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Preface

The ereative process of mathemaitics, both historically and individually,
may be described as a counterpoint between theorems and examples. Al-
though it would be hazardous to claim that the creation of significant
examples is less demanding than the development of theory, we have dis-
covered that focusing en examples is a particularly expeditious means of
involving undergraduate mathematics students in actual research. Not only
ar¢ examples more concrete than theorems-—and thus more accessible—but
they cut across individual theories and make it both appropriate and neces-
sary for the student to explore the entire literature in journals as well as
texts. Indeed, much of the content of this book was first outlined by under-
graduate research teams working with the authors at Saint Olaf College
during the summers of 1967 and 1968.

In compiling and editing material for this book, both the authors and
their undergraduate assistants realized a substantial increment in topologi-
cal insight as a direct result of chasing through details of each example. We
hope our readers will have a similar experience. Each of the 143 examples in
this book provides innumerable eoncrete illustrations of definitions, theo-
rems, and general methods of proof. There is no better way, for instance, to
learn what the definition of metacompactness really means than to try to
prove that Niemytzki’s tangent disc topology is not metacompact.

The search for counterexamples is as lively and creative an activity as
can be found in mathematics research. Topology particularly is replete
with unreported or unsolved problems (do vou know an example of a
Hausdorfi topological space which is separable and locally compaet, but
not o-compact?), and the process of modifying old examples or creating
néw ones requires 8 wild and unizhibited geometric imagination, ¥ar from
Providing all relevant examples, this beok provides a context ip which to
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wsk new questions and seck new answers. We hope that each reader wil]
share {and not just vicariously) in the excitement of the hunt.

Counterezamples in Tapology was originally designed, not ag a fext, but
as 4 course supplement and reference work for undergraduate and graduate
students of general topology, as well as for their teachers. For such use, the
reader should scan the book and stop oceasionally for a guided tour of the
various examples. The authors haye used it in this manner as supplement,
to a standard textbook and found it to be a valuable aid.

There are, however, two rather different circumstances under which this
monograph could most appropriately be used as the exclusive reference in
a topology cottrse. An instructor who wishes to develop his own theory in
class lecture may well find the suceinet exposition which precedes the
exumples an appropriate minimal source of definitions and structure. On
the other hand, Counterexamples in Topology may provide éufﬁciantf}' few
proofs to serve as a basia for an induetive, Moore-type topology course. In
either case, the book gives the instruetor the flexibility to design his own
course, and the students a wealth of historically and mathematically sig-
nificant examples.

A counterexample, in its most restricted sense, is an example which dis-
proves a famous conjecture. We choose to interpret, the word more broadly,
particularly since al} examples of gencral topology, espeeially as viewed by
beginning students, stand in, contrast to the canon of the real line. S0 in
this sense any example which in some respect stands opposite to the reals
is truly o Gegenbeispiel. Having said that, we should offer some rationale
for our inclusions angd omissions. ITn general we opted for examples which
were necessary to distinguish definitions, and for famous, well Enown, or
ssnply unusual examples even if they exhibited nonew properties. Of course,
what is well known to others may be unknown to us, 80 we acknowledge
with regret the probabie ciission of certain deserving examples.

In choosing among competing definitions we generally adopted the
strategy of making no unnecessary assumptions, With rave exception
therefore, wo define all properties for all topological spaces, and not just
for, for instance, Bausdorfy spaces.

Often we give only & brief outline or hint of 5 proaf; this iy intentional, but
we caution readers against inferring that we believe the result trivial,
Ruther, in most cuses, we believe the result 4o be o worthwhile exercise
which could be dune, using the hint, in a reasonable period of time. Some
of the more difficult steps are discussed in the Notes at the end of the book,

The examples ure ordered very roughly by their appropriateness to the
definitions as set forth .n the first section. Thisis a very crude guide whose
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oniy reliable consequence is that the numerical order has no curmialinn.
with the difficulty of the example. To aid an instructor in recommending
examples for study, we submit the following informul classifiention hy
sophistieation:

Elementary:  1-25, 27-28, 30-34, 38, 40-47, 40-50, 52-59, 62-64,
73-74, 81, 86-89, 97, 104, 109, 115-123, 132-135, 137,
139-140.
Intermediate: 26, 29, 35-87, 39, 48, 51, 65-72, 75-80, 82-85, D01,
93-96, 98-102, 105-108, 113-114, 124, 126-127, 130, 1346,
138, 141.
Advanced:  60-61, 92, 103, 110 112, 125, 128129, 131, 142, 143.
The discussion of each example is geared to its general level; what is proved
in detail in an elementary example may be assumed without comment in a
more advanced example, 7
In many ways the most useful part of this book for reference may t_:e the
appendiees. We have gathered there in tabular form a composite '{i)mt!.lre
of the most significant counterexamples, se a person who ig searchmg for
Hausdorfl nonregular spaces can easily discover a few. Notes are provided
which in addition to serving as a guide to the Bibliography, provide added
detail for many results assumed in the first two sections. A. collection a?f
problems related to the examples shonld prove most helpful if thf: b{mk is
used as a text. Many of the problems ask for justification of entries in the
various tables where these entries are not explieitly discussed in the example.
Many easy problems of the form ustify the assertion that . . .” have not
been listed, since these can readily be invented by the instruetor according
to his own taste.
In most instances, the index includes only the initial (or defining) use of
a term. For obvious reasons, no attempt has been made to inelude in the
irclex all oceurrences of a property throughout the book. But the Gfaneral
Reference Chart (pp. 170-179) provides a complete ecross-tabulation of
examples with properties and should facilitate the quick location of exam-
ples of any specifie type. The chart was prepared by an IBM 1130 using a.
program which enables the computer to derive, from the theorem§ dis-
cussed in Part I, the properties for each example which follow logically
from those discussed in Part 11, ‘
Examples are numbered consecutively and referred to by their nur_nbem
in all charts. In these few cases where a minor but inelegant modjﬁcatmrf of
an cxample is needed to produce the desired concatenation of properties,
we use a decimal to indicate a particular peint within an example: 23.17
means the 17th point in Example 23.



The research for this book was begun in the summier of 1967 by an under-
graduate resesrch group working with the authors under a grant from the
National 8cience Foundation. This work was continued by the authors
with support from & grant by the Research Corporation, and again in the
summer of 1968 with the assistanee of an N8 .F. sponsored undergraduate
research group. The students who participated in the undergraduate re-
scarch groups were John Feroe, Gary Gruenhage, Thomas Leffler, Mary
Maleolm, Susan Martens, Linda Ness, Neil Omvedt, Karen Sjocquist, and
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their own example the cfficacy of examples for the undergraduate study of on en s
topology.
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uniziling good humor typed in two vears three complete preliminary edi-
tions of this manuscript.
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SECTION 1
General Introduction

A topological space is a pair (X7} consisting of a set X and 4 eollee-
tion r of subsets of X, called open sets, satisflying the following axioms:

Oy The union of open sets is an open set.
Oz: The finite intersection of open sefs is an open set.
Oyt X and the empty set & are open sets.

