0.3765957 

1.6 -1.0783582 -1.0783314 0.8 0.6461896 0.6461052 

2.0 -1.0359922 -1.0359724 1.0 1.0023207 1.0022460 

15. In 0.2 s we have approximately 2099 units of KOH . 
• 

17. The appropriate constants are al == iiI = a2 = li2 = Y2 = Y3 = Y4 = Y5 = Y6 = Y7 = ~ and a3 = li3 = 1. 

Exercise Set 5.5 (Page 287) 

1. The Runge-Kutta-Fehlberg Algorithm gives the results in the following tables. 
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• 
hi a. I ti Wi Yi 

1 0.2093900 0.0298184 0.2093900 0.0298337 
3 0.5610469 0.4016438 0.1777496 0.4016860 
5 0.8387744 1.5894061 0.1280905 1.5894600 
7 1.0000000 3.2190497 0.0486737 3.2190993 

b. i ti Wi h I Yi 

1 2.2500000 1.4499988 0.2500000 1.4500000 
2 2.5000000 1.8333332 0.2500000 1.8333333 
3 2.7500000 2.1785718 0.2500000 2.1785714 
4 3.0000000 2.5000005 0.2500000 2.5000000 

• 
C. I t I Wi h I Yi _._-

1 1.2500000 2.7789299 0.2500000 2.7789294 
2 1.5000000 3.6081985 0.2500000 3.6081977 
3 1.7500000 4.4793288 0.2500000 4.4793276 
4 2.0000000 5.3862958 0.2500000 5.3862944 

d. i ti Wi hi Yi 

1 0.2500000 1.3291478 0.2500000 1.3291498 
2 0.5000000 1.7304857 0.2500000 1.7304898 
3 0.7500000 2.0414669 0.2500000 2.0414720 
4 1.0000000 2.1179750 0.2500000 2.1179795 

3. The Runge-Kutta-Fehlberg Algorithm gives the results in the following tables. 

• a. I ti Wi h I Yi 

I 1.l101946 1.0051237 0.1101946 1.0051237 
5 1.7470584 1.1213948 0.2180472 1.1213947 
7 2.3994350 1.2795396 0.3707934 1.2795395 

11 4.0000000 1.6762393 0.1014853 1.6762391 

b. • 
hi I ti Wi Yi 

4 1.5482238 0.7234123 0.1256486 0.7234119 
7 1.8847226 1.3851234 0.1073571 1.3851226 

10 2.1846024 2.1673514 0.0965027 2.1673499 
16 2.6972462 4.1297939 0.0778628 4.1297904 
21 3.0000000 5.8741059 0.0195070 5.8741000 
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• c. I ti Wi h I Yi 

1 0.1633541 -1.8380836 0.1633541 -1.8380836 
5 0.7585763 -1.3597623 0.1266248 -1.3597624 
9 1.1930325 -1.1684827 0.1048224 -1.1684830 

13 1.6229351 -1.0749509 0.1107510 -1.0749511 
17 2.1074733 -1.0291158 0.1288897 -1.0291161 
23 3.0000000 -1.0049450 0.1264618 -1.0049452 

d. i ti Wi h I Yi 

1 0.3986051 0.3108201 0.3986051 0.3108199 
3 0.9703970 0.2221189 0.2866710 0.2221186 
5 1.5672905 0.1133085 0.3042087 0.1133082 
8 2.0000000 0.0543454 0.0902302 0.0543455 

5. a. The number of infectives is Y (30) "'" 80295.7. 

b. The limiting value for the number of infectives for this model is lirn/->oo yet) = 100,000. 

Exercise Set 5.6 (Page 300) 

1. The Adams-Bashforth methods give the results in the following tables. 

a. t 2-step 3-step 4-step 5-step yet) 

0.2 0.0268128 0.0268128 0.0268128 0.0268128 0.0268128 
0.4 0.1200522 0.1507778 0.1507778 0.1507778 0.1507778 
0.6 0.4153551 0.4613866 0.4960196 0.4960196 0.4960196 
0.8 1.1462844 1.2512447 1.2961260 1.3308570 1.3308570 
1.0 2.8241683 3.0360680 3.1461400 3.1854002 3.2190993 

b. t 2-step 3-step 4-step 5-step yet) 

2.2 1.3666667 1.3666667 1.3666667 1.3666667 1.3666667 
2.4 1.6750000 1.6857143 1.6857143 1.6857143 1.6857143 

2.6 1.9632431 1.9794407 1.9750000 1.9750000 1.9750000 
2.8 2.2323184 2.2488759 2.2423065 2.2444444 2.2444444 
3.0 2.4884512 2.5051340 2.4980306 2.5011406 2.5000000 

• 

c. t 2-step 3-step 4-step 5-step yet) 

1.2 2.6187859 2.6187859 2.6187859 2.6187859 2.6187859 
1.4 3.2734823 3.2710611 3.2710611 3.2710611 3.2710611 
1.6 3.9567107 3.9514231 3.9520058 3.9520058 3.9520058 
1.8 4.6647738 4.6569191 4.6582078 4.6580160 4.6580160 
2.0 5.3949416 5.3848058 5.3866452 5.3862177 5.3862944 

d. t 2-step 3-step 4-step 5-step yet) 

0.2 1.2529306 1.2529306 1.2529306 1.2529306 1.2529306 
0.4 1.5986417 1.5712255 1.5712255 1.5712255 1.5712255 
0.6 1.9386951 1.8827238 1.8750869 1.8750869 1.8750869 
0.8 2.1766821 2.0844122 2.0698063 2.0789180 2.0789180 
1.0 2.2369407 2.1115540 2.0998117 2.1180642 2.1179795 
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3. The Adams-Bashforth methods give the results in the following tables. 

a. t 2-step 3-step 4-step 5-step y(t) 

l.2 l.0161982 1.0149520 1.0149520 1.0149520 1.0149523 
l.4 1.0497665 1.0468730 1.0477278 1.0475336 1.0475339 
l.6 1.0910204 1.0875837 1.0887567 1.0883045 1.0884327 
l.8 1.1363845 1.1327465 1.1340093 1.1334967 1.1336536 
2.0 1.1840272 1.1803057 1.1815967 1.1810689 1.1812322 

b. t 2-step 3-step 4-step 5-step y(t) 

1.4 0.4867550 0.4896842 0.4896842 0.4896842 0.4896817 
. 1.8 1.1856931 1.1982110 1.1990422 1.1994320 1.1994386 
2.2 2.1753785 2.2079987 2.2117448 2.2134792 2.2135018 
2.6 3.5849181 3.6617484 3.6733266 3.6777236 3.6784753 
3.0 5.6491203 5.8268008 5.8589944 5.8706101 5.8741000 

c. t 2-step 3-step 4-step 5-step y(t) 

0.5 -1.5357010 -1.5381988 -1.5379372 -1.5378676 -1.5378828 
1.0 -1.2374093 -1.2389605 -1.2383734 -1.2383693 -1.2384058 
1.5 -1.0952910 -1.0950952 -1.0947925 -1.0948481 -1.0948517 
2.0 -1.0366643 -1.0359996 -1.0359497 -1.0359760 -1.0359724 

d. t 2-step 3-step 4-step 5-step y(t) 

0.2 0.1739041 0.1627655 0.1627655 0.1627655 0.1626265 
0.4 0.2144877 0.2026399 0.2066057 0.2052405 0.2051118 
0.6 0.3822803 0.3747011 0.3787680 0.3765206 0.3765957 
0.8 0.6491272 0.6452640 0.6487176 0.6471458 0.6461052 
1.0 1.0037415 1.0020894 1.0064121 1.0073348 1.0022460 

s. The Adams Fourth-order Predictor-Corrector Algorithm gives the results in the following tables. 

a. t w y(t) b. t w y(t) 

1.2 1.0149520 1.0149523 1.4 0.4896842 0.4896817 

1.4 1.0475227 1.0475339 1.8 1.1994245 1.1994386 
1.6 1.0884141 1.0884327 2.2 2.2134701 2.2135018 
1.8 1.1336331 1.1336536 2.6 3.6784144 3.6784753 
2.0 1.1812112 1.1812322 3.0 5.8739518 5.8741000 

c. t w y(t) d. t w y(t) 

0.5 -1.5378788 -1.5378828 0.2 0.1627655 0.1626265 

1.0 -1.2384134 -1.2384058 0.4 0.2048557 0.2051118 
1.5 -1.0948609 -1.0948517 0.6 0.3762804 0.3765957 
2.0 -1.0359757 -1.0359724 0.8 0.6458949 0.6461052 

1.0 1.0021372 1.0022460 
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7. a. With h = 0.01, the three-step Adams-Moulton method gives the values in the following table . 

• 
! 

10 
20 

I, 

0.1 
0.2 

w, 

1.317218 
1.784511 

b. Newton's method will reduce the number of iterations per step from three to two, using the stopping 
• • cntenon 

13. To derive Milne's method, integrate y'(t) = f(t, yet)) on the interval [t;-3, ti+!l to obtain 

Using the open Newton-Cotes formula (4.29) on page 194, we have 

The difference equation becomes 

h[8f(t;, Wi) - 4f(tH' Wi-I) + 8f(li-Z, Wi-Z)] 
Wi+1 = Wi-3 + 3 ' 

with local truncation error 

• 

Exercise Set 5.7 (Page 306) 

1. The Adams Variable Step-Size Predictor-Corrector Algorithm gives the results in the following tables. 

• h a. I t Wi Yi I I 

1 0.04275596 0.00096891 0.04275596 0.00096887 
5 0.22491460 0.03529441 0.05389076 0.03529359 

12 0.60214994 0.50174348 0.05389076 0.50171761 
17 0.81943926 1.45544317 0.04345786 1.45541453 
22 0.99830392 3.19605697 0.03577293 3.19602842 
26 1.00000000 3.21912776 0.00042395 3.21909932 

b. . 
hi ! ti Wi Yi 

1 2.06250000 1.12132350 0.06250000 1.12132353 
5 2.31250000 1.55059834 0.06250000 1.55059524 
9 2.62471924 2.00923157 0.09360962 2.00922829 

13 2.99915773 2.49895243 0.09360962 2.49894707 
17 3.00000000 2.50000535 0.00021057 2.50000000 
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c. I Ii Wi hi Yi 

1 1.06250000 2.18941363 0.06250000 2.18941366 
4 1.25000000 2.77892931 0.06250000 2.77892944 
8 u\5102559 4.84179835 0.15025640 4.84180141 

12 2.00000000 5.38629105 0.03724360 5.38629436 

d. · hi I ti Wi Yi 

1 0.06250000 1.06817960 0.06250000 1.06817960 
5 0.31250000 1.42861668 0.06250000 1.42861361 

10 0.62500000 1.90768386 0.06250000 1.90767015 
13 0.81250000 2.08668486 0.06250000 2.08666541 
16 1.00000000 2.11800208 0.06250000 2.11797955 

3. The following tables list representative results from the Adams Variable Step-Size Predictor-Corrector Algorithm. 

• 
hi 3. I ti Wi Yi 

5 1.10431651 1.00463041 0.02086330 1.00463045 
15 1.31294952 1.03196889 0.02086330 1.03196898 
25 1.59408142 1.08714711 0.03122028 1.08714722 

35 2.00846205 1.18327922 0.04824992 1.18327937 
45 2.66272188 1.34525123 0.07278716 1.34525143 
52 3.40193112 1.52940900 0.11107035 1.52940924 
57 4.00000000 1.67623887 0.12174963 1.67623914 

b. • 
I ti Wi hi V . I 

5 l.lX519603 0.20333499 0.03703921 0.20333497 

15 1.55558810 0.73586642 0.03703921 0.73586631 
25 1.92598016 1.48072467 0.03703921 1.48072442 
35 2.29637222 2.51764797 0.03703921 2.51764743 
45 2.65452689 3.92602442 0.03092051 3.92602332 

55 2.94341188 5.50206466 0.02584049 5.50206279 
61 3.00000000 5.87410206 0.00122679 5.87409998 

· t hi c. I WI YI I 

5 0.16854008 -1.83303780 0.03370802 -1.83303783 
17 0.64833341 -1.42945306 0.05253230 -1.42945304 

27 1.06742915 -1.21150951 0.04190957 -1.21150932 

41 1.75380240 -1.05819340 0.06681937 -1.05819325 
51 2.50124702 -1.01335240 0.07474446 -1.01335258 

61 3.00000000 -1.00494507 0.01257155 -1.00494525 
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d. • 
tl h I WI YI I 

5 0.28548652 0.32153668 0.05709730 0.32153674 
15 0.85645955 0.24281066 0.05709730 0.24281095 
20 1.35101725 0.15096743 0.09891154 0.15096772 
25 1.66282314 0.09815109 0.06236118 0.09815137 
29 1.91226786 0.06418555 0.06236118 0.06418579 
33 2.00000000 0.05434530 0.02193303 0.05434551 

S. The current after 2 s is approximately i(2) = 8.693 amperes. 

Exercise Set 5.B (Page 312) 
1. The Extrapolation Algorithm gives the results in the following tables. 

• h k 8. I ti W Yi I 

1 0.25 0.04543132 0.25 3 0.04543123 
2 0.50 0.28361684 0.25 3 0.28361652 
3 0.75 1.05257634 0.25 4 1.05257615 
4 1.00 3.21909944 0.25 4 3.21909932 

b. i ti Wi h k Yi 

1 2.25 1.44999987 0.25 3 1.45000000 
2 2.50 1.83333321 0.25 3 1.83333333 
3 2.75 2.17857133 0.25 3 2.17857143 
4 3.00 2.49999993 0.25 3 2.50000000 

• h k c. I ti Wi Yi 

1 1.25 2.77892942 0.25 3 2.77892944 
2 1.50 3.60819763 0.25 3 3.60819766 
3 1.75 4.47932759 0.25 3 4.47932763 
4 2.00 5.38629431 0.25 3 5.38629436 

d. i ti Wi h k Yi 

1 0.25 1.32914981 0.25 3 1.32914981 
2 0.50 1.73048976 0.25 3 1.73048976 
3 0.75 2.04147203 0.25 3 2.04147203 
4 1.00 2.11797954 0.25 3 2.11797955 

3. The Extrapolation Algorithm gives the results in the following tables. 

• h k 8. I ti Wi Yi 

1 1.50 1.06726237 0.50 4 1.06726235 
2 2.00 1.18123223 0.50 3 1.18123222 
3 2.50 1.30460372 0.50 3 1.30460371 
4 3.00 1.42951608 0.50 3 1.42951607 
5 3.50 1.55364771 0.50 3 1.55364770 
6 4.00 1.67623915 0.50 3 1.67623914 
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b. i t , Wi h k y, 

1 1.50 0.64387537 0.50 4 0.64387533 
2 2.00 1.66128182 0.50 5 1.66128176 
3 2.50 3.25801550 0.50 5 3.25801536 
4 3.00 5.87410027 0.50 5 5.87409998 

• h k C. I ti Wi Yi 

1 0.50 -1.53788284 0.50 4 -1.53788284 
2 1.00 -1.23840584 0.50 5 -1.23840584 
3 1.50 -1.09485175 0.50 5 -1.09485175 
4 2.00 -1.03597242 0.50 5 -1.03597242 
5 2.50 -1.01338570 0.50 5 -1.01338570 
6 3.00 -1.00494526 0.50 4 -1.00494525 

d. i ti W' I h k y, 

1 0.50 0.29875177 0.50 4 0.29875178 
2 1.00 0.21662642 0.50 4 0.21662642 
3 1.50 0.12458565 0.50 4 0.12458565 
4 2.00 0.05434552 0.50 4 0.05434551 

Exercise Set 5.9 (Page 322) 

1. The Runge-Kutta for Systems Algorithm gives the results in the following tables. 

a. ti Wli U Ii W2i U2i 

0.200 2.12036583 2.12500839 1.50699185 1.51158743 
0.400 4.44122776 4.46511961 3.24224021 3.26598528 
0.600 9.73913329 9.83235869 8.16341700 8.25629549 
0.800 22.67655977 23.00263945 21.34352778 21.66887674 
1.000 55.66118088 56.73748265 56.03050296 57.10536209 

b. ti Wli Uli W2i U2i 

0.500 0.95671390 0.95672798 -1.08381950 -1.08383310 
1.000 1.30654440 1.30655930 -0.83295364 -0.83296776 
1.500 1.34416716 1.34418117 -0.56980329 -0.56981634 
2.000 1.14332436 1.14333672 -0.36936318 -0.36937457 

c. ti Wli U Ii W2i U2i W3i U3i 

0.5 0.70787076 0.70828683 -1.24988663 -1.25056425 0.39884862 0.39815702 
1.0 -0.33691753 -0.33650854 -3.01764179 -3.01945051 -0.29932294 -0.30116868 
1.5 -2.41332734 -2.41345688 -5.40523279 - 5.40844686 -0.92346873 -0.92675778 
2.0 -5.89479008 -5.89590551 -8.70970537 -8.71450036 -1.32051165 - I .32544426 

• 
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d. ti U) Ii U Ii Wo ., U2i W3i U3i 

0.2 1.38165297 1.38165325 1.00800000 1.00800000 -0.61833075 -0.61833075 
0.5 1.90753116 1.90753184 1.12500000 1.12500000 -0.09090565 -0.09090566 
0.7 2.25503524 2.25503620 1.34300000 1.34000000 0.26343971 0.26343970 
1.0 2.83211921 2.83212056 2.00000000 2.00000000 0.88212058 0.88212056 

S. The Adams fourth-order predictor-corrector method for systems gives the results in the following tables. 

a. ti Wli y(tj) b. t , Wli y(tj) 

0.200 0.00015352 0.00015350 1.200 0.96152437 0.96152583 
0.500 0.00743133 0.00743027 1.500 0.77796798 0.77797237 
0.700 0.03300266 0.03299805 1.700 0.59373213 0.59373830 
1.000 0.17134711 0.17132880 2.000 0.27258055 0.27258872 

C. tj Wli y(ti) d. ti Wli y(tj) 

1.000 3.73186337 3.73170445 1.200 0.27273759 0.27273791 
2.000 11.31462595 11.31452924 1.500 1.08847933 1.08849259 

3.000 34.04548233 34.04517155 1.700 2.04352376 2.04353642 
2.000 4.36157310 4.36157780 

7. The predicted number of prey. Xli. and predators. X2j. are given in the following table . 

• 
I tj Xlj X2, 

10 1.0 4393 1512 
20 2.0 288 3175 
30 3.0 32 2042 
40 4.0 25 1258 

Exercise Set 5.10 (Page 333) 

1. Let L be the Lipschitz constant for ¢J. Then 

Ui+l - Vj+l = Uj - Vj + h[¢J(tj, Uj, h) - ¢J(tj, Vj, h)l. 

so 

3. By Exercise 17 in Section 5.4. we have 

1 1 
¢J(t, W, h) = 6f(t, w) + 3 f 

1 1 
t + 2h, W + 2hf(t, w) 

1 
+6 f t+h.w+hf 

1 1 
t + -h W + -hf 

2' 2 

1 1 
t + 2h, W + 2hf(t, w) • 
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so 

1 1 1 1 
IjJ (t, W, 0) = 6 f (t, w) + 3 f (t, w) + 3 f (t. w) + 6 f (t, w) = f (t, w). 

5. a. The local truncation error is !i+l = ~h3y(4)(~i)' for some~, where ti-2 < ~i < ti+l' 

b. The method is consistent but unstable and not convergent. 

7. The method is unstable. 

Exercise Set 5.77 (Page 340) 

1. Euler's method gives the results in the following tables. 

a. ti Wi Yi b. ti Wi Yi 

0.200 0.027182818 0.449328964 0.200 0.373333333 0.046105213 
0.500 0.000027183 0.030197383 0.500 -0.093333333 0.250015133 
0.700 0.000000272 0.004991594 0.700 0.146666667 0.490000277 
1.000 0.000000000 0.000335463 1.000 1.333333333 1.00.0.000.0.0.1 

C. Ii Wi Yi d. t I W· I Yi 

0.500 16.47925 0.479470939 0.200 6.128259 1.000000001 
1.0.00 256.7930. 0..841470987 0.500 -378.2574 1.000000000 
1.500 4096.142 0..997494987 0..70.0. -60.52.0.63 1.0.0000000.0 
2.0.00 65523.12 0.909297427 1.000 387332.0 1.000000000 

3. The Adams Fourth-Order Predictor-Corrector Algorithm gives the results in the following tables. 

a. Ii Wi Yi b. ti W, Yi 

0.200 0.4588119 0.4493290 0.200 0.0792593 0.0461052 
0.500 -0.0112813 0.0301974 0.500 0.1554027 0..2500151 
0.700 0..0013734 0.0049916 0.700. 0.5507445 0.4900003 
1.000 0.002360.4 0.0003355 1.000 0.7278557 1.0000000 

C. Ii Wi Yi d. t· I W· I Yi 

.500 188.3082 0.4794709 0..200 -215.7459 1.000000001 
1.000 38932.03 0.8414710 0.500 -682637.0 1.000000000 
1.500 907360.7 0.9974950. 0.700 -159172736 1.000000000 
2.000 2115741299 0.90.92974 1.00.0 -566751172258 1.000000000 

5. a. t I Wli Uli W2i U2i 

0.100 -96.330.11 0.66987648 193.6651 -0.33491554 
0.200 -28226.32 0.67915383 56453.66 -0.33957692 

• 
0.300 -82140.56 0.69387881 16428113 -0.34693941 
0.400 -2390290586 0.71354670 4780581173 -0.35677335 
0.500 -695574560790 0.73768711 1391149121600 -0.36884355 

789 
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b. t , ID Ji Uli W2i 

0.100 0.61095960 0.66987648 -0.21708179 
0.200 0.66873489 0.67915383 -0.31873903 
0.300 0.69203679 0.69387881 -0.34325535 
0.400 0.71322103 0.71354670 -0.35612202 
0.500 0.73762953 0.73768711 -0.36872840 

9. a. The Trapezoidal method applied to the test equation gives 

so 

Thus, I Q(h)") I < 1, whenever Re(hA) < O. 

1 + hi. 

WJ+l = --:h=:-2 wJ', 1 - ,2, 
2 

2+hA 
Q(h)") = . 

2 -h)" 

b. The Backward Euler method applied to the test equation gives 

W· w. - J 
J+l - 1 - h)" , 

so 

1 
Q(hA) = . 

1 -hA 

Thus, IQ(H)I < I, whenever Re(hA) < O. 

Exercise Set 6.1 (Page 356) 

1. a. Intersecting lines with solution Xl = X2 = 1. 

b. Intersecting lines with solution Xl = X2 = O. 

U2i 

-0.33491554 
-0.33957692 
-0.34693941 
-0.35677335 
-0.36884355 

c. One line, so there is an infinite number of solutions with X2 = ~ - ; Xl. 

d. Parallel lines, so there is no solution. 

e. One line, so there is an infinite number of solutions with X2 = -; Xl' 

f. Three lines in the plane that do not intersect at a common point. 

g. Intersecting lines with solution Xl = ~ and X2 = - 17
1 

• 

h. Two planes in space which intersect in a line with Xl == -~X2 and X3 == ~X2 + 1. 

3. Gaussian elimination gives the following solutions. 

a. XI = 1.1875, X2 = 1.8125, X3 = 0.875 with one row interchange required 

b. XI = -I, X2 = 0, X3 = I with no interchange required 

c. XI = 1.5, Xz = 2, X3 = -1.2, X4 = 3 with no interchange required 

d. Xl = 29
2

, Xz = - ~, X3 = j, X4 = 1 with one row interchange required 

e. No unique solution 

f. Xl = -I, X2 = 2, X3 = 0, X4 = 1 with one row interchange required 

5. a. When a == -1/3, there is no solution. 

b. When a = 1/3, there is an infinite number of solutions with XI == X2 + 1.5, and Xz is arbitrary. 
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c. If a =I ± 1 /3, then the unique solution is 

3 
x - and 

I - 2(1 + 3a) 
-3 

X2 = 2(1 + 3a) . 

9. The Gauss-Jordan method gives the following results. 

a. XI = 0.98, X2 = -0.98, X3 = 2.9 

b. XI = 1.1, X2 = -1.0,X3 = 2.9 

11. b. The results for this exercise are listed in the following table. (The abbreviations MID and AlS are used for 
multiplications/divisions and additions/subtractions, respectively.) 

n 

3 
10 
50 

100 

Gaussian Elimination 

MID 

17 
430 

44150 
343300 

AlS 

1 1 
375 

42875 
338250 

Gauss-Jordan 

MID 

21 
595 

64975 
509950 

AlS 

12 
495 

62475 
499950 

13. The Gaussian-Elirnination-Gauss-lordan hybrid method gives the following results. 

a. Xl = 1.0, Xz = -0.98, X3 = 2.9 

b. XI = 1.0, X2 = -1.0, X3 = 2.9 

15. a. There is sufficient food to satisfy the average daily consumption. 

b. We could add 200 of species I, or 150 of species 2, or 100 of species 3, or 100 of species 4. 

c. Assuming none of the increases indicated in part (b) was selected, species 2 could be increased by 650, or 
species 3 could be increased by 150, or species 4 could be increased by 150. 

791 

d. Assuming none of the increases indicated in parts (b) or (c) were selected, species 3 could be increased by 150, 
or species 4 could be increased by 150. 

Exerdse Set 6.2 (Page 368) 

1. a. none b. Interchange rows 2 and 3. c. none d. Interchange rows 1 and 2. 

3. a. Interchange rows 1 and 3, then interchange rows 2 and 3. 

b. Interchange rows 2 and 3. 

c. Interchange rows 2 and 3. 

d. Interchange rows 1 and 3, then interchange rows 2 and 3. 

5. Gaussian elimination with three-digit chopping arithmetic gives the following results. 

a. Xl = 30.0, X2 = 0.990 

b. XI = 1.00, Xz = 9.98 

C. XI = 0.00, X2 = 10.0, x, = 0.142 

d. Xl = 12.0, Xz = 0.492, X3 = -9.78 

e. XI = 0.206, Xz = 0.0154, X3 = -0.0156, X4 = -0.716 

f. Xl = 0.828, Xz = -3.32, X3 = 0.153, X4 = 4.91 

7. Gaussian elimination with partial pivoting and three-digit chopping arithmetic gives the following results. 

a. Xl = 10.0, Xz = 1.00 

b. XI = 1.00, X2 = 9.98 

C. XI = -0.163, X2 = 9.98, X3 = 0.142 
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d. Xl = 12.0, X2 = 0.504, X3 = -9.78 

e. Xl = 0.177, X2 = -0.0072, X3 = -0.0208, X4 = -1.18 

f. Xl = 0.777. X2 = -3.10, X3 = 0.161, X4 = 4.50 
. 

9. Gaussian elimination with scaled partial pivoting and three-digit chopping arithmetic gives the following results. 

a. Xl = 10.0, x2 = 1.00 

h. Xl = 1.00, X2 = 9.98 

C. Xl = -0.163,x2 =9.98,X3 =0.142 

d. Xl = 0.993, X2 = 0.500, X3 = -1.00 

e. Xl = 0.171, X2 = 0.0102, X3 = -0.0217, X4 = -1.27 

f. Xl = 0.687, X2 = -2.66, X3 = 0.117, X4 = 3.59 

11. The Gaussian Elimination with Backward Substitution Algorithm and single-precision arithmetic gives the 
following results. 
For (Ia), we have Xl = 10.000000, X2 = 1.0000000. 
For (Ib), we have Xl = 1.0000000, X2 = 10.000000. 
For (Ie), we have Xl = 0.0000000, X2 = 10.000000, X3 = 0.14285714. 
For (ld), we have Xl = 0.99999999, X2 = 0.50000000, X3 = -1.00000000. 
For (Ie), we have Xl = 0.17682530. X2 = 0.012692691, X3 = -0.020654050, X4 = -1.1826087. 
For (If), we have Xl = 0.78838790, X2 = -3.1253894, X3 = 0.1675964, X4 = 4.5569519. 

13. The Gaussian Elimination with Scaled Partial Pivoting Algorithm and single-precision arithmetic gives the 
following results. 
For (la), we have Xl = 10.000000, X2 = 1.0000000. 
For (l b), we have Xl = 1.0000000, X2 = 10.000000. 
For (Ic), we have XI = 0.0000000, X2 = 10.000000, X3 = 0.14285714. 
For (ld), we have Xl = 1.00000000, X2 = 0.50000000, X3 = -1.00000000. 
For (Ie), we have Xl = 0.17682530, X2 = 0.012692691, X3 = -0.020654050, X4 = -1.1826087. 
For (If), we have Xl = 0.78838790, X2 = -3.1253894, X3 = 0.1675946, X4 = 4.5569519. 

15. The maximal pivoting algorithm and single-precision arithmetic give the following results. 

a. For (la), we have Xl = 9.98, X2 = 1.00. 
For (lb), we have Xl = 1.00, X2 =9.98. 

For (lc), we have Xl = 0.0724, X2 = 10.0, X3 = 0.0952. 
For (ld), we have Xl = 0.982, X2 = 0.500, X3 = -0.994. 
For (Ie), we have Xl = 0.161, X2 = 0.0125, X3 = -0.0232, X4 = -1.42. 
For (I f), we have Xl = 0.719, X2 = -2.86, X3 = 0.146, X4 = 4.00. 

h. For (2a), we have Xl = 10.0, X2 = 1.00. 
For (2b), we have Xl = 1.00, X2 = 10.0. 
For (2c), we have Xl = 0.00, X2 = 10.0, X3 = 0.143. 
For (2d), we have Xl = 1.01, X2 = 0.501, X3 = -1.00. 
For e2e), we have Xl = 0.179, X2 = 0.0127, X3 = -0.0203, X4 = -1.15. 
For (2f), we have Xl = 0.874, X2 = -3.49,x3 = 0.192, X4 = 5.33. 

c. For (7a), we have Xl = 10.000000, X2 = 1.0000000. 
For (7b), we have Xl = 1.0000000, X2 = 10.000000. 
For (7c), we have Xl = 0.0000000, X2 = 10.000000, X3 = 0.14285714. 
For (7d), we have Xl = 1.00000000, X2 = 0.50000000, X3 = -1.00000000. 
For (7e), we have Xl = 0.17682530, X2 = 0.012692691, X3 = -0.020654050, X4 = -1.1826087. 
For (7f), we have Xl = 0.78838790, X2 = -3.1253894, X3 = 0.16759460, X4 = 4.5569519. 
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Exercise Set 6.3 (Page 378) 
I I -- -
4 4 

b. 5 I - --
8 8 c. The matrix is singular. d. The matrix is singular. 1. a. The matrix is singular. 
1 5 - --
8 8 

-1 I 0 0 0 -
4 I 

-1 

-1 0 

3 I 0 0 -- -
14 7 e. 
3 11 1 0 - --

28 7 

-1 
f. 

-~ 1 -\ I 0 -~ -~ 1 

3. The solutions to the linear systems obtained in parts (a) and (b) are, from left to right, 

3,-6,-2,-1 and 1,1,1,1. 

""" " """ """ "A 

S. a. Suppose A and A are both inverses of A. Then AA = AA = I and AA = AA = I. Thus, 
... __ A _A A A 

A = AI = A(AA) = (AA)A = I A = A. 

b. (AB)(B-IA- I ) = A(BB- I)A- l = AIA- I = AA- I = I and 
(B- 1 A -I )(AB) = B- 1 (A -I A)B = B- 1 I B = B- 1 B = I, so (AB)-I = B- 1 A-I since there is only one inverse. 

c. Since A-IA = AA- I = I, it follows that A-I is nonsingular. Since the inverse is unique, we have (A-I)-I = A. 

7. a. If C = A B, where A and B are lower triangular, then aik = 0 if k > i and bkj = 0 if k < j. Thus, 

n I 

Gij = L aikbkj = L aikbkj, 

k=1 k=j 

which will have the sum zero unless j S i. Hence C is lower triangular. 

b. We have aik = 0 if k < i and bkj = 0 if k > j. The steps are similar to those in part (a). 

c. Let L be a nonsingular lower triangular matrix. To obtain the ith column of L -I, solve n linear systems of the 
form 

ill O· • • • • • • • • • • • • • • • • • 0 XI • • • 

i21 i22 • • • X2 • • 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

• • • • • • • • • • 
Iii li2 ·'1 i i • • • • • • • • • x, 

• • I 
• • • • • • • • 

• • • • • • 
• • • • • • • 

• '0 • • • • 
• • • • • • • • • 

In I :Inn 
• 

In2 • • • • • • • • • • • • • • • • Xn 

where the 1 appears in the ith position to obtain the ith column of L -I. 

9. The answers are the same as those in Exercise 1. 

11. a. 

o 
A2 = 0 

I 
6 

2 
o 
o 

o 
3 , 
o 

o 0 
1 0 , 
o 1 

0 
0 
• 
• 
• 

0 -- , 
1 
0 
• 
• 
• 

0 

A6 = I, ... 



794 

b. 

c. 

Age 1 
Age 2 
Age 3 
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Year I 

6000 
6000 
6000 

Year 2 

36000 
3000 
2000 

Year 3 

12000 
18000 

1000 

Year 4 

6000 
6000 
6000 

2 0 
o 3 . 
o 0 

The i, j -entry is the number of beetles of age i necessary to produce one beetle of age j. 

13. a. We have 

7 4 4 0 2(xo-xl)+ao+al 
-6 -3 -6 0 3(Xl - xo) - al - 2ao 

0 0 3 0 ao 
0 0 0 I Xo 

-I 4 4 0 -- --3 3 
2 7 2 0 -

b. B = A-I = 3 
1 0 0 0 -3 

0 0 0 1 

Exercise Set 6.4 (Page 386) 

1. The detenninants of the matrices are: a. -8 b. 14 c. 0 d. 3 

3. We have det A = ·-5.5, det B = -6, and det AB = det BA = 33. 

S. a = - ~ and a = 2 
• 

7. a = -5 

11. a. The solution is Xl = 0, X2 = 10, and X3 = 26. 

2(xo - XI) + 3ao + 3al 
3(xl - xo) - 3al - 6ao 

3ao 

Xo 

b. We have DI = -I, D2 = 3, D3 = 7, and D = 0, and there are no solutions. 

c. We have Dl = D2 = DJ = D = 0, and there are infinitely many solutions. 

e. Cramer's rule requires 39 multiplications/divisions and 20 additions/subtractions. 

Exercise Set 6.5 (Page 396) 

1. 

3. 

a. Xl = -3, X2 = 3, X3 = I 
b' I 9 7 • x I = 2' X2 = - 2' X3 = 2 

I 0 0 
a. L= 1.5 I 0 

1.5 I I 

I 
b. L = -2.106719 

3.067193 

and U = 

o 
I 

1.197756 

2 -1 I 
0 4.5 7.5 
0 0 -4 

o 
o and U= 
I 

1.012 
o 
o 

-2.132 
-0.3955257 

o 

3.104 
-0.4737443 
-8.939141 



c. L = 

d. L = 

and 
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o 
I 

-2 

o 2 
o 0 
o and V = 0 

I 
0.5 
o 
1 -1.33333 

o 
o 
1 
2 1 0 

I 
-1.849190 

-0.4596433 
2.768661 

o 
1 

-0.2501219 
-0.3079435 

o 
o 
1 

-5.352283 

o 
1.5 
o 
o 

o 
o 
o 
1 

o 
o 

0.5 
o 

2.175600 4.023099 -2.173199 5. I 96700 

V= 
0 13.43947 -4.018660 10.80698 
0 
0 

0 1 0 
S.a.P'LV= 1 0 0 

0 0 1 

100 
b. P'LV = 0 0 1 

0 
0 

-0.8929510 5.091692 

1 0 
0 1 
0 I --

2 

100 
210 

0 
0 
1 

0 12.03614 

1 1 -I 
0 2 3 
0 0 5 -

2 

1 2-1 
o -5 6 

010 101 o o 4 

c. P'LV= 

d. P'LV = 

1 000 
o 0 0 1 
o 100 
o 0 1 0 

1 a 0 0 
000 
o 0 1 

1 
o 

o 1 o 0 

1 0 0 a 
2 
1 
3 

1 
2 
1 
I 

1 0 
o 1 
o 0 

a 
a 
1 

000 
100 
010 
001 

1 -2 
o 
o 
o 

1 
o 
o 
o 

5 
o 
o 

-2 
5 
o 
o 

3 
-2 
-1 
o 

3 
-3 
-1 
o 

o 
o 
o 
1 

o 
1 

-2 
3 

o 
-I 
-2 

1 

7. c. Multiplications/Divisions Additions/Subtractions 

Factoring into LV In 3 _ In 
3 3 

ln 3 _ .ln2 + In 
326 

Solving Ly = b In 2 _ In 
2 2 

In 2 _ In 
2 2 

Solving V x = y In 2 + In 
2 2 

In 2 _ In 
2 2 

Total In 3 + n2 _ In 
3 3 

In 3 + In2 _ 5n 326 

d. Multiplications/Divisions Additions/Subtractions 

Factoring into LV In 3 - In In 3 - In2 + In 
3 3 3 2 6 

Solving Ly(k) = b(k) (~n2 - ~n)m (~n2 - ~n)m 

Solving Vx(k) = ytk) (~n2 + ~n)m (~n2 - ~n)m 
--------------~------------------------------------

Total ~n3 + mn2 
- ~n ;n 3 + (m - ;)n2 - (m - ~)n 

795 
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Exercise Set 6.6 (Page 409) 

1. (i) The symmetric matrices are in (a), (b), and (t). 

(ii) The singular matrices are in (e) and (h). 

(iii) The strictly diagonally dominant matrices are in (a), (b), (c), and (d). 

(iv) The positive definite matrices are in (a) and (t). 

3. Choleski's Algorithm gives the following results. 

1.414213 0 0 
a. L = -0.7071069 1.224743 0 

o -0.8164972 1.154699 

2 

h. L = 0.5 
0.5 

o o 
o 
o 

0.5 

o 
1.658311 

-0.7537785 
0.4522671 

o 
1.087113 

0.08362442 1.240346 

o o 
o 

c. L = 

2 
0.5 

-0.5 
o 

o 
1.658311 

-0.4522671 
o 

o 
2.132006 
0.9380833 

o 
1.766351 

d. L = 

2.449489 
0.8164966 
0.4082483 

-0.4082483 

o 
1.825741 
0.3651483 
0.1825741 

o 
o 
1.923538 

-0.4678876 

o 
o 
o 
1.606574 

5. The modified Choleski's algorithm gives the following results. 

a. Xl = 1, X2 = -1, X3 = 0 

h. Xl = 0.2, X2 = -0.2, X3 = -0.2, X4 = 0.25 

C. Xl = l,x2 = 2,X3 = -1,x4 = 2 

d. Xl = -0.85863874, X2 = 2.4188482, X3 = -0.95811518, X4 = -1.2722513 

7. We have Xj = 1, for each i = 1, ... ,10. 

9. Only the matrix in (d) is positive definite. 

11. -2 < a < ~ 
13. 0 < f3 < 1 and 3 < a < 5 - f3 

15. a. No, for example, consider ~ ~ . 

h. Yes, since A = A'. 

c. Yes, since Xl (A + B)x = Xl Ax + Xl Bx. 

d. Yes, since x' A2x = x' A' Ax = (AX)'(Ax) > 0, and because A is nonsingular, equality holds only if x = O. 
1 0 10 0 

e. No, for example, consider A = 0 I and B = 0 10' 

17. a. Since det A = 3a - 2f3, A is singular if and only if a = 2f3/3. h. lal > 1, 1f31 < 1 c. f3 = 1 
d.a>~,I3=1 

19 0 I . A 1.0 0.2 
. ne examp e IS = 0.1 1.0' 

23. i l = 0.6785047, i2 = 0.4214953, i3 = 0.2570093, i4 = 0.1542056, is = 0.1028037 
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25. a. Mating male i with female j produces offspring with the same wing characteristics as mating male j with 
female i. 

b. No. Consider, for example, x = (1,0, -1)'. 

Exerdse Set 7.1 (Page 428) 

1. a. We have Ilxlloo = 4 and Ilxllz = 5.220153. 

b. We have Ilxlloo = 4 and IIxI12 = 5.477226. 

c. We have Ilxlloo = 2k and IIxI12 = (1 +4k)I/2. 

d. We have Ilxlloo = 4/(k + 1) and IIxl12 ,..... (16/(k + 1)2 + 4/k4 + k4e-2k )I/2. 

3. a. We have limk-+oo X(k) = (0, 0, 0)' . 

b. We have limk-+oo X(k) = (0, 1, 3)'. 

c. We have limk-+oo X(k) = (0, 0, ~)'. 

d. We have limk-+oo X(k) = (1, -1, 1)'. 

5. a. We have Ilx - xlloo = 8.57 x 10-4 and IIAx - bll"" = 2.06 x 10-4
. 

b. We have Ilx - xll oo = 0.90 and IIAx - bll oo = 0.27. 

c. We have Ilx - xii"" = 0.5 and IIAx - bll"" = 0.3. 

d. We have Ilx - xll oo = 6.55 x lO-z, and IIAx - bll oo = 0.32. 

1 1 1 0 
7. Let A = Oland B = 1 l' Then IIABII@ = 2, but IIAII@'IIBII@ = 1. 

9. b. We have 
(4a) IIAIIF = v'326 
(4b) IAIIF = v'326 
(4c) IIAIIF = 4 
(4d) IIAIIF = v'r;-"14=8. 