The collection r is ealled a topology for X. The topological space (X ) is
sometimes referred to as the space X when it is clear which topology X
carries,

If ry and 7 are topologies for 5 set ¥ » 7t 18 501d to be coarser {or weaker
or smaller) than 7, if every open set of r, is an open set of rs. r, is then said
to be finer (or stronger or larger) thanry, and the relationship is expressed
asny < 7. Of course, as sets of sets, 71 & e, On aset X, the coarsest topaol-
ogy is the indiscrete topology (Example 4}, and the finest topology is the
discrete topology (Example 1). The ordering < is only a partial ordering,
since two topologies may not be comparable (Fxample 8.8).

In a topological space (X ), we define a subset of X to be closed if its
complement is an open set of X » that is, if its complement is an elentent of +,
The De Morgan laws imply that closed sets, being complements of open
sets, have the following properties:

Ci: The interseetion of closed sets is o closed set,.
Cy: 'The finite union of closed sets is a closed set.
Ciyt X and the empty set F are both closed.

It is possible that a subset be both open and closed (Example 1), or that g
subset be neither open nor elosed {Examples 4 and 28).
An F,-set is a set which can be written as the union of a countable col-
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lection of closed sets; a Gj-set is a set which can be written as the inter-
section of a countable collectivn of vpen sets. The complement of every
Fo-set i3 aGy-set and eonversely. Since a single set is, trivially, a countable
collection of sets, closed sets are F,-sets, but not conversely (Example 19).
Furthermore, closed sets need not beGy-sets (Example 19). By complemen-
tation analogous statements hold concerning open sets.

Clesely related to the concept of an open set is that of a neighborhood.
In a space (X7}, a neighborhood N, of a set 4, where A may be a set con-
sisting of a single point, is any subset of X which contains an open set con-
taining 4. (Some authors require that N, itself be open: we call such sets
open neighborhoods.) A set which is a neighborhood of each of its points
Is open since it can be expressed as the union of open sets containing each
of its points,

Any collection § of subsets of X may be used as a subbasis (or subbase)
to generate a topology for X, This is done by taking as open sets of = all
sets which can be formed by the union of finite intersections of sets in §,
together with ¢¥ and X. If the union of subsets in a subbasis § is the set X
and if each point contained in the intersection of two subbasis elements is
also contained in a subbasis element contained in the intersection, § is
called o basis (or base) for . In this case, 7 is the colleetion of all sets which
can be written as a union of elements of $. Finite intersections need not be
taken first, since each finite indtersection is already a union of elements of 8.
If two bases (or subbases) generate the same topology, they are suid o be
equivalent (Example 28). A local basis af the point & € X is a collection
of open neighborhoads of 2 with the property that every open set contain-
ing x contains some set in the collestion.

Given a topolegical space (X,7), a topology r¢ can be defined for any
subset Y of X by taking as open sets in ry every set which is the intersec-
tion of ¥ and an open set in 7. The pair {Vry) is called a subspace of
(X,r), ind ry is called the induced (or relative, or subspace) topology
for ¥'. A set U { ¥ is said to have g particular property relative to Y
(such ns open relative to ¥) if U has the property in the subspace (¥Y,ry).
A set ¥ is said to have a property which has been defined only for topo-
logieal spaces if it has the property when considered as a sttbspuee. If Tor
a particular property, every subspace has the property whenever a space
does, the property is said to be hereditary. If every closed subset when
considered as a subspace has o property whenever the space has that
property, that property is said to be weakly hereditary.

Au important example of a weakly hereditary property is compactness.
A space X iy said to be compact if from cvery open cover, that is, a
colleetinn of open sets whose union containg X, one ean select o finite
subcullection whese union also containg X. Every closed subset } of a
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compact space 1s eompact, since if {0.} is an open cover for Y, {03\
{X — ¥} is an open cover for X, From {0 U (X — ¥, one can choose
a finite subcollection covering X, and from this one ean ehoose an ApPpro-
priate cover for ¥ eoutaining only elements of {0} simply by omitting
X — Y. A compact subset of a eompact space need not be elosed (Fxamples
4, 18).

LiviT PoinTs

A point p is a 1imit point of a set 4 if every open set containing p con-
tuins at least one point of A distinet from p. (If the point of 4 is not re-
quired te be distinet from p, o is called an adherent point.) Particular
kinds of Enit points are w-accumulation peints, for which every open
set containing p must contain infinitely many points of 4, and condensa-
tion points, for which every open set- containing p must contain uneount-
ably many points of A. Examples 8 and 32 distinguish these definitions.

The convcept of limit peint may also be defined for sequences of not
necessarily distinet points. A peint p is said to be a limit peint of a
sequence {a,}, n = 1,2, 3, . . . if every open set containing p eontaing
all but finitely muny terms of the sequence, The sequence is then said to
converge to the point p. A weaker condition on p is that gvery open set
coutaining p contaivs infinitely many terms of the sequence. In this case, p
is called an accumulation point of the sequence. Tt is possible that a
sequence has uneountably many limit points (Example 4), both a lhmit
point and an acemmulation point that is not a limit point (Example 53)
or a single accumulation point thut is not a Hmit point {Example 283,

Sinee n sequence may be thought of as a special type of ordered set, each
sequence has associated with it, i a natural way, the set eonsisting of its
elements. On the other hand, every countaldy infinite set has associated
with it many sequences whose terms are points of the set. There is little
relation between the linmit points of o sequence and the fimit pointy of its
agsociated set. A point mayv be a Hmit point of a sequenee, but only an
adherent point of the nssorinted sot (Fxample 1). If the points of the
sequence are distinet, any accumulation point (and therefore any Hmit
point} of the sequence is an w-eecumulation point of the associasted set.
Likewise, any w-aceumulation point of eouniably infinite set is also an
accumulation point (but not necesswrily a limit point) of any sequence
corresponding to the set. Not too surprisingly, a point may be a limit point
of a countably infinite sot, hut a corresponding sequence may have no
limit or areumulation point (Fxarple 8).

[T .4 is o subset of & topological space X, the derived set of the set A is
the collection of all it poings of A, Generally this includes some points
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of A4 and some points of ity compiement. Any point of 4 not in the derived
set is called ar isolated point since it must be coutained in an open set
containing no other point of A. If A contains no isolated points, it is ealled
dense-in-itself. If in addition A is closed, it s said to be perfect. A
closed set A contains all of its limit points since for every t € (X — A),
X — A4 is an open set containing = and no points of 4. Also, a set eonfaining
its limit points is closed since X — A contains a neighborhood of each of its
points, so is open. Therelore we see that a set is perfect il and only if it
equals its derived set.