Exerdse Set 7.2 (Page 436) 

1. a. The eigenvalue Al = 3 has the eigenvector XI = (1, -1)', and the eigenvalue AZ = 1 has the eigenvector 
Xz = (1, 1)'. 

b. The eigenvalue Al = I+Zv'5 has the eigenvector XI = (1, l+zv'5)" and the eigenvalue AZ = I-Zv'5 has the 

eigenvector X2 = (1, I-Zv'5)'. 

c. The eigenvalue Al = ~ has the eigenvector XI = (1, 1)', and the eigenvalue AZ = - ~ has the eigenvector 
X2 = (1, _1)'. 

d. The eigenvalue Al = 0 has the eigenvector Xl = (1, -1)', and the eigenvalue AZ = -1 has the eigenvector 
X2 = (1, _2)'. 
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c. The eigenvalue Al = AZ = 3 has the eigenvectors XI = (0,0, 1)' and Xz = (1, 1, 0)', and the eigenvalue A3 = 1 
has the eigenvector X3 = (1, -1, 0)' . 

f. The eigenvalue Al = 7 has the eigenvector XI = (1,4,4)', the eigenvalue A2 = 3 has the eigenvector 
Xz = (1, 2, 0)', and the eigenvalue A3 = -1 has the eigenvector X3 = (1, 0, 0)'. 

g. The eigenvalue Al = AZ = 1 has the eigenvectors XI = (-1, 1,0)' and Xz = (-1,0, 1)', and the eigenvalue 
A3 = 5 has the eigenvector X3 = (1,2,1)'. 

h. The eigenvalue Al = 3 has the eigenvector XI = (-1, 1,2)', the eigenvalue AZ = 4 has the eigenvector 
X2 = (0, 1,2)', and the eigenvalue A3 = -2 has the eigenvector X3 = (-3,8, I)'. 

3. Only the matrix in (c) is convergent. 

5. a. 3 b. 1.618034 c. 0.5 d. 3.162278 e. 3 f. 8.224257 g. 5.203527 h. 5.601152 
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9. a. det(A - AI) = det((A - AI)') = det(A' - AI) 

b. If Ax = AX, then A 2x = AAx = A 2X, and by induction, A kX = A kX. 

c. If Ax = AX and A -I exists, then X = AA -IX. By Exercise 8 (b), A f 0, so i X = A -IX. 

d. Since A -I X = i x, we have (A -I )2X = i A -I X = /' x. Mathematical induction gives 

e. If Ax = AX, then 

f. Let A - a I be nonsingular. Since Ax = AX, 

(A - aI)x = Ax - alx = AX - ax = (A - a)x. 

Thus, 

1 -I --x = (A - af) x. 
A-a 

11. a. We have the real eigenvalue A = 1 with the eigenvector X = (6,3, 1)'. 

b. Choose any multiple of the vector (6,3, 1)'. 

13. Let Ax = AX. Then IAI Ilxll = IIAxll < IIAII Ilxll, which implies P.I < IIAII. Also, (I/A)x = A-IX so 111),1 < IIA-III 
and IIA-III- I < IAI. 

Exercise Set 7.3 (Page 451) 

1. Two iterations of Jacobi's method gives the following results. 

a. (0.1428571, -0.3571429,0.4285714)' 

b. (0.97,0.91,0.74)' 

c. (-0.65, l.65, -0.4, -2.475)' 

d. (-0.5208333, -0.04166667, -0.2166667,0.4166667)' 

e. (l.325, -l.6, l.6, l.675, 2.425)' 

f. (0.6875, l.125, 0.6875, l.375, 0.5625, l.375)' 

3. Jacobi's Algorithm gives the following results. 

a. x(lO) = (0.03507839, -0.2369262,0.6578015)' 

b. x(6) = (0.9957250,0.9577750,0.7914500)' 

c. X(22) = (-0.7975853,2.794795, -0.2588888, -2.251879)' 

d. X(l4) = (-0.7529267,0.04078538, -0.2806091,0.6911662)' 

e. X(l2) = (0.7870883, -l.003036, l.866048, 1.912449, l.985707)' 

f. X(l7) = (0.9996805, l.999774, 0.9996805, 1.999840,0.9995482, l.999840)' 

5. Two iterations of the SOR method give the following results. 

a. (0.05410079, -0.2115435,0.6477159)' 

b. (0.9876790,0.9784935,0.7899328)' 

c. (-0.71885,2.818822, -0.2809726, -2.235422)' 

d. (-0.6604902,0.03700749, -0.2493513,0.6561139)' 

e. (l.079675, -1.260654,2.042489, l.995373, 2.049536)' 

f. (0.8318750, l.647766, 0.9189856, l.791281, 0.8712129, l.959155)' 
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7. The SOR Algorithm gives the following results. 

a. X(l2) = (0.03488469, -0.2366474,0.6579013)' 

b. X(7) = (0.9958341,0.9579041,0.7915756)' 

C. X(8) = (-0.7976009, 2.795288, -0.2588293, - 2.251768)' 

d. X(7) = (-0.7534489,0.04106617, -0.2808146,0.6918049)' 

e. x(lO) = (0.7866310, -1.002807,1.866530,1.912645,1.989792)' 

f. xi7J = (0.9999442, 1.999934. 1.000033,1.999958,0.9999815,2.000007)' 
9. a. 

0 1 1 - --
2 2 

Tj = -1 0 -1 
1 1 

° - -
2 2 

Thus, the eigenvalues of Tj are 0 and ± "1 i, so p (Tj ) = !f > 1. 

b. X(25) = (-20.827873,2.0000000, -22.827873)' 
c. 

0 1 1 - --2 2 
Tg = 0 1 1 -- --

2 2 and det(U - Tg) = )" 

0 0 1 --2 

Thus, the eigenvalues of Tg are 0, -1/2, and -1/2; and p(Tg) = 1/2. 

1 2 

),,+2 

d. x(23) = (1.0000023, 1.9999975, -1.0000001)' is within 10-5 in the 100 norm. 

• 

11. a. Subtract x = Tx + c from X(k) = TX(k-l) + c to obtain X(k) - x = T(X(k-l) - x). Thus, 

Inductively, we have 

Ilx(k) - xII < II T Ilk Ilx(D) - xii. 

The remainder of the proof is similar to the proof of Corollary 2.5. 

b. The last column has no entry when II T 1100 = 1. 

Ilx(2) - xll oo II TIl"" IITII~lIx(O) - xlloo IITII~ IIx(l) _ xeD) II 
l-IITlloo 00 

1 (a) 0.22932 0.857143 0.48335 2.9388 
I (b) 0.051579 0.3 0.089621 0.11571 
1 (c) 1.1453 0.9 2.2642 20.25 
1 (d) 0.27511 1 0.75342 
1 (e) 0.59743 1 1.9897 
1 (f) 0.875 0.75 1.125 3.375 
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15. Jacobi Gauss-Seidel SOR (w = 1.2) 

33 8 13 
iterations iterations 

. . 
iteratIons 

XI 1.53873501 1.53873270 1.53873549 

X2 0.73142167 0.73141966 0.73142226 

X3 0.10797136 0.10796931 0.10797063 

X4 0.17328530 0.17328340 0.17328480 

Xs 0.04055865 0.04055595 0.04055737 

X6 0.08525019 0.08524787 0.08524925 

X7 0.16645040 0.16644711 0.16644868 

Xs 0.12198156 0.12197878 0.12198026 

X9 0.10125265 0.10124911 0.10125043 

XjQ 0.09045966 0.09045662 0.09045793 

XII 0.07203172 0.07202785 0.07202912 

XI2 0.07026597 0.07026266 0.07026392 

Xu 0.06875835 0.06875421 0.06875546 

XI4 0.06324659 0.06324307 0.06324429 

XI5 0.05971510 0.05971083 0.05971200 

XI6 0.05571199 0.05570834 0.05570949 

XJ7 0.05187851 0.05187416 0.05187529 

XI8 0.04924911 0.04924537 0.04924648 

XI9 0.04678213 0.04677776 0.04677885 

X20 0.04448679 0.04448303 0.04448409 

X21 0.04246924 0.04246493 0.04246597 

Xn 0.04053818 0.04053444 0.04053546 

X23 0.03877273 0.03876852 0.03876952 

X24 0.03718190 0.03717822 0.03717920 

X25 0.03570858 0.03570451 0.03570548 

X26 0.03435107 0.03434748 0.03434844 

X27 0.03309542 0.03309152 0.03309246 

X28 0.03192212 0.03191866 0.03191958 

X29 0.03083007 0.03082637 0.03082727 

X,O 0.02980997 0.02980666 0.02980755 

X31 0.02885510 0.02885160 0.02885248 

X32 0.02795937 0.02795621 0.02795707 

X33 0.02711787 0.02711458 0.02711543 

X34 0.02632478 0.02632179 0.02632262 



X35 

X36 

X37 

X38 

X39 

X40 

X41 

X42 

X43 

X44 

X45 

X46 

X47 

X48 

X49 

X50 

X51 

X52 

X53 

X54 

X55 

X56 

X57 

XS8 

X59 

X60 

X61 

X62 

X63 

X64 

X65 

X66 

X67 

X68 

X69 

X70 

X71 

Xn 

X73 

X74 

X75 

X76 

Xn 

X78 

X79 

X80 

Answers for Selected Exercises 

Jacobi 
33 

iterations 

0.02557705 
0.02487017 
0.02420147 
0.02356750 
0.02296603 
0.02239424 
0.02185033 
0.02133203 
0.02083782 
0.02036585 
0.01991483 
0.01948325 
0.01907002 
0.01867387 
0.01829386 
0.71792896 
0.01757833 
0.01724113 
0.01691660 
0.01660406 
0.01630279 
0.01601230 
0.01573198 
0.01546129 
0.01519990 
0.01494704 
0.01470181 
0.01446510 
0.01423556 
0.01401350 
0.01380328 
0.01359448 
0.01338495 
0.01318840 
0.01297174 
0.01278663 
0.01270328 
0.01252719 
0.01237700 
0.01221009 
0.01129043 
0.01114138 
0.01217337 
0.01201771 
0.01542910 
0.01523810 

Gauss-Seidel 
8 

iterations 

0.02557397 
0.02486733 
0.02419858 
0.02356482 
0.02296333 
0.02239171 
0.02184781 
0.02132965 
0.02083545 
0.02036360 
0.01991261 
0.01948113 
0.01906793 
0.01867187 
0.01829190 
0.01792707 
0.01757648 
0.01723933 
0.01691487 
0.01660237 
0.01630127 
0.01601082 
0.01573087 
0.01546020 
0.01519909 
0.01494626 
0.01470085 
0.01446417 
0.01423437 
0.01401233 
0.01380234 
0.01359356 
0.01338434 
0.01318780 
0.01297109 
0.01278598 
0.01270263 
0.01252656 
0.01237656 
0.01220965 
0.01129009 
0.01114104 
0.01217312 
0.01201746 
0.01542896 
0.01523796 

SOR (w = 1.2) 
13 

iterations 

0.02557479 
0.02486814 
0.02419938 
0.02356560 
0.02296410 
0.02239247 
0.02184855 
0.02133038 
0.02083615 
0.02036429 
0.01991324 
0.01948175 
0.01906846 
0.01867239 
0.01829233 
0.01792749 
0.01757683 
0.01723968 
0.01691517 
0.01660267 
0.01630146 
0.01601101 
0.01573077 
0.01546010 
0.01519878 
0.01494595 
0.01470077 
0.01446409 
0.01423461 
0.01401256 
0.01380242 
0.01359363 
0.01338418 
0.01318765 
0.01297107 
0.01278597 
0.01270271 
0.01252663 
0.01237654 
0.01220963 
0.01129008 
0.01114102 
0.01217313 
0.01201746 
0.01542896 
0.01523796 
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Exercise Set 7.4 (Page 462) 

1. The II . 1100 condition number is: a. 50 b. 241.37 c. 600,002 d. 339,866 e. 12 h. 198.17 

3. The matrix is ill-conditioned since Koo = 60002. We have x = (-1.0000, 2.0000)'. 

5. a. We have x = (188.9998,92.99998,45.00001,27.00001,21.00002)'. 

b. The condition number is Koo = 80. 

c. The exact solution is x = (189,93,45,27,21)'. 

9. For the 3 x 3 Hilbert matrix H, we have 

8.968 -35.77 29.77 

A 

if-I = -35.77 
29.77 

and IIH - Hlloc = 0.04260. 

Exercise Set 7.5 (Page 478) 

1. (0.18,0.13)' 

b. (0.19,0.10)' 

190.6 
-178.6 

-178.6 , 
178.6 

0.9799 0.4870 0.3238 
A 

H = 0.4860 0.3246 0.2434 , 
0.3232 0.2433 0.1949 

c. Gaussian elimination gives the best answer since y(2) = (0, 0)' in the conjugate gradient method. 

d. (0.13,0.21)'. There is no improvement, although y(2) f. O. 

3. a. (1.00, -1.00, 1.(0)' 

b. (0.827,0.0453, -0.0357)' 

c. Partial pivoting and scaled partial pivoting also give (1.00, -1.00, 1.00)'. 

d. (0.776,0.238, -0.185)'; 
The residual from (3b) is (-0.0004, -0.0038, 0.0037)', and the residual from part (3d) is (0.0022, -0.0038, 
0.0024)'. There does not appear to be much improvement, if any. Rounding error is more prevalent because of 
the increase in the number of matrix multiplications. 

5. a. X(2) = (0.1535933456, -0.1697932117,0.5901172091)" IIr(2)1I00 = 0.221. 

b. X(2) = (0.9993129510,0.9642734456,0.7784266575)', IIr(2)1100 = 0.144. 

C. X(2) = (-0.7290954114,2.515782452, -0.6788904058, -2.331943982)', IIr(2)\100 = 2.2. 

d. X(2) = (-0.7071108901, -0.0954748881, -0.3441074093,0.5256091497)', IIr(2)lIoc = 0.39. 

e. X(2) = (0.5335968381, 0.9367588935, 1.339920949, 1.743083004, 1.743083004)', IIr(2) II DC = 1.3. 

f. X(2) = (1.022375671,1.686451893,1.022375671, 2.060919568,0.8310997764,2.060919568)', IIr(2)\100 = 1.13. 

7. a. X(3) = (0.06185567013, -0.1958762887,0.6185567010)', IIr(3)\Ix = 0.4 x 10-9 . 

b. X(3) = (0.9957894738,0.9578947369,0.7915789474)', IIr(3)1100 = 0.1 x 10-9 . 

c. X(4) = (-0.7976470579,2.795294120, -0.2588235305, -2.251764706)', IIr(4)1100 = 0.39 x 10-7
• 

d. X(4) = (-0.7534246575,0.04109589039, -0.2808219179,0.6917808219)', IIr(4)1100 = 0.11 x 10-9 

e. X(5) = (0.4516129032, 0.7096774197,1.677419355,1.741935483,1.806451613)', IIr(5)1100 = 0.2 x 10-9 

f. X(4) = (1.000000000, 2.000000000, 1.000000000,2.000000000,0.9999999997,2.000000000)', 
IIr(4)lIoo = 0.44 x 10-9 . 



9. 
a. 

XI 

X2 

x} 

X4 

Xs 

X6 

X7 

Xg 

X9 

XIO 

XII 

XI2 

X13 

XI4 

XIS 

XI6 

b. 

XI 

X2 

X3 

X4 

Xs 

X6 

X7 

Xg 

X9 

XIO 

XII 

XI2 

Xl3 

XI4 

XIS 

XI6 

X17 

Xl8 

XI9 

X20 

X2I 

X22 

X23 

X24 

X25 
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Jacobi 
49 

. . 
IteratIOns 

0.93406183 
0.97473885 
1.10688692 
1.42346150 
0.85931331 
0.80688119 
0.85367746 
1.10688692 
0.87672774 
0.80424512 
0.80688119 
0.97473885 
0.93003466 
0.87672774 
0.85931331 
0.93406183 

Jacubi 
60 

iterations 

0.39668038 
0.07175540 

-0.23080396 
0.24549277 
0.83405412 
0.51497606 
0.12116003 

-0.24044414 
0.37873579 
1.09073364 
0.54207872 
0.13838259 

-0.23083868 
0.41919067 
1.15015953 
0.51497606 
0.12116003 

-0.24044414 
0.37873579 
1.09073364 
0.39668038 
0.07175540 

-0.23080396 
0.24549277 
0.83405412 

Gauss-Seidel 
28 

iterations 

0.93406917 
0.97475285 
1.10690302 
1.42347226 
0.85932730 
0.80690725 
0.85370564 
1 .10690579 
0.87674384 
0.80427330 
0.80691173 
0.97475850 
0.93004542 
0.87674661 
0.85933296 
0.93407462 

Gauss-Seidel 
35 

iterations 

0.39668651 
0.07176830 

-0.23078609 
0.24550989 
0.83406516 
0.51498897 
0.12118683 

- 0.24040991 
0.37876891 
1.09075392 
0.54209658 
0.13841682 

-0.23079452 
0.41923122 
1.15018477 
0.51499318 
0.12119315 

-0.24040359 
0.37877365 
1.09075629 
0.39669142 
0.07177567 

-0.23077872 
0.24551542 
0.83406793 

SOR (ll) = 1.3) 
13 

iterations 

0.93407584 
0.97476180 
1.10691093 
1.42347591 
0.85933633 
0.80691961 
0.85371536 
1.10691075 
0.87675177 
0.80428301 
0.80691989 
0.97476265 
0.93004899 
0.87675155 
0.85933709 
0.93407672 

SOR (w = 1.2) 
23 

iterations 

0.39668915 
0.07177348 

-0.23077981 
0.24551535 
0.83406823 
0.51499414 
0.12119625 

-0.24039898 
0.37877812 
1.09075899 
0.54210286 
0.13842774 

-0.23078224 
0.41924136 
1.15019025 
0.51499864 
0.12120236 

-0.24039345 
0.37878188 
1.09076069 
0.39669449 
0.07178074 

-0.23077323 
0.24551982 
0.83407025 

Conjugate Gradient 
9 

iterations 

0.93407713 
0.97476363 
1.10691243 
1.42347699 
0.85933790 
0.80692197 
0.85372011 
1.10691250 
0.87675250 
0.80428524 
0.80692252 
0.97476392 
0.93004987 
0.87675298 
0.85933979 
0.93407768 

Conjugate Gradient 
1 1 

iterations 

0.39669775 
0.07178516 

-0.23076923 
0.24552253 
0.83407148 
0.51500583 
0.12121212 

-0.24038462 
0.37878788 
1.09076341 
0.54211344 
0.13844211 

-0.23076923 
OA19250 19 
1.15019425 
0.51500583 
0.12121212 

-0.24038462 
0.37878788 
1.09076341 
0.39669775 
0.07178516 

-0.23076923 
0.24552253 
0.83407148 
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Jacobi Gauss-Seidel SOR (w == 1.2) Conjugate Gradient 
c. 15 9 8 8 

iterations iterations iterations iterations 

XI -3.07611424 -3.07611739 -3.07611796 -3.07611794 
X2 -1.65223176 -1.65223563 - 1.65223579 -1.65223582 
X3 -0.53282391 -0.53282528 -0.53282531 -0.53282528 
X4 -0.04471548 -0.04471608 -0.04471609 -0.04471604 
Xs 0.17509673 0.17509661 0.17509661 0.17509661 
X6 0.29568226 0.29568223 0.29568223 0.29568218 

X7 0.37309012 0.37309011 0.37309011 0.37309011 
X8 0.42757934 0.42757934 0.42757934 0.42757927 

X9 0.46817927 0.46817927 0.46817927 0.46817927 

XIO 0.49964748 0.49964748 0.49964748 0.49964748 

XII 0.52477026 0.52477026 0.52477026 0.52477027 

X12 0.54529835 0.54529835 0.54529835 0.54529836 
X13 0.56239007 0.56239007 0.56239007 0.56239009 

XI4 0.57684345 0.57684345 0.57684345 0.57684347 

XIS 0.58922662 0.58922662 0.58922662 0.58922664 

XI6 0.59995522 0.59995522 0.59995522 0.59995523 

X17 0.60934045 0.60934045 0.60934045 0.60934045 

XI8 0.61761997 0.61761997 0.61761997 0.61761998 

XI9 0.62497846 0.62497846 0.62497846 0.62497847 

X20 0.63156161 0.63156161 0.63156161 0.63156161 

X21 0.63748588 0.63748588 0.63748588 0.63748588 

X22 0.64284553 0.64284553 0.64284553 0.64284553 

X23 0.64771764 0.64771764 0.64771764 0.64771764 

X24 0.65216585 0.65216585 0.65216585 0.65216585 

X25 0.65624320 0.65624320 0.65624320 0.65624320 

X26 0.65999423 0.65999423 0.65999423 0.65999422 

X27 0.66345660 0.66345660 0.66345660 0.66345660 

X28 0.66666242 0.66666242 0.66666242 0.66666242 

X29 0.66963919 0.66963919 0.66963919 0.66963919 

X30 0.67241061 0.67241061 0.67241061 0.67241060 

X31 0.67499722 0.67499722 0.67499722 0.67499721 

X32 0.67741692 0.67741692 0.67741691 0.67741691 

X33 0.67968535 0.67968535 0.67968535 0.67968535 

X34 0.68181628 0.68181628 0.68181628 0.68181628 

X3S 0.68382184 0.68382184 0.68382184 0.68382184 

X36 0.68571278 0.68571278 0.68571278 0.68571278 

X37 0.68749864 0.68749864 0.68749864 0.68749864 

X38 0.68918652 0.68918652 0.68918652 0.68918652 

X39 0.69067718 0.69067718 0.69067718 0.69067717 

X40 0.68363346 0.68363346 0.68363346 0.68363349 
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11. a. Solution Residual 

2.55613420 0.00668246 
4.09171393 -0.00533953 
4.60840390 -0.01739814 
3.64309950 -0.03171624 
5.13950533 0.01308093 
7.19697808 -0.02081095 
7.68140405 -0.04593118 
5.93227784 0.01692180 
5.81798997 0.04414047 
5.85447806 0.03319707 
5.94202521 -0.00099947 
4.42152959 -0.00072826 
3.32211695 0.02363822 
4.49411604 0.00982052 
4.80968966 0.00846967 
3.81108707 -0.01312902 

This converges in 6 iterations with tolerance 5.00 x 10-2 in the lex; norm and IIr(6) 1100 = 0.046. 

b. Solution Residual 
--_.-. -- _._-

2.55613420 0.00668246 
4.09171393 -0.00533953 
4.60840390 -0.01739814 
3.64309950 -0.03171624 
5.13950533 0.01308093 
7.19697808 -0.02081095 
7.68140405 -0.04593118 
5.93227784 0.01692180 
5.81798996 0.04414047 
5.85447805 0.03319706 
5.94202521 -0.00099947 
4.42152959 -0.00072826 
3.32211694 0.02363822 
4.49411603 0.00982052 
4.80968966 0.00846967 
3.81108707 -0.01312902 

This converges in 6 iterations with tolerance 5.00 x 10-2 in the 100 norm and Ilr(6) lloe = 0.046. 

c. All tolerances lead to the same convergence specifications. 

13. a. Let {v(l), ... v(n)} be a set of nonzero A-orthogonal vectors for the symmetric positive definite matrix A. Then 
(vU), Av(J») = 0, if i =I j. Suppose 

where not all Ci are zero. Suppose k is the smallest integer for which Ck =I O. Then 

We solve for V1kl to obtain 

(k) _ CHI (HI) Cn In) y - - y - ... - -y . 

Ck Ck 
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Multiplying by A gives 

AV(k) = _CHI AV(HI) _ ... _ Cn Av(n), 

Ck Ck 

so 

(V(k», AV(k) = _ cHI (V(k», AV(HI) _ ... _ Cn (v(k)/)Av(n) 

Ck Ck 

= _ Ck+l (V(k), AV(Hl») _ ... _ Cn (V(k), Av(n») 

Ck Ck 

Ck+1 Cn = - . 0 - ... - - . O. 
Ck Ck 

Since A is positive definite, V(k) = 0, which is a contradiction. Thus, all Ci must be zero, and (v(l), ... , v(n)} is 
linearly independent. 

h. Let (v(l), ... , v(n)} be a set of nonzero A-orthogonal vectors for the symmetric positive definite matrix A, and 
let z be orthogonal to veil, for each i = 1, ... , n. From part (a), the set (vO), ... v(n)} is linearly independent, so 
there is a collection of constants fJI, ... , fJn with 

n 

Z = L fJiV(i). 

i=1 

Hence. 

n n 

(z, z) = z/z = L fJiZ/V(i) = L (3i ·0 = O. 
i= I 

and Theorem 7.30, part (v), implies that z = O. 

Exercise Set 8.1 (Page 493) 

1. The linear least-squares polynomial is 1.70784x + 0.89968. 

3. The least-squares polynomials with their errors are, respectively, 0.6208950 + 1.219621x. with E = 2.719 X 10-5
; 

0.5965807 + 1.253293x - 0.01085343x2, with E = 1.801 x 10-5 ; and 
0.6290193 + 1.18501Ox + 0.03533252x2 - 0.01004723x 3, with E = 1.741 X 10-5 . 

5. a. The linear least-squares polynomial is 72.0845x - 194.138, with error 329. 

h. The least-squares polynomial of degree two is 6.61821x2 - 1.14352x + 1.23556, with error 1.44 x 10-3 

c. The least-squares polynomial of degree three is -0.0136742x 3 + 6.84557x2 - 2.37919x + 3.42904, with error 
5.27 x 10-4 . 

d. The least-squares approximation of the form beax is 24.2588eo.372382x. with error 418. 

e. The least-squares approximation of the form bxa is 6.23903x2.01954, with error 0.00703. 

7. a. k = 0.8996, E(k) = 0.295 h. k = 0.9052, E(k) = 0.128 Part (b) fits the total experimental data best. 

9. The least squares line for the point average is 0.1 0 1 (ACT score) + 0.487. 

11. The linear least-squares polynomial gives y ~ 0.17952x + 8.2084. 

13. a. In R = In 1.304 + 0.57561n W 

h. E = 25.25 

c. In R = In 1.051 + 0.7006 In W + 0.06695(ln W)2 

d. E = L;71 (Ri - bWteC(lnWi)2r = 20.30 
.. 

r 
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Exercise Set B.2 (Page 506) 

1. The linear least -squares approximations are: 

a. PI (x) = 1.833333 + 4x 

b. PI (x) = -1.600003 + 3.600003x 

C. PI (x) = 1.140981 - 0.2958375x 

d. PI (x) = 0.1945267 + 3.000001x 

e. PI(x) = 0.6109245 +0.09167105x 

f. PI (x) = -1.861455 + 1.666667x 

3. The linear least-squares approximations on [-1, 1] are: 

a. PI (x) = 3.333333 - 2x 

b. PI (x) = 0.6000025x 

C. PI (x) = 0.5493063 - 0.2958375x 

d. PI (x) = 1.175201 + 1.103639x 

e. PI (x) = 0.4207355 + 0.4353975x 

f. PI (x) = 0.6479184 + 0.5281226x 
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5. The errors for the approximations in Exercise 3 are: a. 0.177779 b. 0.0457206 c. 0.00484624 d. 0.0526541 
e. 0.0153784 f. 0.00363453 

7. The Gram-Schmidt process produces the following collections of polynomials: 

a. ¢o(x) = 1, ¢I (x) = X - 0.5, ¢2(X) = x2 
- X + ~, and ¢3(X) = x 3 

- 1.5x2 + 0.6x - 0.05 

b.<Po(x)=I,<PI(X)=x-l, <p2(x)=x2 -2x+;, and <P3(X)=x3-3x2 + I;X-; 

c. ¢o(x) = 1, <PI (x) = x - 2, ¢2(X) = x2 - 4x + 13
1

, and <P3(X) = x3 - 6x2 + 11.4x - 6.8 

9. The least-squares polynomials of degree two are: 

a. P2(x) = 3.833333<po(x) + 4<pI (x) + 0.9999998¢2(X) 

b. P2(x) = 2<po(x) + 3.6<pI(x) + 3<p2(X) 

c. Pz(x) = 0.5493061<po(x) - 0.2958369<pI(x) + 0.1588785<p2(x) 

d. Pz(x) = 3. 194528¢o(x) + 3<pI(x) + 1.458960</J2(x) 

e. Pz(x) = 0.6567600<po(x) + 0.09167105(PI(x) - 0.7375118¢2(x) 

f. Pz(x) = 1.471878<po(x) + 1.666667¢1 (x) + 0.2597705</J2(x) 

11. The Laguerre polynomials are L I (x) = x - I, L2 (x) = x2 - 4x + 2 and Ll (x) = Xl - 9x2 + 18x - 6. 

Exercise Set 8.3 (Page 516) 

1. The interpolating polynomials of degree two are: 

a. P2(x) = 2.377443 + 1.590534(x - 0.8660254) + 0.5320418(x - 0.8660254)x 

b. P2(x) = 0.7617600 + 0.8796047(x - 0.8660254) 

c. P2(x) = 1.052926 + OA154370(x - 0.8660254) - 0.1384262x(x - 0.8660254) 

d. P2(x) = 0.5625 + 0.649519(x - 0.8660254) + 0.75x(x - 0.8660254) 

3. The interpolating polynomials of degree three are: 

a. PJ(x) = 2.519044 + 1.945377(x - 0.9238795) + 0.7047420(x - 0.9238795)(x - 0.3826834) 

+ 0.1751757(x - 0.9238795)(x - 0.3826834)(x + 0.3826834) 

b. PJ(x) = 0.7979459 + 0.7844380(x - 0.9238795) - 0.1464394(x - 0.9238795)(x - 0.3826834) 

- 0.1585049(x - O.9238795)(x - 0.3826834)(x + 0.3826834) 
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c. P3(X) = 1.072911 + 0.3782067(x - 0.9238795) - 0.097992 13 (x - 0.9238795)(x - 0.3826834) 

+ 0.04909073(x - 0.9238795)(x - 0.3826834)(x + 0.3826834) 

d. P3(x) = 0.7285533 + 1.306563(x - 0.9238795) + 0.9999999(x - 0.9238795)(x - 0.3826834) 
-

5. The zeros of T3 produce the following interpolating polynomials of degree two. 

a. P2(X) = 0.3489153 - 0.1744576(x - 2.866025) + 0.1538462(x - 2.866025)(x - 2) 

b. P2(x) = 0.1547375 - O.2461152(x - 1.866025) + 0.1957273(x - 1.866025)(x -1) 

c. P2(x) = 0.6166200 - O.2370869(x - 0.9330127) - 0.7427732(x - 0.9330127)(x - 0.5) 

d. P2(x) = 3.0177125 + 1.883800(x - 2.866025) + 0.2584625 (x - 2.866025)(x - 2) 

7. The cubic polynomial ~~! x - ;2 x 3 approximates sin x with error at most 7.19 x 10-4. 
9. The change of variable x = cos 8 produces 

I I Tn2(x) II [cos(n arccosx)f 1" (8»2 d Jf -F.====:==;;o dx = dx = (cos n x = -. 
-I ./"1 - x 2 -I Jl - x 2 0 2 

Exerdse Set 8.4 (Page 528) 

1. The Pade approximations of degree two for I(x) = e2x are: 

• !(Xi) I Xi 

1 0.2 1.4918 
2 0.4 2.2255 
3 0.6 3.3201 
4 0.8 4.9530 
5 1.0 7.3891 

n = 2, m = 0 : r2,O(x) = 1 + 2x + 2X2 

n = 1, m = 1 : ru (x) = (1 + x)/(l - x) 

n = 0, m = 2 : rO.2(x) = (1 - 2x + 2x2)-1 

r2.0(xi) rl 1 (Xi) 
• 

rO,2(xJ 

1.4800 1.5000 1.4706 
2.1200 2.3333 1.9231 
2.9200 4.0000 1.9231 
3.8800 9.0000 1.4706 
5.0000 undefined 1.0000 

3 r23(x) - (1 + 2x + ..Lx2)/(I- 2. x + l.x2 - ..L x3) " - 5 20 5 20 60 

• !(Xi) r2,3 (Xi) I Xi 

1 0.2 1.22140276 1.22140277 
2 0.4 1.49182470 1.49182561 
3 0.6 1.82211880 1.82213210 
4 0.8 2.22554093 2.22563652 
5 1.0 2.71828183 2.71875000 
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MacLaurin 
polynomial of 

• 
!(x;) degree 6 r3 3 (Xi) I Xi • 

0 0.0 0.00000000 0.00000000 0.00000000 
I 0.1 0.09983342 0.09966675 0.09938640 
2 0.2 0.19866933 0.19733600 0.19709571 
3 0.3 0.29552021 0.29102025 0.29246305 
4 0.4 0.38941834 0.37875200 0.38483660 
5 0.5 0.47942554 0.45859375 0.47357724 

7. The Pade approximations of degree five are: 

a r (x) - (1 + x + !x2 + !x3 + 1-x4 + .J....x 5)-1 • 0,5 - 2 6 24 120 

b. rl.4(x) = (1 - ~x)/(l + ~x + ?ox2 + /5X3 + l~ox4) 
c. r3.2(x) = (1 - ;x + iox2 - ~X3)/(l + ;x + 2~X2) 
d. r4.1 (x) = (1 - ~x + fox 2 - i5X3 + 1~oX4)/(l + ~x) 

• 
!(Xi) rO.5(xd rI4(Xi) r2.3 (Xi) I X; • 

1 0.2 0.81873075 0.81873081 0.81873074 0.81873075 
2 0.4 0.67032005 0.67032276 0.67031942 0.67031963 
3 0.6 0.54881164 0.54883296 0.54880635 0.54880763 
4 0.8 0.44932896 0.44941181 0.44930678 0.44930966 
5 1.0 0.36787944 0.36809816 0.36781609 0.36781609 

9. rT2.0(X) = (1.266066To(x) - 1.130318T1(x) + 0.2714953T2(x»/To(x) 

rTI I (x) = (0.9945705To(X) - 0.4569046T1 (x»/(To(x) + 0.48038745T1 (x» 
• 

rTO.2 (x) = 0.7940220To(x)/(To(x) + 0.8778575TI (x) + 0.1774266T2(x» 

• 
I 

1 
2 
3 

Xi 

0.25 
0.50 
1.00 

I(Xi) 

0.77880078 
0.60653066 
0.36787944 

0.91747TI(x) 
11. rT2.2 (x) = To(x) + 0.088914T2(x) 

. 
I(x;) I X' I 

0 0.00 0.00000000 
1 0.10 0.09983342 
2 0.20 0.19866933 
3 0.30 0.29552021 
4 0.40 0.38941834 

0.74592811 
0.56515935 
0.40724330 

rT2.2 (Xi) 

0.00000000 
0.09093843 
0.18028797 
0.26808992 
0.35438412 

13. a. eX = eMln./W+s = eMln./Wes = elnlO-¥es = 10-¥es 

0.78595377 
0.61774075 
0.36319269 

rTO.2 (Xi) 

0.74610974 
0.58807059 
0.38633199 

b. eS 
"'" (1 + ;s + l~s2 + I;OS3) / (1 - ;s + l~s2 - l;oS3), with I error I < 3.75 x 10-7

. 

809 

r 4 1 (Xi) • 

0.81873077 
0.67032099 
0.54882143 
0.44937931 
0.36805556 

---
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c. Set M = round(0.8685889638x), s = x - M / (0.8685889638), and 
j = (1 + ~s + JoS2 + I~OS3) / (1 - ~s + I~S2 - I~OS3). Then I = (3. 16227766)M 1. 

Exercise Set 8.5 (Page 536) 
2 

1. 52 (x)='}--4cosx+cos2x 

3. 53(x) = 3.676078 - 3.676078cosx + 1.470431 cos2x - 0.7352156cos3x + 3.676078sinx - 2.940862 sin 2x 

5 5 ( ) - ! + .l "n-I 1-(-1)' . k 
• n X - 2 "L..k= 1 k sm x 

7. The trigonometric least-squares polynomials are: 

a. S2(X) = cos 2x 

b. S2(X) = 0 

c. S3(X) = 1.566453 +0.5886815 cos x - 0.2700642 cos 2x +0.2175679 cos 3x + 0.8341640 sin x -0.3097866 sin 2x 

d. S3(X) = -2.046326 + 3.883872 cos x - 2.320482 cos 2x + 0.7310818 cos 3x 

9. The trigonometric least-squares polynomial is S3(X) = -0.4968929 + 0.2391965 cos x + 1.515393 cos 2x + 
O.2391965cos3x - 1.l50649sinx, with error E(53) = 7.271197. 

11. The trigonometric least-squares polynomials and their errors are 

a. S3(X) = -0.08676065 - 1.446416 cos JT(x - 3) - 1.617554 cos 2JT(x - 3) + 3.980729 cos 3JT(x - 3) -
2.154320sinJT(x - 3) + 3.907451 sin2JT(x - 3) with E(S3) = 210.90453 

b. S3(X) = -0.0867607 - 1.446416 cos JT(x - 3) - 1.617554 cos 2JT(x - 3) + 3.980729 cos 3JT(x - 3) -
2.354088 cos 4JT(x - 3) - 2.154320sinJT(x - 3) + 3.907451 sin2JT(x - 3) -1.166181 sin3JT(x - 3) with 
E(S4) = 169.4943 

13. Let fe-x) = -f(x). The integral ta f(x) dx under the change of variable t = -x transforms to 

-1° f(-t) dt = 1a 

f(-t) dt = -l a 

I(t) dt = -l a 

f(x) dx. 

Thus, 

f(x) dx = o f(x) dx + 1a 

f(x) dx = _ a f(x) dx + 
-a 0 ° 

a a 

f(x) dx = O. 
-a ° 

Exercise Set 8.6 (Page 546) 

1. The trigonometric interpolating polynomials are: 

a. S2(X) = -12.33701 + 4.934802 cos x - 2.467401 cos 2x + 4.934802 sin x 

b. S2(X) = -6.168503 + 9.869604 cos x - 3.701102 cos 2x + 4.934802 sin x 

c. S2(X) = 1.570796 - 1.570796cosx 

d. S2(X) = -0.5 - 0.5 cos 2x + sinx 

3. The Fast Fourier Transform Algorithm gives the following trigonometric interpolating polynomials. 

a. 54 (x) = -11.10331 + 2.467401 cosx - 2.467401 cos2x + 2.467401 cos3x - 1.233701 cos4x + 5.956833 sinx-
2.467401 sin 2x + 1.022030 sin 3x 

b. S4(X) = 1.570796 - 1.340759 cos x - 0.2300378 cos 3x 

c. S4(X) = -0.1264264 + 0.2602724cosx - 0.3011140 cos 2x + 1.121372 cos 3x + 0.04589648 cos 4x -
0.1022190 sinx + 0.2754062 sin 2x - 2.052955 sin 3x 

d. 54 (x) = -0.1526819 + 0.04754278cosx + 0.6862114 cos 2x - 1.216913cos3x + 1.176143cos4x-
0.8179387 sin x + 0.1802450 sin 2x + 0.2753402 sin 3x 
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5. Approximation Actual 

a. -69.76415 -62.01255 
b. 9.869602 9.869604 
c. -0.7943605 -0.2739383 
d. -0.9593287 -0.9557781 

7. The b j terms are all zero. The a j terms are as follows: 

aO = -4.0008033 
a4 = -0.3030271 
a8 = -0.0663172 

al2 = -0.0291807 
al n = -0.0166380 
a20 = -0.0109189 
a24 = -0.0078430 
a28 = -0.0060069 
a32 = -0.0048308 
a36 = -0.0040398 
a40 = -0.0034903 
a44 = -0.0031015 
a48 = -0.0028256 
aS2 = -0.0026333 
aS6 = -0.0025066 
a60 = -0.0024345 

Exercise Set 9.1 (Page 558) 

al = 3.7906715 
as = 0.1813613 
a9 = 0.0520612 

a13 = 0.0249129 
a17 = 0.0148174 
a21 = 0.0099801 
a2S = 0.0072984 
a29 = 0.0056650 
a33 = 0.0046040 
a37 = 0.0038837 
a41 = 0.0033803 
a45 = 0.0030233 
a49 = 0.0027705 
aS3 = 0.0025960 
aS7 = 0.0024837 
a61 = 0.0024242 

a2 = -2.2230259 
a6 = -0.1216231 

alO = -0.0420333 
al4 = -0.0215458 
al8 = -0.0132962 
a22 = -0.0091683 
a26 = -0.0068167 
a30 = -0.0053578 
a34 = -0.0043981 
a38 = -0.0037409 
a42 = -0.0032793 

'a46 = -0.0029516 
aso = -0.0027203 
a54 = -0.0025626 
aS8 = -0.0024642 
a62 = -0.0024169 

a3 = 0.6258042 
a7 = 0.0876136 

all = 0.0347040 
alS = 0.0188421 
al9 = 0.0120123 
a23 = 0.0084617 
a27 = 0.0063887 
a31 = 0.0050810 
a3S = 0.0042107 
a39 = 0.0036102 
a43 = 0.0031866 
a47 = 0.0028858 
aSI = 0.0026747 
ass = 0.0025328 
aS9 = 0.0024478 
a63 = 0.0024125 

1. a. The eigenvalues and associated eigenvectors are Al = 2, V(l) = (1,0,0)'; A2 = 1, V(2) = (0,2, 1)'; and 
A3 = -1, v(3) = (-1, 1, 1)'. The set is linearly independent. 
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b. The eigenvalues and associated eigenvectors are Al = A2 = AJ = 1, v(l) = V(2) = (1,0,1)' and v(3) = (0, 1, 1). 

The set is linearly dependent. 

c. The eigenvalues and associated eigenvectors are Al = 2, v(l) = (0, 1,0)'; A2 = 3, V(2) = (1,0,1)'; and 
A3 = I, V(3) = (1, 0, -I)'. The set is linearly independent. 

d. The eigenvalues and associated eigenvectors are Al = A2 = 3, v(l) = (1,0, -1)', V(2) = (0, 1, -I)'; and 

A3 = 0, v(3) = (1, I, I)'. The set is linearly independent. 

e. The eigenvalues and associated eigenvectors are Al = 1, v(l) = (0, -1, 1)'; A2 = 1 + ./2, v(2) = (./2, 1, 1)'; and 
A3 = 1 - ./2, v(3) = (-./2, 1, 1)'; The set is linearly independent. 

r. The eigenvalues and associated eigenvectors are Al = 1, v(l) = (1,0, -1)'; A2 = 1, V(2) = (1, -1,0)'; and 
A3 = 4, vi)~ = (1, 1, I)'. The set is linearly independent. 