CrosurEs aND INTERIORS

The closure of a set A is the set together with its limit points, denoted
by 4 (or A7). Since a set which contains its limit points is closed, the
closure of a set may be defined equivalently as the smallest closed set con-
taining A. Allowing A to be 4 plus its w-sceumulation points or condensa-
tion points would permit A, the elosure of A » ot 10 be closed (Example
50.9), which is clearly undesirable. Analogously, we define the interior of
a set 4, denoted by A°, to be the largest open set contained in A, or equiv-
alently, the union of all open sets in A. Clearly the interior of A equals the
complement of the elosure of the complement of A,

There are at most fourteen different sets that casn be formed from a given
set A by successive applications of the closure and complement aperations.
Indeed, these two operations generate a semigroup with fourteen members.
These sets are intricately related by inclusion and there is an example of a
set A for which all fourteen sets are distinet (Example 32.9). An open sei
for which A = A~ is called regular open, and a closed set for which
A = A° ia called regular closed.

The union of the closures of finitely many sets always equals the closure
of their union; for infinite collections it necd only be eontuined in the
closure of the union (Example 30). Similarly, the intersection of the in-
teriors always contains the interior of the intersection, though they are
equal only for finite intersections {Example 32.4). The interseetion of
finitely many regulsr open setg is regular open and the union of finitely
many regular closed sets is regular closed, but the intersection of regular
closed sets need not be regular closed (Example 32.6), and by eomplemen-
tation, the union of regular open sets need not be reguiar open.

The set of all points which are in the closure of A bt not in the interior
of A is the boundary (or frontier) of 4, denoted by A4 4% s also equal
to AN (X — A}, since A* = 4~ — 4o = A {X — A)y. A set is
closed if and only if it contains its boundary, and is open if and only if it is
disjoint from its boundary. Therefore a set is both open and closed if and
only if its boundary is empty. A boundary is always closed sinee it is the
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intersection of two closed sets. The boundary of the boundary of a set, 4%,
need not equal A®, slthough 4% is always eontained in A® (Example 4},

The exterior A= of a set 4 is the complement of the elosure of 4, or
equivalently, the interior of the complement of 4. In general, A¢ is con-
tained in A, but they need not be cqual {Example 51). The exterior of
the union of sets is always contained in the interseetion of the exteriors,
and similarly, the exterior of the intersection is contained in the union of
the exteriors; equality holds unly for finite unions and intersections.

If two sets A and B have the property that A "NB=ANJ = &, they
are called separated. A set A ina topologieal space X is connected if it
cannot be written as the union of two separated sets.

COUKTABILITY PROPERTIES

A set 4 is said to be dense in a space X if every point of X is a point
or a limit point of A, that is, if X = 4. A subset 4 of X is said to be
nowhere dense in X if no nonem pty open set of X is contained in 4. In
other words, the interior of the closure of a nowhere dense set is empty. A
sel is said to be of first category {or meager} in X if it is the union of &
countable collection of nowhere dense subsets of ¥ . Any other set is said to
be of second category.

A space is said to be separable if it has & countable dense subset. 1t is
said to be second countable {or completely separable, or perfectly
separable) if it has a countable basis. A space is first countable if at
each point p of the space, there is a countable local basis, that is, a count-
able collection of open neighborhoods of p such that each open set eon-
taining p contains a member of the collection. Every second gountable space
ia both first countable and separable. The first countability is obvious,
while the separability follows from the observation that the union of one
point from each basis element forms a countable dense subset. A separable
space need not be even first countable (Example 19).

The property of being first countable and the property of being seeond
countable are both hereditary, but the property of being separable is not
even weakly hereditary (Example 10), A subspace A of a first countable
space is first countable, since the intersection of A with the countable loeal
basis for the space provides a countable local basis for 4 ; similarly, every
subspace of a second countable space is second countable,

Funcrions

Funetions on spaces are important tools for studying properties of spaces
and for constructing new spaces from previously existing ones. A function Fi
from a space (X,7) to a space (¥,e) is snid to be continuous if the inverse
image of every open set is open. This is equivalent to requiring that the



wo IRIEE Dehnitions

inverse image of closed sots be closed, or that for each subset A of X,
JGE) CJ(A). Another equivalent condition is that for each  in Y and each
neighborhood & of J(x), there exists o neighbothood M of 2 sueh that
Te31y C N U this last condition hiolds at a particular point p, the function
15 5aid to be continuous at the point p.

"The compaosition ¢ O [ ¢ continuous whenever FiX>Yadg ¥z
are both continueus, since the inverse image under g of an open set in % is
ae open set in ¥, and the inverse image of that apen set under f is again
a1 apen set in X,

A function f from ( X 73 4o (V,0) is said to be open if the image under fof
each open set is apen, and closed if the image under Jof every closed sot is
elosed. For Wijective (one-ta-gne and onto} functions, the conditions of
heitg open and of being closed are cquivalent, although in general they are
hot equivalent (Example 33). It is not difficult to see that f is an open
bijective function if and only if f1is a continuous bijective funetion,

A bijective funetion f from X ¥ is » homeomorphism if Fand
are eontinuous, or equivalently, if f is both continuous and open, or if
JA) =FA) for all A. X and ¥ are then topologically equivalent or
homeomorphic. Such Spaces are indistinguishable from o tepologicsl
point of view. It is possible, though, that two spaces formed by assigning
lopolngies r and r* to a set X miay be homeomorphic, even though 7 and +*
are nnot identical nor even comparable (Example 8.8). It is also possible
that two sets, A und B,AC XandB C ¥ where Xand ¥ are homeomor-
phi¢, may be topologically equivalent g subspaces, but beesuse of the
bature of X and ¥ there may be no homeemorphism of X and ¥ taking A
onto & (Kxample 32.7).

A property is said to be a topological invariant {or topological
property) if whenever one SPACE possesses a given property, any space
homesmorphic to it also bossesses the same property. Similarly, a property
s called a continueus, open, or closed invariant if any continuous
(respectiveiy open, closed) image of g space possessing the property also
possesses the property. Both separability and compaetness are eonfinuous
invariants.

For o given collection of topological spaces (X wTa), where a € A, an
indexing set, the product space is defined to bo the usual Cartesian prad-
uct IT.X, of all the sets Xa, together with the coarsest topalogy on this set
such that all of the coordinate projeetions «, are continious. This conrsost
topuslomy is ealled the Tychonoft topology and has as g subbusiy all inverse
images under projections of open sets of the X.'s, that is, “apen evlinders”

of the form Y 75, It follows immediately from this deseription of the
subbusts that J2-0X,is eontinuous Hf f O Ta 15 continuous for each a.

HiXm)isu topulogical space, ¥ a seb,and f: XN = ¥aur unction, there

General Introduction 9

is then a finest topology ¢ for ¥ relative to whirh J 18 continuous, We may
deseribe o explicitly by notiug that V € Y is un element of o {open in )’T)
iIr =4V is In 7. This topology, which depends on Fi X =Y and 7, 18
called the identification topology on Y with respect to fand (X 7). N ow
if R is an equivalence relation on X, if p: X — X/R is the usual projeetion
function which maps each € X to its equivalence class {x]in X/R, and
if v Is the identification topology en X/R with respect to p, then (X/R,0)
is called the quotient space of (X 7) by the relation ®. An important
special ease arises whenever 4 Is a subspace of X. pne may then define an
equivalence relation & on X by declaring z ~ yiffz = yorze and y are
bothin A. In this case X/R is usually written X /A4 and is called the Guo-
tient of X by A. .

If (X7} and (V,e} are two topological SEHLCES, the‘ttui?ologx.cai sum
(Z,¢) of X and ¥ is defined by taking for the set Z the disjoint union of the
sets X and V', that is, the union of X and ¥ where X and Y are decreed
to have no common elements, The topology ¢ is defined us.the topology
generated by the union of r and ¢. ¢ is characterized by being the finest
topology on Z in which the inclusion functions from {X.,r) and (V,s) are
continuous. '

FiLrens
A filter on a set X is a colleetion F of subsets of X with the following
properties:
Fy: Every subset of X which enntains a set of F belomgs to F.
Fp: Every finite interseetion of sets of F helongs to F.
Fi: The emply set is not in F.

-

The set X with the filter # is called a set filtered by F,orjusts ﬁFtered set.

If & is o nonempty set of subsets of X which does not contain &, t;_hen
the collection of all subsets of X which eontain some memt)er of &il i5 a
filter # if and only if the intersection of any two sets in ® contains a sot in ®.
Such aset @ is called a base of the Blter F and F is culled the filter gcnerate;d
by &. Equivalently, a subset ® of a filter F is a base (.)f F if and f)nly if
every sct of # contains a sct of &. Two filter bases :u-e.sald to be equlva}elnt
if they generate the same filter. Conditions Fy and T, mnply that the ffumly
of sets I satisfies the finite intersection property, that ks, that the inter-
section of any finite nuimber of sets of the family is nonempty. Conversely,
any family of sotx satisfying the finite intersestion property is a subba-&e
for a flter F since the fuonily together with the finite intersections of its
mernbers s a filter base.

IFF, F” are two filters on the sane set X, F is snid to be finer than F
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(or ¥ is coarser than F) if F C . If also F = F', then I’ is said to be
strictly finer than F, or F strictly coarser than . Two filters are said to
be comparable if one is finer than the other. A filter F” with base @' is
finer than a filter F with a base ® if and only if every set of & contains a
set of @,

If & filter F on X has the property that there is no filter on X which is
strictly finer than F, F is called an ulerafilter on Y. Equivalently, F is an
ultrafilter if and only if for every two disjoint subsets 4 and B of X such
that A\JB €F, then either A CF or B € F. Thus if F is an ultrafilter
and £ C X theneither Eor X — Eis in F. Furthermore, if F and F’ are dis-
tinet, there exists a set 4 such that 4 € Fand A ¢ F';but then X — A
CEF,sowehave A EFand X — 4 € p*.

If n point z is in all the sets of a filter we call it a cluster point; clearly
an ultrafilter can have at most one cluster point. An uitrafilter with s cluster
point p is just the set of all sets eontaining that point and is called 5 fixed,
or principal ultrafilter; an ultrafilier with no cluster point is called free,
or nonprincipal.

If X is a topological space, the set N of all neighborhoods of an arbitrary
nonempty subset 4 of X is called the neighborhood filter of A. Let F
be any filter on X. A point £ € X is said to be o Hmit point of P if F is
finer than the neighborhood filter N of #; F is also said to converge to z.
The point z is said to be a limit of a filter base & on X, and @ is said to
converge to x, if the filter whose base is @ converges to r. Equivalently, a
filter base ® on a topelogical space X is said to converge to x if and only if
every neighborhood of z contains a sot of @,

SECTION 2
Separation Axioms

Tt is often desirable for a topologist to be able to assign to a set of objects
a topelogy about which he knows a great deal in advance. This ean be done
by stipulating that the topology must satisfy axioms in addition to those
generally required of topologieal spaces.

One such collection of conditions is given by means of axioms ealled T}
or separation axioms. These stipulate the degree to which distinet points or
closed sets may be separated by open sets. Let (X,7) be a topologieal
space.

Ty axiom: Ifab € X, there exists an open set (b & 7 such that either
aCOandb d O,orbEVanda ¢ 0.

Ty axiom: If ab € X, there exist open sets 0., Oy € 7 containing a
and b respectively, such that ¢ O, and e ¢ 0,.

T; axiom: If a,b € X, there exist disjoint open sets 0. and ¢ con-
taining & and b respectively.

T; axiom: If A is s ¢closed set and b is & point not in A4, there exist
disjoint open sets 04 and O containing 4 and b respectively.

T, axiom: If 4 and B are disjoint closed sets in X , there exist dia-
joint open sets O, and Oy containing 4 and B respectively.

Ts axiom: If 4 and B are separated setsin X , there exist disjoint open

sets 04 and Op containing A4 and B respectively.

If ( Xr) satisfies a 'T; axiom, X is called o T space. A T space is some-
times called 2 Kolmogorov space and a T, space, a Fréchet space. We
will conform to common practice and call a T, spacc & HausdorfT space.

It follows from the I'; axioms that Ty spaces are characterized by the fact
that no two points can be limit points of each other. Similar] v, T spaces are
characterized by points being elosed, and T, spaces by points being the
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mtersection of their elosed neighborhouods. T, spices may be characterized
either by the fact that each Open set contains a closed neighborhood arcund
each of its points, or by the property that each closed set is the intersection
of its closed neighborhoods, A space is T, iff every open set 0 eontains g
tlosed neighborhood of each closed set contained in 0. It is Ty iff every
subset ¥ contains a closed neighborhood of each set, 4 C Yowhered C ¥,

Each of these axioms is independent of the axioms for a topological space;
in fact there exist, examples of topological spaces which fail to satisfy any T;
axiom (Fxample 21). But they are not independent of each other, sinee
for instance, axiom T, implies axiom T, and axiom T, implies axiom Ty
There are, on the other hand, T spaces which faj] to satisfy every other
separalion axiom (Example 53) and T, spaces which do not satisfy any
separation axiom but the T, axiom {Iixample 18); similaely, there are Ty
spaces which fail to be Ty Tior Ty {Example 75). Furthermore, neither the
Tz axiom nor the T, axiom implies any of the other separation axtoms
{Examples 91.4 and 21.8) ner is either generally implied by them theugh
in compact spaces T, implies 'I'; byt not Te (Example 86). The T's axiom
does however imply T,, though it is independent of the other separation
axioms.

REGULAR anp Noumar Spaces

More important than the separation axioms themselves is the fact that
they can be employed to define successively stronger properties. T'o this
end, we note that if g space Is both T; und T, it is T, while a space that is
both T, and T, must be Ty The former Spaces are called regular, and the
latter normal,

Specifically a space X is said to be regular if and only if it is both aT,
and a T; space; to be normal if and only if it is both & T, and & Ty space;
to be completely normal if and only if it is both o T, and g Ty space,
Thus, we have the following sequence of implications:

Completely normal = Normal = Regular = Hausdorff == T, — T,.