3. a. The three eigenvalues are within {AI IAI < 2} u {AliA - 21 < 2}. 

b. The three, eigenvalues are within RI = {AliA - 41 < 2}. 

c. The three real eigenvalues satisfy 0 < A < 6. 

d. The three real eigenvalues satisfy 1,25 < ), < 8.25. 

e. The four real eigenvalues satisfy -8 < A < 1, 

r. The four real eigenvalues are within RI = {AI I)" - 21 < 4}. 

5. If CI VI + ... + Ck Vk = 0, then for any j, with I < j < k, we have CI vj VI + ... + Ckv) Vk = O. But orthogonality 
gives CiVjVi = 0, for i i= j, so CjvjVj = 0 and since vjVj i= 0, we must have Cj = o. 
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7. Since {v;}7=1 is linearly independent in JR", there exist numbers CI, ... , C" with 

Hence, for any k, with 1 < k < n, 

9. a. The eigenvalues are Al = 5.307857563, A2 = -0.4213112993, A3 = -0.1365462647 with associated 
eigenvectors (0.59020967,0.51643129,0.62044441)', (0.77264234, -0.13876278, -0.61949069)', and 
(0.23382978, -0.84501102,0.48091581)', respectively. 

b. A is not positive definite since A2 < 0 and A3 < O. 

Exercise Set 9.2 (Page 574) 

1. The approximate eigenvalues and approximate eigenvectors are: 

a. IL(3) = 3.666667, x(3) = (0.9772727,0.9318182, I)' 

b. IL (3) = 2.000000, X(3) = (1, 1, 0.5)' 

C. IL(3) = 5.000000, X(3) = (-0.2578947, 1, -0.2842105)' 

d. IL(3) = 5.038462, X(3) = (1,0.2213741,0.3893130,0.4045802)' 

e. IL(3) = 7.531073, X(3) = (0.6886722, -0.6706677, -0.9219805, I)' 

f. IL(3) = 4.106061, X(3) = (0.1254613,0.08487085,0.00922509, I)' 

3. The approximate eigenvalues and approximate eigenvectors are: 

a. IL(3) = 3.959538, X(3) = (0.5816124,0.5545606,0.5951383)' 

b. IL(3) = 2.0000000, X (3) = (-0.6666667, -0.6666667, -0.3333333)' 

c. IL (3) = 7.189567, X(3) = (0.5995308,0.7367472,0.3126762)' 

d. IL(3) = 6.037037, 

e. IL (3) = 5.142562, 

X(3) = (0.5073714,0.4878571, -0.6634857, -0.2536857)' 

X(3) = (0.8373051,0.3701770,0.1939022,0.3525495)' 

f. IL(3) = 8.593142, X(3) = (-0.4134762,0.4026664,0.5535536, -0.6003962)' 

5. The approximate eigenvalues and approximate eigenvectors are: 

a. AI"'"IL (9) = 3.999908, X(9) = (0.9999943,0.9999828, I)' 

A2"'"IL(I) = 1.000000, 

b. AI"'"IL(13) = 2.414214, 

A2 "'" IL (1) = 1. 000000, 

C. Al "'"IL(9) = 5.124749, 

A2"'" IL (6) = 1.636734, 

d. AI"'"IL(24) = 5.235861, 

A2"'"IL(IO) = 3.618177, 

e. AI"'"IL(17) = 8.999667, 

A2"'"IL(21) = 5.000051, 

x(I) = (-2.999908,2.999908,0)' 

X(13) = (1,0.7071429,0.7070707)' 

x(l) = (0, -1.414214, 1.414214)' 

X(9) = (-0.2424476, 1, -0.3199733)' 

X(6) = (1.783218, -1.135350, -3.124733)' 

X(24) = (1,0.6178361,0.1181667,0.4999220)' 

x(lO) = (0.7236390, -1.170573, 1.170675, -0.2763374)' 

x(17) = (0.9999085, -0.9999078, -0.9999993, I)' 

X(2I) = (1.999338, -1.999603, 1.999603, -2.000198)' 

f. The method did not converge in 25 iterations, but Al "'" IL(363) = 4.105309, 
X(363) = (0.06286299,0.08702754,0.01824680, I)', A2 "'" IL(15) = -4.024308, X(15) = (-8.151965, 
2.100699, 0.7519080, -0.3554941)'. 

7. The approximate eigenvalues and approximate eigenvectors are: 

a. IL(8) = 4.0000000, X(8) = (0.5773547,0.5773282,0.5773679)' 

b. IL(13) = 2.414214, x(13) = (-0.7071068, -0.5000255, -0.4999745)' 
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C. !l(l6) = 7.223663, X(l6) = (0.6247845,0.7204271,0.3010466)' 

d. !l(20) = 7.086130, 

e. !l(2l) = 5.236068, 

X(20) = (0.3325999,0.2671862, -0.7590108, -0.4918246)' 

X(2l) = (0.7795539,0.4815996,0.09214214,0.3897016), 

f. !l(16) = 9.0000000, X(l6) = (-0.4999592,0.4999584,0.5000408, -0.5000416)' 

9. The approximate eigenvalues and approximate eigenvectors are: 

a. !l(9) = 1.000000, X(9) = (-0.1542994,0.7715207, -0.6172095)' 

b. !l(l2) = -0.4142136, X(l2) = (-0.7071068,0.4999894,0.5000106)' 

C. !l(6) = 4.961699, X(6) = (-0.4812465,0.05195336,0.8750444)' 

d. !l(l4) = 2.485863, X(l4) = (-0.6096695,0.6451951, -0.2779286,0.3671268)' 

e. !l(IO) = 3.618034, X(IO) = (0.3958550, -0.6404796,0.6404886, -0.1511924), 

f. !l (6) = 4.0000000, X(6) = (-0.4999985, -0.5000015, -0.4999985, -0.5000015)' 

11. The approximate eigenvalues and approximate eigenvectors are: 

a. p,(2) = 1.000000, X(2) = (0.1542373, -0.7715828,0.6171474)' 

b. p,(l3) = 1.000000, x (13) = (0.00007432, -0.7070723,0.7071413)' 
• 

C. p,(l4) = 4.961699, X(l4) = (-0.4814472,0.05180473,0.8749428)' 
• 

d. p,(l7) = 4.428007, x(l7) = (0.7194230,0.4231908,0.1153589,0.5385466)' 

e. p,(IO) = 3.618034, X(IO) = (0.3956185, -0.6406258,0.6404462, -0.1513711)' 

f. The method did not converge in 25 iterations, but /-L(31) = 5.0000000, X(31) = (0.4999091, -0.5002392, 
0.4997607, -0.50009009)' 

13. a. We have IAI < 6 for all eigenvalues A. 

b. The approximate eigenvalue is /-L(l33) = 0.69766854, with the approximate eigenvector 
xiI33) = (1,0.7166727,0.2568099,0.04601217)'. 

d. The characteristic polynomial is peA) = A4 - ~A - l~' and the eigenvalues are Al = 0.6976684972, 
A2 = -0.2301775942 + 0.56965884i, A3 = -0.2301775942 - 0.56965884i, and A4 = -0.237313308. 

e. The beetle population should approach zero since A is convergent. 

15. Using the Inverse Power method with x(O) = (1,0,0, 1,0,0,1,0,0, I)' and q = 0 gives the following results: 

a. /-L(49) = 1.0201926, so p(A-I) ~ 1//-L(49) = 0.9802071; 

b. /-L(30) = 1.0404568, so p(A-I) "" 1//-L(30) = 0.9611163; 

c. /-L(22) = 1.0606974, so p(A-I) ~ 1//-L(22) = 0.9427760. 
The method appears to be stable for all IX in [~, ~]. 

17. Forming A -I B and using the Power method with x(O) = (1, 0,0, 1, 0, 0, I, 0, 0, 1), gives the following results: 

a. The spectral radius is approximately /-L (46) = 0.9800021. 

b. The spectral radius is approximately /-L (25) = 0.9603543. 

c. The spectral radius is approximately /-L(lS) = 0.9410754. 

Exercise Set 9.3 (Page 585) 

1. Householder's method produces the following tridiagonal matrices. 

12.00000 -10.77033 0.0 2.0000000 1.414214 0.0 
a. -lO.77033 3.862069 5.344828 b. 1.414214 1.000000 0.0 

0.0 5.344828 7.137931 0.0 0.0 3.0 

1.0000000 
• 

-1.414214 0.0 4.750000 -2.263846 0.0 
c. -1.414214 1.000000 0.0 d. -2.263846 4.475610 -1.219512 

0.0 0.0 1.000000 0.0 -1.219512 5.024390 

813 
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3. Householder's method produces the following tridiagonal matrices. 

2.0000000 2.8284271 1.4142136 -1.0000000 -3.0655513 0.0000000 
a. -2.8284271 1.0000000 2.0000000 

0.0000000 2.0000000 3.0000000 
b. -3.6055513 -0.23076923 3.1538462 

0.0000000 0.15384615 2.2307692 

c. 

d. 

5.0000000 
-1.4142136 

0.0000000 
0.0000000 

4.0000000 
1.7320508 
0.0000000 
0.0000000 

4.9497475 
-2.0000000 
-5.4313902 

0.0000000 

1.7320508 
2.3333333 

-0.47140452 
0.0000000 

Exercise Set 9.4 (Page 595) 

-1.4320780 
-2.4855515 
-1.4237288 

1.5939865 

0.0000000 
0.23570226 
4.6666667 
0.0000000 

-1.5649769 
1.8226448 

-2.6486542 
5.4237288 

0.0000000 
0.40824829 

-0.57735027 
5.0000000 

1. Two iterations of the QR Algorithm produce the following matrices. 

a. A (3) = 

b. A(3) = 

0.6939977 -0.3759745 0.0 
-0.3759745 

0.0 

4.535466 

1.892417 
-0.03039696 

1.212648 

-0.03039696 
3.413585 

0.0 
1.212648 3.533242 3.83 x 10-7 

0.0 3.83 X 10-7 -0.06870782 

4.679567 -0.2969009 
c. A (3) = -2.969009 3.052484 

0.0 -1.207346 x 10-5 

0.0 
-1.207346 x 10-5 

1.267949 

d. A (3) = 

e. A (3) = 

0.3862092 0.4423226 
0.4423226 

0.0 
0.0 

-2.826365 
1.130297 

0.0 
0.0 

1.787694 
-0.3567744 

0.0 

1.130297 
-2.429647 
-0.1734156 

0.0 

0.2763388 0.1454371 
f. A(3) = 0.1454371 0.4543713 

0.0 0.1020836 
0.0 0.0 

0.0 
-0.3567744 

3.080815 
3.116382 x 10-5 

0.0 
-0.1734156 

0.8172086 
1.863997 x 10-9 

0.0 

0.0 
0.0 

3.116382 X 10-5 

4.745281 

0.0 
0.0 

1.863997 X 10-9 

3.438803 

0.0 
0.1020836 
1.174446 

-4.36 x 10-5 

0.0 
-4.36 X 10-5 

0.9948441 

3. The matrices in Exercise 1 have the following eigenvalues, accurate to within 10-5 . 

a. 3.414214, 2.000000, 0.58578644 

b. -0.06870782,5.346462,2.722246 

c. 1.267949,4.732051, 3.000000 

d. 4.745281, 3.177283, 1.822717, 0.2547188 

e. 3.438803,0.8275517, -1.488068, -3.778287 

f. 0.9948440, 1.189091,0.5238224,0.1922421 

~ , -
• 
• 

• 
· 
• 

[ 
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5. a. Let 

p = cose - sine 
sin e cos (j 

and y = Px. Show that I/Xl/2 = Ilylb. Use the relationship XI + ixz = rei", where r = Ilxl/z and 
(X = tan-I (XZ/XI), and YI + iyz = rei(a+O). 

b. Let x = (1,0)' and (j = rr/4. 

11. a. To within 10 5, the eigenvalues are 2.618034,3.618034,1.381966, and 0.3819660. 

815 

b. In terms of p and p the eigenvalues are -65.45085p/p, -90.45085p/p, -34.54915p/p, and -9.549150p/p. 

13. The actual eigenvalues are as follows: 

a. When (X = 1/4 we have 0.97974649, 0.92062677, 0.82743037, 0.70770751, 0.57115742, 0.42884258. 
0.29229249, 0.17256963, 0.07937323, and 0.02025351. 

b. When (X = 1/2 we have 0.95949297, 0.84125353. 0.65486073, 0.41541501, 0.14231484, -0.14231484. 
-0.41541501, -0.65486073, -0.84125353, and -0.95949297. 

c. When a = 3/4 we have 0.93923946,0.76188030,0.48229110,0.12312252, -0.28652774, -0.71347226, 
-1.12312252, -1.48229110, -1.76188030, and -1.93923946. The method appears to be stable for (X < ~. 

Exercise Set 10.1 (Page 609) 

1. Use Theorem 10.5. 

3. Use Theorem 10.5 for each of the partial derivatives. 

5. b. With x(O) = (0,0)' and tolerance 10-5, we have X(l3) = (0.9999973, 0.9999973)'. 

c. With x(O) = (0,0)' and tolerance 10-5, we have X(ll) = (0.9999984,0.9999991)'. 

7. a. With x(O) = (I, 1, or, we have X(5) = (5.0000000,0.0000000, -0.5235988)'. 

b. With x(O) = (I, 1, I)', we have X(9) = (1.03640 II , 1.0857072,0.93119113)'. 

c. With x(O) = (0,0,0.5)', we have X(5) = (0.00000000,0.09999999, 1.0000000)'. 

d. With x(O) = (0, 0, 0)', we have X(5) = (0.49814471. -0.19960600, -0.52882595)' . 
,----' , 

9. a. With G(x) = / Xl - xi, / xl - Xz and x(O) = (0.7,0.4)', we have X(l4) = (0.77184647,0.41965131)'. 

-----\, 
b. With G(x) = x/v3, /(1 + xi)/(3xd and x(O) = (0.4,0.7)', we have x(ZO) = (0.4999980,0.8660221)'. 

c. With G(x) = (v'37 - Xz, v'Xl - 5, 3 - Xl - xz)' and x(O) = (5, 1, -1)', we have 
x(lO) = (6.0000002, 1.0000000, -3.9999971)'. , 

d. With G(x) = /2X3 + Xz - 2xi, /(10x3 + xD/8, xU(7xz) and x(O) = (0.5,0.5,0)', we have 

X(60) = (0.5291548,0.4000018,0.09999853)'. 

11. A stable solution occurs when Xl = 8000 and X2 = 4000. 

Exercise Set 10.2 (Page 617) 

1. a. x(Z) = (0.4958936, 1.983423)' 

b. x(Z) = (-0.5131616, -0.01837622)' 

c. X(2) = (0.5001667,0.2508036, -0.5173874)1 

d. x(Z) = (4.350877, 18.49123, -19.84211)' 

3. a. X(5) = (0.5000000,0.8660254)' 

b. X(6) = (1.772454, 1.772454)' 
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C. X(5) = (-1.456043, -1.664230,0.4224934)' 

d. X(4) = (0.4981447, -0.1996059, -0.5288260)' 

5. With x(o) = (1, 1 - 1)' and TOL = 10-6, we have x(20) = (0.5,9.5 x 10-7, -0.5235988)'. 

7. When the dimension n is 1, F(x) is a one-component function lex) = fleX), and the vector x has only one 

component Xl = x. In this case, the Jacobian matrix J (x) reduces to the 1 x 1 matrix [* (x) ] = f' (x) = f' (x J. 

Thus, the vector equation 

becomes the scalar equation 

-1 !(Xk-l) 
Xk = Xk-l - !(Xk-l) !(Xk-l) = Xk-l - . 

!'(Xk-l) 

9. With (JiO) = 1, for each i = 1, 2, ... , 20, the following results are obtained. 

i 1 2 3 456 

ei5
) 0.14062 0.19954 0.24522 0.28413 0.31878 0.35045 

i 7 8 9 10 11 12 13 

e?) 0.37990 0.40763 0.43398 0.45920 0.48348 0.50697 0.52980 

i 14 15 16 17 18 19 20 

e?) 0.55205 0.57382 0.59516 0.61615 0.63683 0.65726 0.67746 

11. a. We have 

aE n 1 =2L a 

aa WiYi - (x; _ b)C (Xi -b)" 
= O. 

i=l 

aE n -ac =2L a 

ab WiYi - (Xi - bY (Xi - by+l 
= O. 

i=l 

and 

aE n a -a 
- = 2 L WiYi - In (Xi - b) = O. ac i=l (Xi - bY (Xi - b)c 

Solving for a in the first equation and substituting into the second and third equations gives the linear system. 

b. With x(O) = (26.8. 8.3)' = (bo. co)'. we have X(7) = (26.77021, 8.451831)'. Thus, a = 2.217952 x 106, 

b = 26.77021, c = 8.451831, and 

n 

L 
i=l 

a 2 

WiYi - (Xi _ b)C = 0.7821139. 
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Exercise Set 10.3 (Page 626) 

1. a. X(2) = (0.4777920, 1.927557Y 

b. X!2) = (-0.3250070, -0.1386967)' 

C. Xi2) = (0.5115893, -78.72872, -0.5120771)' 

d. X
12

) = (-67.00583,35.06480, -123.3408)' 

3. a. X i9) = (0.5,0.8660254)' 

b. XiS) = (1. 772454, 1.772454)' 

C. X(9) = (-1.456043, -1.664231,0.4224934)' 

d. X(5) = (0.4981447, -0.1996059, -0.5288260)' 

5. With x lO) = (1, I - I)', we have X(56) = (0.5000591,0.01057235, -0.5224818)'. 

7. With x(O) = (0.75, 1.25)', we have X(4) = (0.7501948, 1.184712)'. Thus, a = 0.7501948, b = 1.184712, and the 
error is 19.796. 

Exercise Set 10.4 (Page 634) 

1. a. With x(O) = (0,0)', we have X(ll) = (0.4943541, 1.948040)'. 

b. With x(O) = (I, I)', we have x(2) = (0.4970073,0.8644143)' . 

c. With x(O) = (2,2)', we have x(l) = (1.736083, 1.804428)'. 

d. With x(O) = (0,0)', we have X(2) = (-0.3610092,0.05788368)' . 

3. a. With x(O) = (0,0,0)', we have X(l4) = (1.043605, 1.064058,0.9246118)'. 

b. With x(O) = (0,0,0)', we have X(9) = (0.4932739,0.9863888, -0.5175964)' . 

c. With XIO) = (0,0,0)', we have x(ll) = (-1.608296, -1.192750,0.7205642)'. 

d. With x(O) = (0, 0, 0)', we have x(l) = (0,0.00989056, 0.9890556)' . 

5. a. With xiO) = (0,0)', we have x(8) = (3.136548,0)' and g(X(8» = 0.005057848. 

b. With x lO) = (0,0)', we have x(13) = (0.6157412,0.3768953)' and g(x(13» = 0.1481574. 

c. With xiO) = (0,0,0)', we have X(5) = (-0.6633785,0.3145720,0.5000740)' and g(X(5» = 0.6921548. 

d. With x(O) = (1, I, I)', we have X(4) = (0.04022273,0.01592477,0.01594401)' and g(X(4» = 1.010003. 

Exercise Set 10.5 (Page 642) 

1. a. (3, -2.25)' 

b. (0.42105263,2.6184211)' 

c. (2.173110, -1.3627731)' 

3. Using x(O) = 0 in all parts gives: 

a. (0.44006047, 1.8279835)' 

b. (-0.41342613,0.096669468)' 

c. (0.49858909, 0.24999091, -0.52067978)' 

d. (6.1935484, 18.532258, -21.725806)' 

5. a. Using x(O) = (-1, 3.5)' gives (-1, 3.5)'. 
Using x(O) = (2.5,4.0)' gives (2.5469465,3.9849975)'. 

b. Using x(O) = (0.11,0.27), gives (0.12124195,0.27110516)'. 

c. Using x(O) = (1, 1, 1)' gives (1.0364005,1.0857066,0.93119144)'. 

d. Using x(O) = (I, -1, I)' gives (0.90016074, -1.0023801,0.49661093)'. 
Using x(O) = (I, 1, _I)' gives (0.50104035, 1.0023801, -0.49661093)'. 
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7. a. (0.49998949,0.86608576)' 

b. (1.7724820, 1.7722940)' 

c. (-1.4561027, -1.6642463,0.42241506)1 

d. (0.49814392, -0.19960453, -0.52882611Y 

9. (0.50024553,0.078230039, -0.52156996)1 

11. For each ).., we have 

0= G()", x(;.» = F(x(;'» - e-A F(x(O», 

so 

0= aF(x()..)) dx + e-A F(x(O» = J(x()"»x'()") + e-A F(x(O)) 
ax d).. 

and 

J(x()..»x'()..) = _e-A F(x(O» = -F(x(O)). 