Examples 86, 82, 75, 18, and 53 show that the implications are not revers-
ible. A T, space {or Ty space) must be a T\ space in order to guarantee that
it is a Ty space, for there are Ty spaces (and T, spaces) which are T, and
¥et fail to be T, (Example 55).

"The use of the terms “regular” and “normal” is not uniform throughout
the literature. While some authors use these tepms interchangeably with
“Ty space” and “T, space” respectively, others refer to our Ty space as a
“regular” space and vice versa, and similarly permute YTy space’ and
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“normal.” This sllows the successively stronger properties to correspond to
inereasing T; axioms. We prefer, however, to allow a Tispaceto ben space
satisfying the corresponding T; axiom, and eontent ourselves with labeling
the suceessively stronger properties with unigue terminology.

ComrLETELY HAUspokrr Spacws

We will now introduce twe variations of the separation properties, The
first involves the use of closed neighborhoods in place of open sets in axioms
Ty, T, and T,

Since in normal spaces every open set {J contains a olosed neighborchood
of each closed set contuined in 0, if X is a normal space and if 4 and B are
disjoint ¢losed subsets, there exist open sets (4 and Oy containing 4 and B,
respectively, such that 0, M G5 = &F. So the use of elosed neighborhoods
in place of open sets in the definition of a normal space yields the same
cluss of spaces.

Similarly, if X is a regular space, 4 is a closed subset, and b is a point,
not in 4, then there are open sets 0,4 and 0, containing 4 and b respectively
such that O, N\ G, = . However, there are Hausdorft spaces which have
two points which do not have disjoint closed neighborhvods (Example 75).
‘Thus, we present the following new axiom.

If a and b are two points of a topological space X, there
exist open sets 0, and (3, eontaining e and b, respectively,
such that 0. M 0, = &

Ty axiom:

A Ty space will be called a completely Hausdorff space. Tt is clear that
every regular space is completely Hausdorfl and every completely Hang-
dorff space is ausdorf. Since there are completely Hausdorff spaces which
fail to be regulur {(Example 78}, the completely Hausdorfl property is
intermediate in strength between the properties Hausdorff and regular.

CoMPLETELY REGULAR BPaces

The sccond variation of the separation axioms concerns the existence of
certain continuous, real-valued funetions, A Urysohn function for 4 and
B, disjoint subsets of a space X, is a continuous function £ X [0, 1] such
that /s = 0 and flp = 1.

Urysehi’s famous lemma asserts that if 4 and B are disjoint closed sub-
sets of a T space, there exists 2 Urysohn funetion for 4 and B, Conversely,
if there is 2 Urysohn funetion for any two disjoint closed sets A and B in



However, the statement for regular spaces analogous to Urysahp’s lemina
is false {Example 903, s0 we pive the following new separation axiom:

Ty axiom: IfAisq closed subset of g space X andbis s point not ih
4, there is a Urysohn function for 4 and {b}.

Then every Ty space is a T, space, though not necessarilly a Ty space
(Example 5) unless it s also a Ty space. Such g space, which is both T,
and Ty, will be called completely regular, or Tychonoff, Thus com-
‘pletely regular spaces are regular, Hausdorff, and therefore T,. Since

normal spaces are completely regular. There are, however, regular spases

which fail to be compietely regular {Example 90) and completely regular
spaces which fail to be normal (Example 83).

- Although normal spaces are Ty, T spaces need not be (Example 55).

But if a T, space is also T,, even though possibly not normal, it must

nevertheless be Ty for if the point ? is disjoint from the closed set 4 ina T,

the space is also Ty, we can apply Urysohn’s leramas, to produce a Urysohn
function for A and B. T his function ig clearly a Urysohn function for 4
and {p} also,

We summiarize the T; implications and sounterexamples in Figure 1
where the numbers jp parentheses indicate examples. In addition, we have
the following sunple diagram, in which none of the arrows reverse, and
where the numbers refer to appropriate Counterexamples:

Comp.
norm,

= Normal = Comp. = Regular — mep. = Ty=T, =T,

®) e ey gyl ®)

Funcrions, Probpvucers, anp SuBsPACESs

All the separation Properties are topelogical properties, that is, they are
preserved under homeoinorphisms. However, certain of the properties are
Preserved under less restrictive functions, _

I X and ¥ are fopolegical spaces, and Ji X = Vs a ciosed bijection,
and X is Ty, Ty, Hausdorff, or comipletely Hauusdorft, then v s Ty, Ty,
Hausdorff, or completely Hausdorff, respeetively. In barticular, if r, C 1,
are topologies for X » the identity function from (X 7)) to (X)) is closed ;
hence, if (X, 7i) 8 Ty, Ty, H ausdorff, or completely Hausdorff, then so is
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To (8)
Ty (18
T2 (75}
T23 (78)
Fs 50
T3} (82
Ts (g (16.10)

Ts 35y (553

{ﬁ}_J

(90.5) 182103 (86.6)

(21.8) (53
T =T2=Ty=Tg T34~ Ta
T3 and Ta= TZ}‘- Ts = T4

Tgand Ty = Tii Tgand Ty = Fii

Figure 1.

(Xime). We eall , an expansion of 7; and note that eXPansion preserves
the above separation properties. The stronger separation properties are not,
in general, preserved under expansion (Example 66).

Mest separation properties are, however, preserved under products. If
X =DnX,then Xisa To, T, Hansdorf], vompletely Hausdorff, regular,
or completely regular space if and only if each of the X is To, Ty, Haus-
dorfl, completely Hausdorff, regular, or completely regular, respectively.
If X is normal or completely normal, each X « 1S normal op tompletaly
normal, but the converse does not hold (Example 84).

Normaslity diverges from the remainder of the separation properties in
the case of subspaeces, also. For every subspace of a T, T, Hausdorff, com-
pletely Hausdorf, regular, or completely regular space is Ty, T, Hausdorff,
completely Hausdorf, regular, or completely regular, respectively, But
only closed subspaces of normal spaces need be normal {Example 86).
However, every subspace of a completely normal space is completely nor-
mal, since, a space is eompletely normal iff every subspace is normal. In
fact, a space is T, iff every subspace is T,



Abprtionan SEPARATION ProprenTIEs

Urysohn’s lemma guarantees for T, spaces the existence of a Uryschn
function for any two disjoint cosed sets. Requiring such a function for a
point and a closed set gave the Ty property which was stronger than
axiom T;. When applied to two points this requirement yields a eondition
even stronger than completely Hausdorff (Example 80). We call 5 space
with a Urysohn funetion for any two points a Uryschn space,

A T, space in which every closed set is a G; is often ealled perfectly T,. A
perfectly T space which is ako Ty wiil be ealled perfectly normal. Every
perfectly normal spaee is eompletely normal, but not conversely (Bxam-
ple 243,

Sinee each open sot in Tz space contains a closed neighborhood around
each of its points, every open set in a T space can be written as the union of

tegular open sets. Since the converse is not true (Example 81}, we will eall .

semiregular il T, spaces in which the regular open sets form a basis for
the topology. Semiregular spaces are not neeessarily either completely
Hausdorff {Example 813 or Urysohn {Example 80}.

Ty (&)

T, (18)

Hausdorfr £75)

Semiregular (81)

Completely HausdorfT €80 (126}

Regular (90)

Urysohn N Ee 79)

Completely regular 83

Normal (86)

£43)
Completcly
normal

Figure 2.
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If we ndd these new properties to the basic separation axiom structure,
we ubtain the summary Figure 2. The implications are best illustrated by

Perf.  Comp, = Normal :,C”‘mp':Urysohn
norm.  horm. reg.
y . {
‘omp,
Regular = 1 e,
L §
Semi- = Ty= Ty =T,
regular



SECTION 3
Compactness

A space satisfies n certain separation axiom only if the topology contains
enough open sets to Provide digjoint, ueighborhoods for certain disjoint sets,
Cmnpactness, however, limits the number of open sets in g topology, for
BVery open cover of a com pact topologieal space must contain a finite sub-
cover. This difference between the separation axioms and the various forms
of compactness js ilustrated in the extreme by the double pointed finite
complement fopology (Example 18.7) which is not even To yet does satisly
all the ferms of compactness,

GLoRAL Comractarss Prorenvips

A topologieal space X is compact if every Open cover contains a finjte
subeover; eqiivalently, X ig “ompact if it satisfies the finite intersection
axiom, that is, if every family of closed subsets whoge intersection js cmpty
eontains a finjte subfamily whoge intersection js epty. For if Ao} is any
family of closed sets such {hat MA. = & then (X — A} is an open
cover which has a finite subcover { X — Anlk < al. By De Morgan’s
Law, X — X -4, = & NA, = o Conversely, if the family
0.} is an open cover of X, then sinee MNX -0y = &, there is 2 finite

2

subfamily  such that Lﬂ( X =0, = 2. By De Morgan's Law,
P f

n
kb; ey = X. An equivalent subbasis condition for compactness is given

by Alexander’s Compactiess Theorem: if g topological space X has a
subbasis 8 such that froni every cover of X by clements of S, a finite sub-
cover ean be selected, then X iy compact. The condition is clearly necessary,
but the proof of sufficiency uses the axiom of choige,

18
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Two generalizations of compactness may be obtained by weakening the
requirement, that subcovers be finite. A topological space is called s-com-
pact if it is the vnion of countably many compast sets, while a space ig
ealled Lindelof if every open cover has a countable subeover. Clearly
CVETY compact space is o-compact and évery o-compact space Lindelsf,
These implications are not reversible (Examples 28 and 51).

A topological space is called countably compact if any one of the fol-
lowing equivalent eonditions is satisfied

CCi: Every countable open eover of X has a finite subeover,

CC::  Every infinite set has an w-atccumulation point in X

CCs: Every sequence has an accumulation peint in X,

CCs: Every countable collection of closed sets with an empty inter-
section has y, finite subfamily with an emptly intersection.

Condition CC,, the countable finite intersection axiom, is equivalent to
CCi for the same reasons that the ordinary finite intersection axiom is
equivalent to compaetness. Conditions CC; and CC,; are equivalent to each
other since a point is an w-accumulation point of a countably infinite get
iff it is an aecumulation point of that set viewed as g sequence. Now if the
gpace X has n countable open eover {0;] with no finite subcover, we can

n -
find a set {z,] of distinet peints such that ¢, ¢ \J O, this sequende can
hall

have no w-accumulation poiut in X, for every point of X has a neighbor-
hood, namely one of the 0; o which it belongs, which intersects only
finitely many points of the set. Thus CC; = CC,. Conversely, f S C Xis
a cowntably infinite set without an w-accumulation point, each x £ X
would have an open neighborhood 0. which intersects at most finitely many
points of 8. For each finjte subset F of S, define 0, = VHOL0. NS = Fy.
Then {0O+} is a countable open covering of X every finite subcollection of
which includes at most finitely many points of . Thus no finite subcollec-
tion may cover X.

Two other conditions are closely related, but not equivalent to countuble
tompactness: a topologices) spoce 18 suid to be sequentially compact if
every sequence has a convergent subsequence, and weakly countably
compact if every infinite set has a limit point. Sequential compactness
clearly implies countable compactness, and since every w-accumulation
paint is a Jimit point, every countably compaet space is weakly countably
compzact. However, neither converse is necessarily true {Examples 105 and
106). However, in a T, space, weak countable compactness is equivalent to
countable compactness. For assuming that x is a limit point of a set A4,
but not an w-acewnulation poing, implies that some apen set (O, containing 2
contains only a finite munber of points of 4, say {er . . . a.).Butina T,



space, this implies that r Las an open neighborhood which contains no
points of 4, that is, that z is not & lmit point of 4,

Finally, a space X is called psendocompact if avery eontinuous real-
valued funetion on X is bounded. Every countably compact space X is
pseudocompact, since for g eontinuous function fon X, the sets Sy =
fxl 1f(®)| < n} form a countable cover of X whase finite subcover yields a

pact. Suppese not; then X would contain an infinite subset § — {ra} with
00 w-accumulation point. Since X is Ty, 8 is closed and discrete in the sub-
Space topology; since X ig T, the Tietze extensinn theorem guarantees g
continuous extension to ¥ of the unbounded continuous function 8= r
defined by f(z,) = n. This shows that X could ot have been pseudo-
compact.

The relations between the varieties of global compastness may be sum-
marized in this diagram:

o-compact = Lindelsf

Compaet : Weakly
AN & countably
Countably colnpact
compact
Ny
Sequentialiy Pﬁeudef:saizzpaet.
compact

In general, none of the arrows reverse, though, trivially, every countably
compact Lindelsf space is compact. So Figure 3 sumimarizes bath the impli-
cations ang counterexamples.

Loearizep CoMpPacTNESS ProrErTIES

A topological space is cailed locally compact if each point is contained
in & compact neighborhood. Clearly every ctompact space X ig locally com-
puct, since X Hsplf is 5 compact neighborhood of each of its points.

<A common nonequivalent variation of the definition of loeal compactness
recuires that cach poing be eottained i an open set whose clostire is eom-
pact. We shall eal] this concept strong local compactness sincc every
space satisfying this condition is clearly locally compaet; the converse,
however, is not gencrally frye {(Example 52) although it does hold in
Hausdorf spaces for n such spaees compact sets are closed, so the interior
of every eompaet neighborhood hag g compact closure.
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BT e —— Weakly countably compact |
T e
: ﬁaudﬁmmct (10.15)
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|I E Countably compact
] |
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Figuye 3,

A different strong form of local compactness is obtained by requiring X
to be both e-compact and lotully compact: such a space is called s-locally
compact. 1t suffices in faet to assume X locally eompact and Lindeclsf,
for such spaces must be e-compict: the interiors of the eompact neighbor-
hoods enver X, 5o some countable number of such interiors, and therefore
of compact neighborhoods, covers X.