Thus, 

x'(A) = -J(X(A»-l F(x(O». 

With N = 1, we have h = 1 so that 

x(i) = x(O) - J(x(0n- 1 F(x(O». 

However, Newton's method gives 

Since x(O) = x(O), we have x(l) = x O). 

Exercise Set 1 U (Page 652) 

1. The Linear Shooting Algorithm gives the results in the following tables. 

• a. I 

1 0.5 0.82432432 0.82402714 

h. i 

1 
2 
3 

0.25 
0.50 
0.75 

3. The Linear Shooting Algorithm gives the results in the following tables. 

0.3937095 
0.8240948 
1.337160 

0.3936767 
0.8240271 
1.337086 

• a. I Y(Xi) b. i Xi Wli y(x;) 
---------------------------- ------------------------------
3 
6 
9 

• 
C. I 

0.3 
0.6 
0.9 

0.7833204 
0.6023521 
0.8568906 

Wjj 

0.7831923 5 1.25 0.1676179 0.1676243 
0.6022801 10 1.50 0.4581901 0.4581935 
0.8568760 15 1.75 0.6077718 0.6077740 

Y(Xi) d. i Xi Wli Y(Xi) 
------------------------------- -----------------------------
3 
6 
9 

0.3 
0.6 
0.9 

-0.5185754 
-0.2195271 
-0.0406577 

-0.5185728 3 1.3 0.0655336 0.06553420 
-0.2195247 6 1.6 0.0774590 0.07745947 
-0.0406570 9 1.9 0.0305619 0.03056208 
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5. The Linear Shooting Algorithm with h = 0.05 gives the following results. 

I 

6 
10 
16 

X, 

0.3 
0.5 
0.8 

0.04990547 
0.00673795 
0.00033755 

The Linear Shooting Algorithm with h = 0.1 gives the following results . 

• 
I 

3 
5 
8 

X I 

0.3 
0.5 
0.8 

0.05273437 
0.00741571 
0.00038976 

7. a. The approximate potential is u(3) ~ 36.66702 using h = 0.1. 

b. The actual potential is u (3) = 36.66667. 

9. a. There are no solutions if b is an integer multiple of Jr and B t= O. 

b. A unique solution exists whenever b is not an integer multiple of Jr. 

c. There is an infinite number of solutions if b is an multiple integer of Jr and B = O. 

Exerdse Set 11.2 (Page 659) 

1. The Nonlinear Shooting Algorithm gives WI = 0.405505 ~ In 1.5 = 0.405465. 

3. The Nonlinear Shooting Algorithm gives the results in the following tables. 

a. 4 iterations required: 

• 
I 

3 
6 
9 

X I 

1.3 
1.6 
1.9 

WJj 

0.4347934 
0.3846363 
0.3448586 

b. 6 iterations required: 

• 
I 

3 
6 
9 

X, 

1.3 
1.6 
1.9 

2.069249 
2.225013 
2.426317 

c. 3 iterations required: 

· I 

3 
6 
9 

X' I 

2.3 
2.6 
2.9 

1.2676912 
1.3401256 
1.4095359 

Y(X,) 

0.4347826 
0.3846154 
0.3448276 

2.069231 
2.225000 
2.426316 

1.2676917 
1.3401268 
1.4095383 

d. To apply the algorithm we need to redefine the initial value of TK to be 2. 
7 iterations required: 

819 
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• 
I 

5 
10 
15 

1.25 
1.50 
1.75 

Answers for Selected Exercises 

0.4358290 
1.3684496 
2.9992010 

0.4358272 
1.3684447 
2.9991909 

5. The algorithm gives the results in the following tables. 

a. 3 iterations required: 

• 
I 

3 
6 
9 

1.3 
1.6 
1.9 

0.4347720 
0.3845947 
0.3447969 

0.4347826 
0.3846154 
0.3448276 

b. To apply the algorithm we need to define the initial approximations for tk to be -0.5 and 0.5. 
15 iterations required: 

• 
I 

3 
6 
9 

X; 

1.3 
1.6 
1.9 

Wli 

2.0692491 
2.2250137 
2.4263174 

Exercise Set 11.3 (Page 665) 

2.0692308 
2.2250000 
2.4263158 

1. The Linear Finite-Difference Algorithm gives following results. 

• a. I X; WI; Y(X;) 

1 0.5 0.83333333 0.82402714 

b. i 

1 
2 
3 

k I 

0.25 
0.5 
0.75 

0.39512472 
0.82653061 
1.33956916 

y(xd 

0.39367669 
0.82402714 
1.33708613 

c. 4(0.82653061) - 0.83333333 = 0.82426304 
3 

3. The Linear Finite-Difference Algorithm gives the results in the following tables. 

• a. I 

2 
5 
7 

• 
C. I 

3 
6 
9 

X; 

0.2 
0.5 
0.7 

k I 

0.3 
0.6 
0.9 

W; 

1.018096 
0.5942743 
0.6514520 

-0.5183084 
-0.2192657 
-0.0405748 

Y(X;) b. i 

1.0221404 5 
0.59713617 10 
0.65290384 15 

X; 

1.25 
1.50 
1.75 

W; 

0.16797186 
0.45842388 
0.60787334 

Y(X; ) 

0.16762427 
0.45819349 
0.60777401 

y(Xj) • d. i Xj WJj Y(x;) 
-----------------------------

-0.5185728 3 1.3 0.0654387 0.0655342 
-0.2195247 6 1.6 0.0773936 0.0774595 
-0.04065697 9 1.9 0.0305465 0.0305621 
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5. The Linear Finite-Difference Algorithm gives the results in the following tables . 

• 
I 

3 
6 
9 

X· I 

0.3 
0.6 
0.9 

0.05572807 
0.00310518 
0.00016516 

I 

6 
12 
18 

0.3 
0.6 
0.9 

wi(h = 0.05) 

0.05132396 
0.00263406 
0.00013340 

7. a. The approximate deflections are shown in the following table . 

• 
I 

5 
10 
15 

b. Yes. 

X I 

30 
60 
90 

0.0102808 
0.0144277 
0.0102808 

821 

c. Yes; maximum deflection occurs at x = 60. The exact solution is within tolerance, but the approximation is not. 

Exerdse Set 11.4 (Page 672) 

1. The Nonlinear Finite-Difference Algorithm gives the following results . 

• 
I Xi Wi 

I 1.5 0.4067967 0.4054651 

3. The Nonlinear Finite-Difference Algorithm gives the results in the following tables. 

• a. I 

3 
6 
9 

• 
C. I 

3 
6 
9 

Xi 

1.3 
1.6 
1.9 

Xi 

2.3 
2.6 
2.9 

0.4347972 
0.3846286 
0.3448316 

1.2677078 
1.3401418 
1.4095432 

Exerdse Set 11.5 (Page 687) 

Y(Xi) 

0.4347826 
0.3846154 
0.3448276 

Y(Xi) 

1.2676917 
1.3401268 
1.4095383 

b. i 

3 
6 
9 

d. i 

5 
10 
15 

Xi Wli 

1.3 2.0694081 
1.6 2.2250937 
1.9 2.4263387 

Xi Wli 

1.25 0.4345979 
1.50 1.3662119 
1.75 2.9969339 

Y(Xi) 

2.0692308 
2.2250000 
2.4263158 

Y(Xi) 

0.4358273 
1.3684447 
2.9991909 

1. The Piecewise Linear Algorithm gives t/J(x) = -0.07713274t/Jl(X) - 0.07442678t/J2(X). The actual values are 
Y(Xl) = -0.07988545 and Y(X2) = -0.07712903. 

3. The Piecewise Linear Algorithm gives the results in the following tables. 

• t/J(Xi) Y(Xi) b. i t/J (Xi) Y(Xi) a. I X· X· I I 

3 0.3 -0.212333 -0.21 3 0.3 0.1815138 0.1814273 
6 0.6 -0.241333 -0.24 6 0.6 0.1805502 0.1804753 
9 0.9 -0.090333 -0.09 9 0.9 0.05936468 0.05934303 
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-----_. 
• 

</> (x;) y(X;) d. i </> (Xi) c. I X Xi , 

5 0.25 -0.3585989 -0.3585641 5 0.25 -0.1846134 
10 0.50 -0.5348383 -0.5347803 10 0.50 -0.2737099 
15 0.75 -0.4510165 -0.4509614 15 0.75 -0.2285169 

5. The Cubic Spline Algorithm gives the results in the following tables. 

a. i 

C. 

7. i 

3 
6 
9 

3 
6 
9 

• 
I 

5 
10 
15 

0.3 
0.6 
0.9 

0.3 
0.6 
0.9 

k • 

0.25 
0.50 
0.75 

-0.2100000 
-0.2400000 
-0.0900000 

¢> (Xi) 

-0.3585639 
-0.5347779 
-0.4509109 

Y(Xi) 

-0.21 
-0.24 
-0.09 

Y(Xi) 

b. i 

3 
6 
9 

-0.3585641 
-0.5347803 
-0.4509614 

1.0408182 
1.1065307 
1.3065697 

1.0408182 
1.1065306 
1.3065697 

d. 

0.3 
0.6 
0.9 

• 
I 

5 
10 
15 

0.1814269 
0.1804753 
0.05934321 

Xi </> (Xi) 

0.1814273 
0.1804754 
0.05934303 

--

0.25 -0.1845191 
0.50 -0.2735833 
0.75 -0.2284186 

9. A change in variable w = (x - a)/(b - a) gives the boundary value problem 

- d (p«b _ a)w + a)y') + (b - a)2q«b - a)w + a)y = (b - a)2 f«b - a)w + a), 
dw 

where 0 < w < 1, yeO) = ct, and y(l) = {3. Then Exercise 6 can be used. 

c' Ac = 11 p(x)[</>,(x)]2 + q(x)f</>(x)]2 dx. 

Y(Xi) 

-0.1845204 
-0.2735857 
-0.2284204 

y(X. ) 

-0.1845204 
-0.2735857 
-0.2284204 

But p(x) > 0 and q(x)[</> (X)]2 > 0, so c' Ac ~ 0, and it can be 0, for x :f. 0, only if </>'(x) = 0 on [0, 1]. However, 
{<Pb, <Pi, .. , , <P~+tl is linearly independent, so <{I'(x) f= 0 on [0, 1] and c' Ac = 0 if and only if c = O. 

Exercise Set 12.1 (Page 702) 

1. The Poisson Equation Finite-Difference Algorithm gives the following results. 

• • U(Xi,Yj) I ] k Yj w· • '. } 

1 1 0.5 0.5 0.0 0 
1 1 0.5 1.0 0.25 0.25 "-

I 3 0.5 1.5 1.0 1 
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3. The Poisson Equation Finite-Difference Algorithm gives the following results. 

a. 30 iterations required: 

• • u(Xj,Yj) I J x, Yj w· . 1 I, J 

2 2 0.4 0.4 0.1599988 0.16 
2 4 0.4 0.8 0.3199988 0.32 
4 2 0.8 0.4 0.3199995 0.32 
4 4 0.8 0.8 0.6399996 0.64 

b. 29 iterations required: 

• • u(Xj,Yj) I J Xj Yj w· . 
I. J 

2 1 1.256637 0.3141593 0.2951855 0.2938926 
2 3 1.256637 0.9424778 0.1830822 0.1816356 
4 1 2.513274 0.3141593 -0.7721948 -0.7694209 
4 3 2.513274 0.9424778 -0.4785169 -0.4755283 

c. 126 iterations required: 

• • u(Xj,Yj) I } Xj Yj w· . I,J 

4 3 0.8 0.3 1.2714468 1.2712492 
4 7 0.8 0.7 1.7509414 1.7506725 
8 3 1.6 0.3 1.6167917 1.6160744 
8 7 1.6 0.7 3.0659184 3.0648542 

d. 127 iterations required: 

• • u(Xj, Yj) I } X· Yj w· . 1 I,J 

2 2 1.2 1.2 0.5251533 0.5250861 
4 4 1.4 1.4 1.3190830 1.3189712 
6 6 1.6 1.6 2.4065150 2.4064186 
8 8 1.8 1.8 3.8088995 3.8088576 

7. The approximate potential at some typical points gives the following results . 

• • 
I J Xj Yj w· . I.J 

1 4 0.1 0.4 88 
2 1 0.2 0.1 66 
4 2 0.4 0.2 66 

823 
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ExerdseSet 12.2 (Page 715) 

1. The Heat Equation Backward-Difference Algorithm gives the following results. 

a. 
• • 

U(Xi, ti) I J Xi t· Wij J 

1 1 0.5 0.05 0.632952 0.652037 
2 1 1.0 0.05 0.895129 0.883937 
3 1 1.5 0.05 0.632952 0.625037 

. 1 2 0.5 0.1 0.566574 0.552493 
2 2 1.0 0.1 0.801256 0.781344 
3 2 1.5 0.1 0.566574 0.552493 

b. 
• • 

u(XI> tj) I J Xi tj wij 

1 1 1/3 0.05 1.59728 1.53102 
2 1 2/3 0.05 -1.59728 -1.53102 
1 2 1/3 0.1 1.47300 1.35333 
2 2 2/3 0.1 -1.47300 -1.35333 

3. The Forward-Difference Algorithm gives the following results. 

a. For h = 0.4 and k = 0.1: 

• • 
t· I J Xi J 

2 5 0.8 0.5 
3 5 1.2 0.5 
4 5 1.6 0.5 

For h = 0.4 and k = 0.05: 

• • 
t· I J Xi J 

2 10 0.8 0.5 
3 10 1.2 0.5 
4 10 1.6 0.5 

b. For h = ~o and k = 0.05: 

• 
I 

3 
6 
9 

• 
J 

10 
10 
10 

0.94247780 
1.88495559 
2.82743339 

c. For h = 0.2 and k = 0.04: 

• • 
t· I J Xi J 

4 10 0.8 0.4 
8 10 1.6 0.4 

12 10 2.4 0.4 
16 10 3.2 0.4 

Wij u(xj,ti) 

3.035630 
-3.035630 

1.876122 

Wii U(Xi, ti) 

0 
0 
0 

t· J 

0.5 
0.5 
0.5 

0 
0 
0 

0.4864823 
0.5718943 
0.1858197 

Wij 

1.166149 
1.252413 
0.4681813 

-0.1027637 

0 
0 
0 

0.4906936 
0.5768449 
0.1874283 

U(Xi, ti) 

1.169362 
1.254556 
0.4665473 

-0.1056622 
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d. For h = 0.1 and k = 0.04: 

• • t U(Xi,tj) I } x- Wi} , J 

3 10 0.3 0.4 0.5397009 0.5423003 
6 10 0.6 0.4 0.6344565 0.6375122 
9 10 0.9 0.4 0.2061474 0.2071403 

5. The Crank-Nicolson Algorithm gives the following results. 

a. For h = 0.4 and k = 0.1: 

• • t· I ] x-I J 

2 5 0.8 0.5 
3 5 1.2 0.5 
4 5 1.6 0.5 

For h = 0.4 and k = 0.05: 

• • t I } Xi J 

2 10 0.8 0.5 
3 10 1.2 0.5 
4 10 1.6 0.5 

b. For h = ~o and k = 0.05: 

• 
I 

3 
6 
9 

• 

J 

10 
10 
10 

Xi 

0.94247780 
1.88495559 
2.82743339 

c. For h = 0.2 and k = 0.04: 

• . 
t I } X· I J 

4 10 0.8 0.4 
8 10 1.6 0.4 

12 10 2.4 0.4 
16 10 3.2 0.4 

d. For h = 0.1 and k = 0.04: 

• • 
I } x-I t J 

3 10 0.3 0.4 
6 10 0.6 0.4 
9 10 0.9 0.4 

wi) u(Xj,tj) 

8.2 x 10-7 0 
-8.2 x 10-7 0 

5.1 x 10-7 0 

W·· IJ U(Xi,tj) 

-2.6 x 10-6 0 
2.6 x 10-6 0 

-1.6 x 10-6 0 

t· J Wi} U(Xi,tj) 

0.5 0.4926589 0.4906936 
0.5 0.5791553 0.5768449 
0.5 0.1881790 0.1874283 

W·· 
IJ u(Xj, tj) 

1.171532 1.169362 
1.256005 1.254556 
0.4654499 0.4665473 

-0.1076139 -0.1056622 

wi} u(x;,tj) 

0.5440532 0.5423003 
0.6395728 0.6375122 
0.2078098 0.2071403 

azs 

• 
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9. To modify Algorithm 12.2, change the following: 
Step 7 Set 

t = jk; 

ZI = (WI + kF(h»/II' 

Step 8 For i = 2, ... , m - I set 

Zi = (Wi + kF(ih) + )"zi-d/li. 

To modify Algorithm 12.3, change the following: 
Step 7 Set 

t = jk; 

ZI = (1 - ),,)WI + ~ W2 + kF(h) /11, 

Step 8 For i = 2 .... , m - I set 

Zi = (1 - ),,)Wi + ~ (Wi+I'+ W;-l + Zi-l) + kF(ih) /Ii' 

13. a. The approximate temperature at some typical points is given in the table . 

• • 
I J r· , f· J 

W· . 
'ol 

1 20 0.6 10 137.6753 
2 20 0.7 10 245.9678 
3 20 0.8 10 340.2862 
4 20 0.9 10 424.1537 

b. The strain is approximately I = 1242.537. 

Exercise Set 12.3 (Page 724) 

1. The Wave Equation Finite-Difference Algorithm gives the following results. 

• • /. u(x;, tj) I ] Xi Wij } 

2 4 0.25 1.0 -0.7071068 -0.7071068 
3 4 0.50 1.0 -1.0000000 -1.0000000 
4 4 0.75 1.0 -0.7071068 -0.7071068 

3. The Wave Equation Finite-Difference Algorithm with h = To and k = 0.05 gives the following results. 

• • 
t u(x;, tj) I J Xi Wij J 

2 10 " 0.5 0.5163933 0.5158301 
5 

5 10 " 0.5 0.8785407 0.8775826 -
2 

8 10 4" 0.5 0.5163933 0.5158301 5 
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The Wave Equation Finite-Difference Algorithm with h = fa and k = 0.1 gives the following results . 

• • 
t· I J x, wij , ) 

4 5 " 0.5 0.5159163 
5 

10 5 " 0.5 0.8777292 -
2 

16 5 4" 0.5 0.5159163 -5 

The Wave Equation Finite-Difference Algorithm with h = ;0 and k = 0.05 gives the following results . 

• • t I J Xi Wi) ) 

4 10 " 0.5 0.5159602 
5 

10 10 " 0.5 0.8778039 -
2 

16 10 4" 0.5 0.5159602 -
5 

5. The Wave Equation Finite-Difference Algorithm gives the following results. 

• • 
tj U(Xi, tj) I J Xi wij 

2 3 0.2 0.3 0.6729902 0.61061587 
5 3 0.5 0.3 0 0 
8 3 0.8 0.3 -0.6729902 -0.61061587 

7. a. The air pressure for the open pipe is p(O.5, 0.5) ~ 0.9 and p(0.5. 1.0) ~ 2.7. 

b. The air pressure for the closed pipe is p(0.5, 0.5) ~ 0.9 and p(0.5, 1.0) ~ 0.9187927. 

Exerdse Set 72.4 (Poge 739) 

1. With El = (0.25,0.75), E2 = (0. I), £3 = (0.5,0.5), and E4 = (0,0.5), the basis functions are 

<h(X, y) = 

4x 

-2+4y 

on Tl 

on T2 , 

-I - 2x + 2y 

o 

2 - 2x -2y 

2 - 2x -2y 

on Tl 

on T2 , 

and Yl :::: 0.323825, Y2 = 0, Y3 :::: 1.0000, and Y4 :::: O. 

827 
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3. The Finite-Element Algorithm with K = 8, N = 8, M = 32, n = 9, m = 25, and N L = 0 gives the following 
results, where the labeling is as shown in the diagram. 

10--11--12--13--14 
10 11 12 13 

9 23 24 25 
15 1 2 3 --16 

26 2 15 
14 1 3 27 

17 4 6 --18 
28 17 

16 5 7 29 
19--7 --8 --9 --20 

30 31 32 22 
18 19 20 21 

21 22 23-24--25 

YI = 0.511023 

Y2 = 0.720476 

Y3 = 0.507899 

Y4 = 0.720476 

Ys = 1.01885 

Y6 = 0.720476 

Y7 = 0.507896 

Ys = 0.720476 

Y9 = 0.511023 

Yj=O lO:;:i:;:25 

u(0.125, 0.125) ~ 0.614187 

u(0.125, 0.25) ~ 0.690343 

u(0.25, 0.125) ~ 0.690343 

u(0.25, 0.25) ~ 0.720476 
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5. The Finite-Element Algorithm with K = 0, N = 12, M = 32, n = 20, m = 27, and N L = 14 gives the following 
results, where the labeling is as shown in the diagram. 