Although both strongoer properties imply local compactoess, strong Jocal
compactness and o-local compactness are independent ( Examples 3 and 52).
We may summarize the implications as folows:

Compact = o-locally = e-compact = Lindelsf
eompact

i

Locally
compnet,

Strongly
logally =
compact

The appropriate coutterexamples are stmmarized in Figure 4.

Covnrammniry Ax105s anp SEPARABILITY

Although the previous compaetness properties indirectly imply fimita-
tions on the number of open sefs in a topelogy, the eountability axioms
introduced in the first section directly limit the number of open seis by
restricting the number of basis elemonts. There nre three major countahility
properties: a topological space is separable if it has a countable dense
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Figure 4,

subset, second countabie if it has o countable basis, and first countabie
i the neighborhond system of every point has a countable local basis,
Clearly, every sesond countable space is fipst countable, separable and
Lindelsf, although none of these implications reverse. I fact, there are
spaces which are first tountable, separable and Lindelsf but not second
countable (Example 51). A special property which is strictly weaker than
separability (Example 20} is the countable chain cendition, which iy
the condition that every disjoint family of open gets s countable.

In second countable Spaces, compactiiess is equivalent to eountable
compactness. Similarly, in 5 first countable space, countable compactness
15 equivalent $o sequential compactness, for if {s,] is ANy sequende in 5
countably compact space X with accumulation poing P G X, there is o
countable local base at p, say {Vo|Vy, DV, oy, .. -} Then a subsequence
{82} where s, € ¥, converges to p.

jFigure 5 summarizes the inportant relations between the countability
axtoms and compactness,

PARACOMPACTNESS

Several compaetness praperties which have both loen] and global uspects
.I'CI};' on the concept of  refinement of a cover. A cover {1/ 3} of 2 spage X
15 a refinement of 3 cover P UL} if for each Vs there is o U, such that
Vs C U.. A cover is point finite if cach point belongs to only finitely
many sets in the covering, and it 1s locally finite if each poirt has some
neighhforhood which intersects only finitely many members of the cover,
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First countable
(o Countably
(42} 42.15) compact
{51} (15)
Second countable
(58) § {13)
(106}
(24 Scguentially
cempaci
{105 Compact
G
Lindetof (26)
Figure 5.

Finally, a cover { V4] of X issaid to be a star refinement of a cover | U}
if for each z € X there is some U, such that 2* C U, where z*, the star
of z with respect to {Vs], is the union of all the sets Vs of which z is an
alement,

A space is called metacompact (or sometimes pointwise paracoms-
pact) if every open cover has an open point finite refinement, paracom-
pact if every open cover has an open locally finite refinement, and fuily T,
if every open cover has u star refnement. The slightly weaker conditions of
countable metacompactness and countable paracompactness re-
quire only that every countable open cover have the desired type of refine-
ment. A fully T, space which is also T, is ealled fully normal. As the nota-
tion implies, every fully normal space is normal, and also paracompact.

Clearly every compaet space is paracompact, and every paracompact
space metacompact. Although these implications are not reversible {Exam-
ples 28 and 89), every metacompact space (and therefore EVery paracom-
pact space) which is also countahly compiet must be eompact. For if { U, }
is any open covering of the metacompact space X, | U/,] has an open point;
finitc refinement {V,}. Now {Vsl has an irreducible (that is, & minimal)
subcovering [V, ], for if we order subeoverings by inclusion, the intersection
of a chain of subcoverings is a subcovering: if z is not covered by the inter-
section of the subeoverings, being contained in only finitely many V,, it
would fail to be covered by one of the elements of the chain of subcoverings,
a contradiction. Now [V,} is a finite covering, for in each V, there is an
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xy belonging to pe other element of the family {V,} since the family is
minimal and if the family {V,} were infinite the set {x,} would be an
infinite set with no e-accumulation point.

Thus we have the following implications:

Fully normal = Fully T, = T,

y
Compact = Paracompaci = Metacompact
¢ l §
Countably = Countably Countably
compact paracompaet  metacompact.

None of the implications is reversible, s0 Figure 6 can be used to summarize
the necessary counterexamples.

Just as a Lindeldf countably compact space is compact every Lindelsf
countably metacompact space is metacompact and every Lindeldf count-
ably paracompact space is paracompact. Furthermore a separable neta-
compact space is Lindeldf. For if {U,} is an open cover with no countable
subcover, and {Vg} is & point finite refinement (uncountable, of course),
and [z} is a eountable dense subset, then each Vj contains some z; so some
3 1s contained in uncountably many V., a contradiction to the nature of
{Val.

CoxPACTNESS PROPERTIES AND THE T AXioMS

Ai_though compactness and the separation axioms involve conflicting
requirements on the number of open sets in the topology, when compact-
ness properties are combined with the T or T; axioms, the topology often

Countably metacompact

7
(18) Metacompact (89)
Cauntably
paracompact (143
Parzcompact
(42.16)
&)
Fully normal
€28)
Countably | Compact
compacl
53
2 {53) {1)
Figure 6.
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satisfies certain higher T, axioms. For the compactness properties, by
limiting the number of open sets in a cover, allow the desired disjoint open
sets to be constructed by finite intersections. As a result compaet sets in
Ty or Ty spaces have the same properties as points, namely: twe disjoint
conipact sets in a Hausdorff space have disjoint neighborhoods, while if 4 is
a compact subset of T; spaces, then for each open set U7 D 4, there is an
open V such that 4 C V C ¥V (C U. Also, then, compact sets in a Haus-
dorff spuce are closed. Thus a compact Hausdorff space is T, since cloged
subsets of a compactspace are compact, Infact eertain conditions weaker than
compactness are sufficient for this, while other compactness properties result
in only weaker eonclusions. The precise nature of the implications following
from the assunmiption of the T; or T separation axioms is pictured in
Figure 7. Furthermore, certain combinations of the compactness properties
and separation axioms foree a spuce to be of the second category in itself.
This type of Baire ecategory theorem applies both to loeally compact
Huusdorf spaces and to countably ecompact regular spaces.