--22 23 24 25 26--
Tn T23 T24 T25 T26 

TI T2S T29 T30 T31 T32 T2 
8 --1 3 4 5 6 7 --9 

Tl3 TI4 TI6 Tl7 T18 TI9 T20 

T3 Ts T6 Ts T9 TIO Tll T12 T22 
10-11 12 13 15 '16 17 18 19 20 

YI = 21.40335 

Y2 = 19.87372 

Y3 = 19.10019 

Y4 = 18.85895 

Ys = 19.08533 

Y6 = 19.84115 

Y7 = 21.34694 

Ys = 24.19855 Yis = 20.23334 

Y9 = 24.16799 YI6 = 20.50056 

YIO = 27.55237 Yl7 = 21.35070 

Yll = 25.11508 YI8 = 22.84663 

YI2 = 22.92824 Yi9 = 24.98178 

Y13 = 21.39741 Y20 = 27.41907 

YI4 = 20.52179 >'21 = 15 

u(1,O)::::: 22.92824 

u(4, 0) ::::: 22.84663 

5../3 
u - ::::: 18.85895 

2' 2 

YZ2 = 15 

YZ3 = 15 

Y24 = 15 

Yzs = 15 

Y26 = 15 

Y27 = 15 
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A-orthogonal,467 
A-stable, 338 
Absolute deviation, 486 
Absolute error, 20 
Absolute stability 

region of, 337 
Accelerating convergence, 86 
Accuracy, degree of, 191 
Adams Fourth-Order 

Predictor-Corrector Algorithm, 
298 

Adams Variable Step-Size 
Predictor-Corrector Algorithm, 
303 

Adams-Bashforth methods 
definition, 290, 294 
stability of, 332 

Adams-Moulton methods 
definition, 291, 295 
stability of, 332 

Adaptive quadrature 
error estimate, 214 

Adaptive Quadrature Algorithm, 216 
Adaptive quadrature method, 213 
Aitken's ~2, 563, 565 
Aitken's ~2 method, 86, 569 
Algebraic polynomial, 91, 105 
Algorithm 

Adams Fourth-Order 
Predictor-Corrector, 298 

Adams Variable Step-Size 
Predictor-Corrector, 303 

Adaptive Quadrature, 216 
Bezier Curve, 161 
Bisection, 49 
Broyden, 623 
cautious Romberg, 211 
Chebyshev Rational Approximation, 

525 

Choleski's, 404 
Clamped Cubic Spline, 148 
Composite Simpson's, 199 
conditionally stable, 33 
Continuation, 641 
Crank-Nicolson, 713 
Crout Factorization for Tridiagonal 

Linear Systems, 408 
Cubic Spline Rayleigh-Ritz, 684 
description, 31 
Euclidean norm, 40 
Euler's, 257 
Extrapolation, 309 
Fast Fourier Transform, 544 
Finite-Element, 734 
Fixed Point Iteration, 59 
Gauss-Seidel Iterative, 442 
Gaussian Double Integral, 234 
Gaussian Elimination with 

Backward Substitution, 351 
Gaussian Elimination with Partial 

Pivoting, 362 
Gaussian Elimination with Scaled 

Partial Pivoting, 364 
Gaussian Triple Integral, 236 
general-purpose, 40 
Heat Equation 

Backward-Difference, 709 
Hermite Interpolation, 138 
Homer's, 94 
Householder, 582 
Inverse Power Method, 568 
Iterative Refinement, 460 
Jacobi Iterative, 440 
LDL' Factorization, 404 
LU Factorization, 392 
Linear Finite-Difference, 662 
Linear Shooting, 649 
Method of False Position, 73 

Muller's, 97 
Natural Cubic Spline, 146 
Neville's Iterated Interpolation, 118 
Newton's Interpolary 

Divided-Difference, 124 
Newton's Method, 66 
Newton's Method for Systems, 613 
Newton-Raphson, 66 
Nonlinear Finite-Difference, 669 
Nonlinear Shooting, 656 
Pade Rational Approximation, 520 
Piecewise Linear Rayleigh-Ritz, 678 
Poisson Equation Finite-Difference, 

699 
Power Method, 562 
Preconditional Conjugate Gradient, 

474 
QR,592 
Romberg, 210 
Runge-Kutta Method for Systems of 

Differential Equations, 315 
Runge-Kutta Order Four, 278 
Runge-Kutta-Fehlberg, 285 
Secant, 70 
Simpson's Double Integral, 233 
SOR,450 
special-purpose, 40 
stable, 33 
Steepest descent, 632 
Steffensen's, 88 
Symmetric power method, 565 
Trapezoidal with Newton Iteration, 

339 
unstable, 33 
Wave Equation Finite-Difference, 

721 
Wielandt Deflation, 572 

. Annihilation technique, 575 
Annuity due equation, 76 
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Approximating 7T, 186 
Approximation theory, 483 
Archimedes, 186 
Asymptotic error constant, 78 
Augmented matrix, 348 
Average value of a function, 9 

B-splines, 681 
Backward error analysis, 462 
Backward Euler method, 341 
Backward substitution 

Gaussian elimination, 348 
Backward-difference 

formula, 127, 168 
method,708 
notation, 127 

Backward-substitution, 346 
Band 

matrix, 406 
width, 406 

Basis for JR" , 552 
Basis functions 

B-spline, 681 
piecewise bilinear, 728 
piecewise linear, 675, 728 

Beam deflection problem, 645, 666, 
672 

Beetle population problem, 381, 
437 

bell shaped spline, 681 
Bernoulli, Daniel, 529 
Bernoulli equation, 289 
Bernstein polynomial, 122, 163 
Bessel function, 114 
Bezier Curve Algorithm, 161 
Bezier polynomial, 161,382 
Bilinear basis functions, 728 
Binary 

digit, 18 
representation of a number, 18 

Binary search method, 48 
Bisection Algorithm, 49 
Bisection method 

as a starting procedure, 50 
description, 48 
rate of convergence, 51 . 
stopping procedure, 50 

Bit, 18 
BLAS,44 
Boundary-value problem 

B-splines, 681 

centered difference formula, 661 
Collocation method, 687 
Cubic Spline Rayleigh-Ritz 

algorithm, 684 
definition, 646 
extrapolation, 664, 670 
finite-difference method, 660, 667 
Galerkin method, 686 
linear, 647, 660 
Linear Finite-Difference algorithm, 

662 
Linear Shooting algorithm, 649 
linear shooting method, 648 
nonlinear, 653, 667 
Nonlinear Finite-Difference 

algorithm, 669 
Nonlinear Shooting algorithm, 656 
nonlinear shooting method, 653 
Piecewise Linear Rayleigh-Ritz 

algorithm, 678 
Rayleigh-Ritz method, 672 
reverse shooting technique, 651 
two-point, 646 

Brent's method, 102 
Bridge truss, 417, 454 
Broyden's Algorithm, 623 
Broyden's method, 621 
Bulirsch-Stoer extrapolation, 312 

C,40 
Car on a race track problem, 205 
Cauchy-Buniakowsky-Schwarz 

inequaIity,420,430 
Cauchy's method, 102 
Cautious Romberg algorithm, 211 
Cautious Romberg method, 247 
Center of mass of a lamina problem, 

240 
Center of mass problem. 237 
Centered difference formula, 129,661, 

711 
Characteristic, 18 
Characteristic polynomial, 329, 337, 

430 
Characteristic value, 430 (see also 

eigenvalue) 
Characteristic vector, 431 (see also 

eigenvector) 
Chebyshev 

economization, 514 
polynomial 

definition, 507 
extrema, 509 
monic, 510 
zeros, 509 

Rational Approximation algorithm, 
525 

Chemical reaction problem, 281 
Choleski's Algorithm, 404 
Choleski's method, 392 
Chopping arithmetic, 20 

in Maple, 30 
Circular cylinder problem, 100 
Clamped boundary, 143 
Clamped Cubic Spline Algorithm, 148 
Clenshaw-Curtis quadrature, 248 
Closed method, 194, 290 
Closed Newton-Cotes formulas, 192 
Coaxial cable problem, 703 
Cofactor of a matrix, 383 
College GPAJACT performance 

problem, 495 
Collocation method, 687 
Column vector, 347 
Complete pivoting, 368 
Complex conjugate, 95 
Complex zeros (roots), 95 
Composite midpoint rule, 200 
Composite numerical integration, 

196 
Composite Simpson's Algorithm, 

199 
Composite Simpson's rule, 199 

double integrals, 233 
Composite trapezoidal rule, 200 

extrapolation, 209 
Computer 

arithmetic, 18 
graphics, 158, 161 
software, 40 

Condition number 
approxilnating,457 
definition, 456 

Conditionally stable, 707 
Conditionally stable algorithm, 33 
Conformist problem, 265 
Conjugate direction method, 470 
Conjugate gradient method, 465 
Consistent 

multistep method, 328 
one-step method, 324 

Contagious disease problems, 289 
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Continuation Algorithm, 641 
Continuation method, 644 
Continued-fraction, 522 
Continuity 

related to convergence, 3 
related to derivatives, 4 

Continuous function 
from JR to R 2 
from JR" to JR, 604 
from R" to JR" , 604 

Continuous least squares, 530 
Contraction Mapping Theorem, 604 
Convergence 

cubic, 86 
linear, 79 
order of, 78 
quadratic, 79 
rate of, 36 
related to continuity, 3 

• 

superlinear, 91, 621 
of vectors, 422 

convergence . 
accelerating, 86 

Convergent 
matrix, 435 
multistep method, 328 
one-step method, 324 
sequence, 3 
vectors, 418 

Convex set, 251 
Cooley and Tukey algorithm, 538 
Coordinate function, 602 
Corrugated roofing problem, 166,206 
CowelJ,43 
Cramer's rule, 387 

operation counts, 388 
Crank-Nicolson algorithm, 713 
Crank-Nicolson method, 712 
Crash-survivability problem, 496 
Crout Factorization, 700, 709 
Crout Factorization for Tridiagonal 

Linear Systems algorithm, 408 
Crout method, 392, 407 
Cubic convergence, 86 
Cubic Hermite interpolation, 141, 158, 

270 
Cubic Hermite Polynomial, 141,270, 

382 
piecewise, 158 

Cubic spline 
algorithms, 146, 148 

error-bound formula, 152 
interpolant, 143 
interpolation, 142,681 

Cubic Spline Rayleigh-Ritz algorithm, 
684 

Cylinder, temperature in, 717 

d' Alembert, Jean, 529 
Decimal machine number, 19 
Deflation, 95, 570 
Degree of accuracy, of a quadrature 

formula, 191 
Degree of precision, of a quadrature 

formula, 191 
Derivative 

approximation, 167 
definition, 4 
directional, 629 
relative to continuity, 4 

Determinant of a matrix, 383 
operation counts, 387 

Diagonal matrix, 372 
, 

Difference 
backward, 127 
equation, 257 
forward, 87, 126 

Differentiable function, 4 
Differential equation 

approximating, 250, 251, 647 
boundary-value, 646 (see also 

boundary-value problems) 
higher order, 313 
initial-value, 250 (see initial-value 

problems) 
perturbed, 253 
stiff, 334 
system, 313 
well posed, 253 

Diffusion equation, 693 
Direct Factorization of a matrix, 388 
Directional derivative, 629 
Dirichlet boundary conditions, 692 
Discrete least squares, 484, 531 
Disk brake problem, 205 
Distance between matrices, 425 
Distance between two vectors, 421 
Distribution of heat, steady state, 692 
Divided difference, 123 

first, 123 
kth, 123 
related to derivative, 137 

Doolittle's method, 392, 407 
Double integral, 227 
Drug concentration problem, 77 

833 

Economization of power series, 514 
Eigenvalue 

approximating, 551 
bound for, 556 
definition, 430 

Eigenvector 
approximating, 568, 595 
definition, 431 
linear independence, 553 
orthonormal, 555 

EISPACK, 43, 598 
Electrical circuit problems, 178, 265, 

306,316,344 
Electrical transmission problem, 726 
Electrostatic potential problem, 653 
Elliptic partial differential equation, 

692,694 
Energy utilization of sphinx moth 

larvae problem, 497 
Equal matrices, 370 
erf, 17, 121,212 
Error 

absolute, 20 
in computer arithmetic, 18 
control, 282, 301 
exponential growth, 33 
function, 17, 212 
global, 324 
linear growth, 33 
local, 266 
local truncation, 266, 293, 325, 

327 
relative, 20 
roundoff, 18,20, 173, 177 
truncation, II 

Error function, 121 
Escape velocity problem, 246 
Euclidean norm, 40, 419,425 
Euler, Leonhard, 529 
Euler's 

algorithm, 257 
constant, 39 
method 

definition, 256 
error bound, 260, 263 

modified method, 276 
Explicit method, 192, 290 
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Exponential error growth, 33 
Exponential least squares, 491 
Extended midpoint rule, 200 
Extended Simpson's rule, 199 
Extended trapezoidal rule, 200 
Extrapolation 

Bulirsch-Stoer, 312 
derivatives, 178 
Gragg, 307 
initial-value problem, 307 
integration, 207 
linear boundary-value problem, 664 
midpoint method, 307 
nonlinear boundary-value problem, 

670 
Richardson's, 178, 664, 670 

Extrapolation Algorithm, 309 
Extreme Value Theorem, 5 

Factorization of a matrix, 388 
False position 

method of, 72 
Fast Fourier Transform Algorithm, 

544 
Fast Fourier transform method, 538 
Fast Fourier transform, operation 

counts, 540 
Fibonacci (Leonardo of Pisa), 101 

problem, 101 
sequence, 39 

Finite-difference method, 695 
linear, 660 
nonlinear, 667 

Finite-digit arithmetic, 22 
Finite-Element Algorithm, 734 
Finite-element method, 726 
First divided difference, 123 
Five-point formula, 171 
Fixed point 

definition, 55, 604 
iteration, 59 

Fixed Point Iteration Algorithm, 
59 

Fixed Point Theorem, 61, 605 
Floating-point form, 19 
Flow of heat in a rod, 692 
Food chain problem, 382 
Pood supply problem, 358 
FORTRAN, 40 
Forward difference 

formula, 126, 168 

method, 705 
notation, 87, 126 

Fourier, Jean Baptiste Joseph, 529 
Fourier series, 530 
Fourth-order Adams-Bashforth 

technique, 290 
Fourth-order Adams-Moulton 

technique, 291 
Fraction 

continued, 522 
Fredholm integral equation, 359 
Free boundary, 143 
Fresnel integrals, 220 
Frobenius norm of a matrix, 429 
Fruit fly problem, 413, 559 
Function 

average value, 9 
Bessel, 114 
continuous, 2,604 
coordinate, 602 
differentiable, 4 
differentiable on a set, 4 
error, 17, 121,212 
limit, 2, 603 
normal density, 205 
orthogonal, 503 
orthonormal, 503 
rational, 517 
signum. 53 
weight, 502 

Functional iteration, 59 
Fundamental Theorem of Algebra, 91 

Galerkin method, 686 
GAUSS, 45 
Gauss-Jordan method, 357 

operation counts, 358 
Gauss-Seidel iteration, 698 
Gauss-Seidel Iterative Algorithm, 442 
Gauss-Seidel iterative method, 441 
Gauss-Seidel method for nonlinear 

systems, 608 
Gaussian Double Integral Algorithm, 

234 
Gaussian elimination 

description, 348 
operation count, 354 
with Partial Pivoting, 362 
with Scaled Partial Pivoting, 363 

Gaussian Elimination with Backward 
Substitution Algorithm, 351 

Gaussian Elimination with Partial 

Pivoting Algorithm, 362 
Gaussian Elimination with Scaled 

Partial Pivoting Algorithm, 364 
Gaussian-Kronrod method, 247 
Gaussian quadrature 

for double integrals, 231 
for single integrals, 220 
for triple integrals, 236 

Gaussian transformation matrix, 389 
Gaussian Triple Integral Algorithm, 

236 
General purpose software, 40 
Generalized Rolle's Theorem, 10 
Gerschgorin Circle Theorem, 556 
Global error, 324 

related to local truncation error, 325, 
328 

Golden ratio, 39 
Gompertz population growth, 77 
Gradient, 629 
Gragg extrapolation, 307 
Gram-Schmidt process, 503 
Graphics, computer, 158, 161 
Gravity flow discharge problem, 619 
Great Barrier Reef problem. 496 
Grid lines, 695 
Growth of error 

exponential, 33 
linear, 33 

Guidepoint, 159 

Harmonic series, 39 
Heat distribution problem, 697 
Heat distribution, steady state, 692 
Heat equation, 691, 692 
Heat Equation Backward-Difference 

Algorithm, 709 
Heat flow in a rod, 692, 717 
Hermite Interpolation Algorithm, 138 
Hermite piecewise cubic polynomial, 

141, 158,270 
Hermite polynomial, 134 

cubic, 382 
divided difference form, 137 
error formula, 135 

Heun's method, 276 
Higher derivative approximation, 172 
Higher order differential equation, 313 
Higher order initial-value problem, 313 
Hilbert matrix, 464, 500 
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History problem, 265 
Homotopy method, 644 
Hompack, 644 
Hooke's Law, 483, 494 
Homer's Algorithm, 94 
Homer's Method, 92 
Hotelling deflation, 575 
Householder Algorithm, 582 
Householder method, 577 
Householder transformation, 577 
Hyperbolic partial differential 

equation, 693, 718 

Ideal gas law, I, 30 
Identity matrix, 372 
IEEE Arithmetic Standard, 18 
Ill-conditioned matrix, 456 
IML++,481 
Implicit method, 194, 290 
Implicit trapezoidal method, 338 
Improper integral, 241 
IMSL,44, 102, 164,247,342,415, 

482,548,598,644,689,742 
Induced matrix norm, 425 
Initial-value problem 

A-stable method, 338 
Adams Predictor-Corrector 

algorithm, 298 
Adams Variable step-Size 

Preuictor-Corrector algorithm, 
303 

Adams-Bashforth method, 290, 294 
Adams-Moulton method, 291,295 
adaptive methods, 282 
backward Euler method, 341 
Bernoulli equation, 289 
characteristic polynomial, 329, 337 
consistent method, 324, 328 
convergent method, 324, 328 
definition, 250, 251 
error control, 282, 30 I 
Euler method. 256 
Euler's algorithm. 257 
existence, 252 
extrapolation, 307 
Extrapolation algorithm, 309 
Heun's method, 276 
higher order, 313 
Implicit trapezoidal method, 338 
local truncation error, 266, 293, 327 
m-step multistep method, 290 

midpoint method, 276, 307 
Milne's method, 299 
Milne-Simpson method, 300 
modified Euler method, 276 
multistep method, 290 
perturbed, 253 
predictor-corrector method, 297 
region of absolute stability, 337 
root condition, 331 
Runge-Kutta order four, 277 
Runge-Kutta Order Four algorithm, 

278 
Runge-Kutta order two, 276 
Runge-Kutta-Fehlberg algorithm, 

285 
Runge-Kutta-Fehlberg method, 284 
Simpson's method, 299 
stable method, 325 
stiff equation, 334 
Strong stability, 331 
Taylor method, 266 
Trapezoidal Method Algorithm, 

339 
uniqueness, 252 
unstability, 331 
weak stability, 331 
well-posed problem, 253 

Inner product, 465 
Integral 

improper, 241 
multiple, 227 
Riemann, 8 

Integration 
composite, 196 
Midpoint rule, 194 
Simpson's rule, 190, 192 
Simpson's three-eighths rule, 192 
trapezoidal rule, 188, 192 

Intermediate Value Theorem, 10 
Interpolation 

cubic Hermite, 270 
cubic spline, 142 
description, 105 
Hermite polynomial, 134 
inverse. 121 
iterated inverse, 121 
Lagrange polynomial, 109 
linear, 108 
Neville's method, 116 
Taylor polynomial, 106 
trigonometric, 164 
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zeros of Chebyshev polynomials, 
512 

Inverse interpolation, 121 
Inverse matrix, 374 
Inverse power method, 567 
Inverse Power Method algorithm, 568 
Invertible matrix, 374 
Isotropic, 691 
Iterated inverse interpolation, 121 
Iterative refinement, 454, 459 
Iterative Refinement algorithm, 460 
Iterative technique 

definition, 437 
Gauss-Seidel, 441 
Jacobi, 439 

ITPACK,481 

Jacobi Iterative Algorithm, 440 
Jacobi iterative method 

description, 439 
Jacobi method for a symmetric matrix, 

596 
Jacobian matrix, 613 
J enkins-Traub method, 102 

kth divided difference, 123 
Kahan's Theorem, 449 
Kentucky Derby problem, 155 
Kirchhoff's Laws, 178, 265, 316, 344 

II norm 
of a matrix, 429, 433 
of a vector, 428 

12 norm 
of a matrix, 425 
of a vector, 419 

100 norm 
of a matrix, 425,426 
of a vector, 419 

Ladder problem, 100 
Lagrange polynomial 

definition, 109 
error formula, III 
recursively generating, 115 

Laguerre polynomial, 246, 506 
Laguerre's method, 102 
LAPACK, 44, 414, 481, 598 
Laplace equation, 653, 692 
LDL' factorization, 403 
LDL! Factorization Algorithm, 404 
Leading principal submatrix, 402 
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Least squares 
continuous, 498, 530 
discrete, 484, 531 
exponential, 491 
general, 486 
linear, 486 

Index 

Least-change secant update methods, 
621 

Legendre polynomial, 223, 505 
Levenberg-Marquardt method, 644 
Light diffraction problem, 220 
Limit of a function 

from JR" to JR, 604 
from JR" to JR" , 604 
from JR to JR, 2 

Limit of a sequence, 3, 422 
Linear approximation, 486 
Linear basis functions, 675, 728 
Linear boundary value problem, 647 
Linear convergence, 79 
Linear error growth, 33 
Linear Finite-Difference Algorithm, 

662 
Linear finite-difference method, 660 
Linear interpolation, 108 
Linear Shooting Algorithm, 649 
Linear shooting method, 648 
Linear system 

backward substitution, 346, 348 
definition, 345 
reduced form, 346, 372, 388 
simplifying, 345 
triangular form, 346, 349, 372, 388 

Linearly dependent 
functions, 500 
vectors, 551 

Linearly independent 
eigenvectors, 553 
functions, 500 
vectors, 551 

UNPACK, 44, 481 
Lipschitz condition, 17, 251, 313 
Lipschitz constant, 17, 251 
L L' factorization, 403 
Local error, 266 
Local truncation error 

of multistep methods, 293, 327 
of one step method, 266, 325 
related to global error, 325, 328 
of Runge-Kutta methods, 279 

Logistic population growth, 77, 312 

Long real, 18 
Lower triangular matrix, 372, 388 
LV Factorization Algorithm, 392 
LV factorization, operation counts, 

397 
LU of matrices, 388 

m-step multistep method, 290 
Machine number, 18 
Maclaurin 

polynomial, 11 
series, II 

Mantissa, 18 
Maple, 40, 46 

abs, 14 
addrow, 352 
backsub,353 
chebyshev,527 
chopping arithmetic, 30 
cond,457 
convert, 14,520 
definite, 403 
diff,6 
Digits, 14 
dsolve,255 
Eigenvals,432 
evalf,7 
evalm,367 
fsolve, 7, 77, 103 
gausselim,353 
implicitplot,616 
implicitplot3d,617 
int, 14 
inverse, 378 
mat add, 378 
matrix, 352 
middle sum, 202 
mtaylor,273 
muIr ow, 385 
multiply, 378 
options, 608 
orthopoly,526 
plot,6 
plots,6 
polynom, 14 
positive_def,403 
ratpoly,520 
readlib(spline), 165 
restart, 527 
rhs,255 
rounding arithmetic, 22 

Runge-Kutta for higher order 
equations, 321 

Runge-Kutta-Fehlberg for higher 
order equations, 321 

Runge-Kutta-Fehlberg for systems, 
318 

scalarmul,378 
series, 520 
simplify, 39 
simpson, 201 
solve, 77 
spline, 165 
student, 201 
swaprow,353 
taylor, 14 
transpose, 378 
trapezoid,201 
trunc,30 
with(linalg),352 
with(plots),6 
with(student),201 

Mathematica, 40 
MATLAB, 40, 45, 103, 164,415 
Matrix 

addition, 370 
augmented, 348 
band, 406 
characteristic polynomial, 430 
Choleski's algorithm, 404 
Choleski's method, 392 
cofactor of, 383 
complete (or maximal) pivoting, 

368 
condition number, 456 
convergent, 435 
Cramer's rule, 387 
Crout Factorization for Tridiagonal 

Linear Systems algorithm, 408 
Crout's method, 392, 407 
definition, 346 
determinant, 383 
diagonal, 372 
distance between, 425 
Doolittle's method, 392,407 
eigenvalue, 430 
eigenvector, 431 
equal,370 
equivalent statements, 385 
factorization, 388 
Frobenius norm, 429 
Gauss-Jordan method, 357 
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Gauss-Seidel Iterative algorithm, 
442 

Gaussian Elimination with Partial 
Pivoting algorithm, 362 

Gaussian Elimination with Scaled 
Partial Pivoting algorithm, 364 

Gaussian transformation, 389 
Hessenberg, 584 
Hilbert, 464, 500 
identity, 372 
ill-conditioned, 456 
induced norm, 425 
inverse, 314 
invertible, 314 
Iterative Refinement algorithm, 460 
Jacobi Iterative algorithm, 440 
Jacobian, 613 
II norm, 429 
12 norm, 425, 433 
100 norm, 425, 426 
LDL' factorization, 403 
L D L' Factorization algorithm, 

404 
L L' factorization, 403 
lower triangUlar, 372, 388 
LU factorization, 388 
LV Factorization algorithm, 392 
minor, 383 
multiplication, 371 
natural norm, 425 
nonsingular, 314 
norm,424 
orthogonal, 553 
partial pivoting, 362 
permutation, 393 
persymmetric, 559 
pivot element, 351 
pivoting, 359 
positive definite, 400, 403, 454, 555, 

709,113 
product, 371 
P'LU factorization, 394 
QR algorithm, 592 
reduced to diagonal, 555 
reduced to tridiagonal, 571 
rotation, 581 
scalar multiplication, 310 
scaled partial pivoting, 363 
similar, 554 
similarity transformation, 554 
singular, 374 

SOR algorithm, 450 
sparse, 418 
spectral radius, 433 
square, 372 
strictly diagonally dominant, 398, 

709,713 
submatrix, 383 
sum, 310 
symmetry, 377 
transpose, 377 
transpose facts, 318 
tridiagonal, 401, 109, 713 
unitary, 555 
upper Hessenberg, 584 
upper triangular, 372, 388 
well-conditioned, 456 
zero, 310 

Maximal column pivoting, 362 (see 
also partial pivoting) 

Maximal pivoting, 368 
Maximum water temperature for 

hydra problem, 620 
Mean Value Theorem, 5 
Mean Value Theorem for Integrals, 

9 
Mesh points, 251, 695 
Method of collocation, 681 
Method of false position, 72 
Method of False Position Algorithm, 

73 
Method of steepest descent, 461, 

628 
Midpoint method, 216, 301 
Midpoint rule, 194 

composite, 200 
error term, 194 

Milne's method, 299 
stability of, 332 

Milne-Simpson method, 300 
stability of, 332 

Minimax, 486 
Minor, 383 
MINPACK, 644 
Modified Euler method, 216 
Monic polynomial, 510 
mth-order system, 313 
MUller's Algorithm, 97 
MUller's method, 95 
Multiple integrals, 227 
Multiplicity of a root, 82 
Multistep method, 290 

837 

n + I-point derivative formula, 169 
n + I-point closed Newton-Cotes 

formula, 191 
NAG, 45, 102, 164,248,343,416, 

482,548,599,644,690,742 
NASTRAN, 742 
Natural boundary, 143 
Natural Cubic Spline Algorithm, 146 
Natural matrix norm, 425 
Natural spline, 143 
Nested arithmetic, 26, 92 
Nested polynomial, 26 
Netlib,44, 102, 164,343,549 
Neville's Iterated Interpolation 

Algorithm, 118 
Neville's method, 116 
Newton backward divided-difference 

formula, 121 
Newton backward-difference formula, 

127 
Newton forward divided-difference 

formula, 126 
Newton forward-difference formula, 

126 
Newton interpolatory 

divided-difference formula, 
124 

Newton's Interpolatory 
Divided-Difference Algorithm, 
124 

Newton's method 
convergence criteria, 69 
definition, 66 
description, 66 
modified for multiple roots, 84, 86 
for nonlinear systems, 613 
quadratic convergence of, 82, 611 
for stiff equations, 338 

Newton's Method Algorithm, 66 
Newton's method for nonlinear 

boundary-value problem, 655 
Newton's Method for Systems 

Algorithm, 613 
Newton-Cotes closed formulas, 192 
Newton-Cotes open formulas, 194 
Newton-Raphson Algorithm, 66 
Newton-Raphson method, 66 
Noble beast problem, 155 
Nodes, 110, 142,728 
Nonlinear Finite-Difference 

Algorithm, 669 
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Nonlinear finite-difference method, 
667 

Nonlinear Shooting Algorithm, 656 
Nonlinear shooting method, 653 
Nonlinear systems, 602 
Nonsingular matrix, 374 
Norm equivalence of vectors, 424 
Norm of a matrix 

definition, 424 
Frobenius, 429 
induced, 425 
II, 429 
12 ,425,433 
lXi, 425, 426 
natural, 425 

Norm of a vector 
algorithm, 40 
definition, 418 
II, 428 
12,419 

locH 419 
Normal density function, 205 
Normal equations, 487, 489, 499 
Numerical analysis homework/final 

grades problem, 495 
Numerical differentiation 

Il + I-point formula, 169 
backward-difference formula, 168 
description, 167 
extrapolation applied to, 180 
five-point formula, 171 
forward-difference formula, 168 
higher derivatives, 172 
instability, 175 
Richardson's extrapolation, 178 
roundoff error, 173, 177 
three-point formula, 171 

Numerical integration 
adaptive quadrature, 213 
Adaptive Quadrature algorithm, 216 
Clenshaw-Curtis, 248 
closed formula, 192 
composite, 196 
composite midpoint rule, 200 
composite Simpson's rule, 199 
composite trapezoidal rule, 200 
double integral, 227 
explicit formula, 192 
extrapolation, 207 
Gaussian quadrature, 220, 231, 

236 

Gaussian-Kronrod,247 
implicit formula, 194 
improper integral, 241 
midpoint rule, 194 
multiple integral, 227 
Romberg, 207 
Simpson's rule, 190, 192 
Simpson's three-eighths rule, 192 
stability, 203 
trapezoidal rule, 188, 192 
triple integral, 236 

Numerical quadrature, see numerical 
integration 

Numerical software, 40 

o notation, 36 
Oak leaves problem, 121, 155 
One-step methods, 289 
Open formula, 194 
Open method, 192, 290 
Open Newton-Cotes formulas, 194 
Operation counts 

Cramer's rule, 388 
determinant, 387 
factorization, 388, 397 
fast Fourier transform, 540 
Gauss-Jordan, 358 
Gaussian elimination, 354 
LU factorization, 397 
matrix inversion, 381 
scaled partial pivoting, 367 

Ordinary annuity equation, 76 
Organ problem, 725 
Orthogonal matrix, 553 
Orthogonal polynomials, 498 
Orthogonal set 

of functions, 503 
of vectors, 553 

Orthonormal set 
of functions, 503 
of vectors, 553 

Osculating polynomial, 134 
Ostrowski-Reich Theorem, 449 
Over-relaxation method, 447 
Overflow, 19 

7T, approximating, 186 
Pade approximation technique, 

518 
Pade Rational Approximation 

Algorithm, 520 

Parabolic partial differential equation, 
692, 704 

Parametric curve, 156 
Partial differential equation 

Backward-Difference method, 708 
Centered-Difference formula, 711 
Crank-Nicolson algorithm, 712, 713 
elliptic, 692, 694 
finite element method, 726 
Finite-Difference method, 695 
Finite-Element algorithm, 734 
Forward-Difference method, 705 
Heat Equation Backward-Difference 

algorithm, 709 
hyperbolic, 693, 718 
parabolic, 692, 704 
Poisson Equation Finite-Difference 

algorithm, 699 
Richardson's method, 711 
Wave Equation 

Partial pivoting, 362 
Particle in a fluid problem, 205 
Particle problem, 55 
Pascal, 40 
Pendulum problem, 249, 323 
Permutation matrix, 393 
Persymmetric matrix, 559 
Perturbed problem, 253 
Picard method, 256 
Piecewise cubic Hermite polynomial, 

141, 158,270 
Piecewise-linear basis functions, 

675 
Piecewise Linear Rayleigh-Ritz 

algorithm, 678 
Piecewise-polynomial approximation, 

141 
Pipe organ problem, 725 
Pivot element, 351 
Pivoting 

complete, 368 
maximal, 368 
partial, 362 
scaled partial, 363 
strategies, 359 
total, 368 

Plate deflection problem, 666 
Plate sinkage problem, 600, 619 
Poisson equation, 692, 694 
Poisson Equation Finite-Difference 

Algorithm, 699 
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Polynomial 
algebraic, 91, 105 
Bezier, 161 

Index 

Bernstein, 122, 163 
Bezier polynomials, 382 
characteristic, 337, 430 
Chebyshev, 507 
definition, 91 
evaluation, 26, 92 
Hermite, 134 
interpolating, 109 
Lagrange, 109 
Laguerre, 246,506 
Legendre, 223, 505 
Maclaurin, 1 1 
monic, 510 
nested, 26, 92 
Newton, 124 
orthogonal, 498 
osculating, 134 
roots of, 92 
Taylor, 11, 106, 273 
trigonometric, 530 
zeros of, 92 

Population growth, 47, 104, 121, l33, 
155,323,381,437,610 

Gompertz, 77 
logistic, 77, 312 

Population problem, 47, 77, 104, 121, 
133,155,312,323,381,437, 
610 

Positive definite matrix, 400, 403, 454, 
555, 709, 713 

Power method, 560 
Power Method Algorithm, 562 
Power method for symmetric matrices, 

565 
Power series, economization of, 514 
Precision, degree of, 191 
Preconditioned Conjugate Gradient 

Algorithm, 474 
Predator-Prey problem, 323 
Predictor-Corrector Algorithm, 

298 
Predictor-corrector method, 297 
Program 

general-purpose, 40 
special-purpose, 40 

Projectile problem, 272 
Pseudocode, 31 
P'LV factorization, 394 

QR Algorithm, 592 
QR method, 585 
QUADPACK, 247 
Quadratic convergence 

definition, 79 
Newton's method, 82, 611 
Steffensen's method, 88 

Quadratic formula, 24 
Quadratic spline, 142, 154 
Quadrature, 186 

Clenshaw-Curtis, 248 
degree of accuracy, 191 
degree of precision, 191 
Gaussian, 220, 231, 236 
Gaussian-Kronrod,247 

Quasi-Newton algorithms, 621 
Quasi-Newton methods, 620 

Racquetball problem, 77 
Random walk problem, 453 
Rashevsky, 265 
Rate of convergence, 36 
Rational function, 517 
Rational function approximation, 517 
Rayleigh Ritz method, 672 
Reduced form system of equations, 

346 
Region of absolute stability, 337 
regula falsi method, 72 
Relative error, 20 
Relaxation method, 447 
Remainder term, 11 
Residual vector, 446, 454 
Reverse shooting method, 651 
Richardson'S extrapolation, 178,664, 

670 
Richardson's method, 711 
Riemann integral, 8 
Rolle's Theorem, 4 
Romberg Algorithm, 210 

cautious, 211 
Romberg integration, 207 
Root condition, 331 
Roots of equations 

bisection method, 48 
cubic convergence, 86 
definition, 48 
method of false position, 72 
Muller's Algorithm, 97 
Miiller's method, 95 
multiple, 82 
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1" ewton's method, 66 
Newton's method for systems, 613 
Secant method, 70 
simple, 82 

Roots of functions, complex, 95 
Rotation matrix, 587 
Rounding arithmetic, 20 

in Maple, 22 
Roundofferror, 18,20,173,177 
Row vector, 347 
Ruddy duck problem, 149 
Runge-Kutta method, 272 

local truncation error, 279 
Runge-Kutta Method for Systems of 

Differential Equations 
Algorithm, 315 

Runge-Kutta Order Four Algorithm, 
278 

Runge-Kutta order four method, 277 
Runge-Kutta order two method, 276 
Runge-Kutta-Fehlberg Algorithm, 285 
Runge-Kutta-Fehlberg method, 284, 

343 
Runge-Kutta-Merson method, 343 
Runge-Kutta-Verner method, 288, 

342 

Scalar product, 370 
Scaled partial pivoting, 363 

operation counts, 367 
Scaled-column pivoting, 363 
Scaling factor, 159 
Schur's Theorem, 555 
Search direction, 466 
Secant Algorithm, 70 
Secant method 

definition, 70 
for nonlinear boundary-value 

problem, 654 
order of convergence, 86 
for stiff equations, 338 

Sequence 
Fibonacci, 39 
limit of, 3, 422 

Series 
Fourier, 530 
harmonic, 39 
Maclaurin, I 1 
Taylor, 11 

Set, convex, 251 
Sherman-Morrison Theorem, 622 
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Shooting method 
linear equation, 648 
nonlinear equation, 653 

Significant digits, 21 
Significant figures, 21 
signum function, 53 
Silver plate problem, 703, 741 
Similar matrices, 554 
Similarity transformation, 554 
Simple root, 82 
Simple zero, 82 
Simpson's composite rule, 199 
Simpson's Double Integral Algorithm, 

233 
Simpson's method, 299 
Simpson's rule, 190, 192 

adaptive, 213 
composite, 199 
error term, 192 

Simpson's three-eighths rule, 192 
Singular matrix, 374 
SLAP, 481 
SOR Algorithm, 450 
SOR method 

definition, 447 
in heat equation, 709 
in Poisson equation, 701 

Sparse matrix, 418 
Special-purpose software, 40 
Spectral radius 

definition, 433 
relation to convergence, 435, 436 

Speed and distance problem, 140, 155 
Sphinx moth problem, 627 
Spread of contagious disease, 289 
Spring-mass problem, 220 
Square matrix, 372 
Stability, roundoff error, 203 
Stability of initial-value techniques, 

324 
Stable algorithm, 33 
Stable method, 203, 325 
Steady state heat distribution, 692 
Steady state term, 334 
Steepest Descent Algorithm, 632 
Steepest descent method, 467, 628 
Steffensen's Algorithm, 88 
Steffensen's method, 88 
Stein Rosenberg Theorem, 445 
Step size, 257 
Stiff differential equation, 334 

Stirling's formula, 129 
Stoichiometric equation, 281 
Strictly diagonally dominant matrix, 

398,709,713 
Strongly stable method, 33 I 
Sturm-Liouville system, 550 
Submatrix 

definition, 383 
leading principal, 402 

Successive over-relaxation (SOR) 
method, 447 

Superlinear convergence, 91, 621 
Surface area problem, 240 
Symmetric matrix, 377 
Symmetric Power Method Algorithm, 

565 
Synthetic division, 92 
System of differential equations, 250, 

313 
System of linear equations, 345 
System of nonlinear equations, 

602 

Taconite problem, 496 
Taylor method for initial-value 

problem, 266 
Taylor polynomial 

in one variable, II, 106 
in two variables, 273 

Taylor series, 11 
Taylor's Theorem 

multiple variable, 273 
single variable, 11 

Temperature in a cylinder problem, 
717 

Templates, 48 I 
Terrain vehicles problem, 77 
Test equation, 335 
Three-point formula, 171 
Total pivoting, 368 
Transformation similarity, 554 
Transient term, 334 
Transmission line problem, 726 
Transpose facts, 378 
Transpose matrix, 377 
Trapezoidal method, 338 
Trapezoidal rule, 188, 192 

adaptive, 219 
composite, 200 
error term, 192 
extrapolation, 209 

Trapezoidal with Newton Iteration 
Algorithm, 339 

Triangular system of equations, 346, 
349 

Tridiagonal matrix, 709, 713 
definition, 407 
reduction to, 577 

Trigonometric interpolation. 164 
Trigonometric polynomial 

approximation, 529,530 
Triple integral, 236 
Trough problem, 54 
Truncation error, 11 
Two-point boundary-value problem, 

646 

Unconditionally stable, 707, 711 
Under-relaxation method, 447 
Underflow, 19 
Unitary matrix, 555 
Unstable algorithm, 33 
Unstable method, 175, 331 
Upper Hessenberg matrix, 584, 

594 
Upper triangular matrix, 372, 388 

Van der Pol equation, 660 
variable step-size multistep method, 

301 
Variational property, 673 
Vector 

12 norm of, 419 
100 norm of, 419 
space, 370 

Vector(s) 
A-orthogonal set, 467 
column, 347 
convergent, 418 
covergence, 422 
definition, 347 
distance between, 421 
Euclidean norm of, 4 I 9 
11 norm of, 428 
12 norm of, 419 
100 norm of, 419 
linearly dependent, 551 
linearly independent, 551 
norm equivalence of, 424 
norm of, 418 
orthogonal set, 553 
orthonormal set, 553 



residual, 446, 454 
row, 347 

Vibrating beam, 550 
Vibrating string, 693 

Index 

Viscous resistance problem, 205 

Water flow problem, 281 
Wave equation, 693 
Wave Equation Finite-Difference 

Algorithm, 721 
Weak fonn method, 686 
Weakly stable method, 331 

Weierstrass Approximation Theorem, 
105 

Weight function, 502 
Weighted Mean Value Theorem for 

Integrals, 9 
Well-conditioned matrix, 456 
Well-posed problem, 253 
Wielandt's Deflation, 571 
Wielandt's Deflation Algorithm, 572 
Winter moth (Operophtera bromata L.. 

Geometridae) problem, 121, 
155 

Xnetlib,44 

Zeros of functions 
complex, 95 
definition, 48 
multiplicity of, 82 
polynomial, 92 
simple, 82 

Zeroth divided difference, 123 
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