Compact Hausdorfi topologies are especially interesting sinee any such
topelogy = on a space X is both minimal Hausdorlf as well as maximal
compaet. r 1s o minimal HausdorfT topology since if +* 7, the identity map
I (X1 — (X,77) would be continuous. Thus if A is closed in (X,r), it is
compact (since (X,7) is compaet) and thus f(A4) is compaet. If 7° were
Hausdorfl, f(A} would be closed, and henee f would be & closed mapping—
which would mean that + C +*. Thus no topology strictly smaller than r
can be Hausdorfi, Similarly, r is & maximal compact topelogy forif " D 7,

fa T spaces:
o-locally . Locally First countable and
Fully T4 compact ommpact coantably compact
Paracompact ~ Ty = T3t > Ty
fn T3 spaces:
Second countable > T3
“ Paracoimpact “
Lindeldf ———> ﬂ ——> T4
Fully T4

Figure 7.



the identity map Ji(Xs = (X,ryisa continuous bijection of g Hausdorff
space to a compact Hausdorf space. If 7* is alse compact, f must be open,
hence +* C 1. Thus ne topalogy strietly larger than r can bhe compact,.
lexamples 99 and 100 show that the converse statements are not necessarily
true: minimal Hausdorff topologies need not be compact, and maximal
compact topologies need not be Hausdorff,

We should note, finally that separable Hauvsdorfl spaces cap have
cardinality not exceeding 22 for if b Is a countable dense subset of X, the
map $: X — 2P0 Jafined by ®(x}{A) =1 iff 4 = DM U, for some
neighborhood U, of 7 is one-to-one whenever X is Hausdorff. Thus card
{X) < card 22 = o

INvARIANCE Puorrnries

weakly hereditary, that is, they are preserved in elosed subspaces. But in
most cases they are npt Preserved in open subspaces, so are not hereditary,
Parscompactness and Metacompactness, similarly, are only weakly hered-
Hary. Both first and second countability are, however, hereditary, although
separability is not. In faet, separability is preserved only in open subspaces
{Example 10.6).

Most compactness Properties fail to be preserved by arbitrary products.
The most famous exception is compactness itself, for, by Tyehonoff’s

Table §
PROPERTIES PRESERVED BY PRODUCTS

TYPE oF Probucy

Prorzrry op

Facron Spaces Fivire CouNTanLe UncounTapLE
Compact True True True
o-compaect True False (102} False
Sequentially cotnpacet True True False (105)
Countably compact, False (112) False False
Locsally compact True False (102} False
Lindelsf False (84) False False

First, countable True True False {103)
Secord countable True True Falss {103)
Separsble © Trme True False {103)
Pazracompact False (84) False False

Metacompact False (84) False Falsg
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theorem, the product of an arbitrary family of topological spaces is com-
pact iff each factor space is compact. If X is compaet, then in general
X X Y has the compuactness properties of ¥. If X satisfies only weaker
conditions, the situation is considerably more complex, and may be best
summarized by Table 1 which indicates which preperties are preserved by
various types of praducts, and cites counterexamples where appropriate.

Conversely, it is often possible to infor properties of the factors given a
property of the product space. This may be done most casily by observing
that the projection maps are continuous, but in general, only the global
compactness properties are preserved under continuous mappings. To be
precise, the properties of compactness, e-compactness, countable compact-
ness, sequential compactness, Lindelif » and separability are preserved under
continuous maps and therefore also under projections. Local compactness,
and first and second countability are preserved under open continuous
maps, but not just under continuous maps {Examples 116 and 28); since
projections are open and continious, these properties also are preserved
under projection maps. Paracompactness even fails to be preserved under
open continuous maps (Example 11.19}, although it is preserved under
projections.



SECTION 4
Connectedness

Connectedness denies the existence of certain subsets of a tepological
space with the property that UNV = @ and UNT = Z. Any two
such subsets are said to be separated in the space. Although this concept
is logically related %o the separation axioms, it examines the structure of
topolegical spaces from the oppestte point of view.

We eall two open sets I7 and ¥V a separation of a topological space X
TNV =gad X =T ¥; spaces which have no nontrivial Separa-
tions nre connected. Equivalently, X is connected iff it is not the union of
two separated sets; or it is not the union of two disjoint, closed sets; or, it
does not have any nontrivial sets which are both open und closed; or, there
is o continuous function from X onto the two point set, with the discrete
topology. A connected space X is said to be degenerate if it consists of a
single point. A subset in a topological space X iz a connected set if it is
not the union of two sepurated subsets of X » or, equivalently, if it satisfies
the definition of a connected space under the induced topelogy. Two points
of X are connected in X if there exists n connected set containing them
both. This relation between the points of a space is an equivalence relation,
ginee the union of any family of connected sets having a nonempty inter-
section is conneeted. The disjoint equivalence classes of points of X under
the relation “connected in X" are ealled the components of X. The
components of X are precisely the maximal connected subsets of X, and
they must be elosed since the closure of every connected set is connected:
uny scparation of  would either sepurate E, or separate E from some of its
Hmit peoints. (This shows even more, namely, T ECFC F and if F is
connected, then F is connected.) Fach nonempty setin X which is both open
and closed contains the components of all of its points, but the component
of 4 point need not coincide with infersections of the sets containing it which
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are both open and closed (Example 115). We say that a space X is con-
nected between two points if each separation of X inchudes a single open
set eontaining buth points. This t00 1s an equivalence relation between tha
points of a space; we will call the equivalence classes the quasimeo-
nents. The quasicomponent containing p € X is precisely the intersection
of all sets containing p which are both open and closed. If a space X has
just one quasicomponent, it must in fact be connected ; thus we need not
esll it quasieonnacted.

Path and arc connectedness relate to the existence of certain continuous
functions from the unit interval into a topological space. Continuous func-
tions from the unit interval are called paths; if they are one-to-one they urc
arcs. A space s path connected if {or every pair of points a and b there
exists a path f such that f(0) = a and f(1) = b. The existence of a path
between two points of & space is an equivalence relation; transitivity may
be verified by reparametrizing the two paths. The equivalence classes,
called path components, are the maximal subsets with respect to path
connectedness. Arc connectedness and arc components are defined by
exact analogy; to make the relation reflexive, we declare every point arc
connected to itself. Clearly, every nontrivial arc connected space must be
uneountable.

The relations between the four types of components may be summarized
by the following ehain of containments:

Are Path

C Compenents C Quasicomyponents.
components ™ companents

None of these containments is reversible (Examples 8, 116, and 115).

A set with no disjoint open sets will be called hyperconnected and o
set with no disjoint closed sets will be ealled ultraconnected. Equiv-
alently, X is hyperconneeted if the closure of every open set is the entire
space, while X iz ultraconnected if the closures of distinct points always
intersect. Ultraconnectedness is independent of hyperconnectedness, though
both imply conmeeted. In fact, every ultraconmected space is path con-
nected, for if p is a point in {af M B, then the function f:10,1] » X
which maps each point of [6,3) to a, cach point (3,1] to b, and ¥ to p is
continuous., Hyperconnected spaves need not be path connected (Example
18) and ultracounected spaces need not be are connected (Example 13).
B0 we may swnmarire the connectedness implications by

Ultraconnected = Path connected = Connected

7 | 1

. Are connected Hyperconnacted

Both ultra- and hyperconnectedness are very strong conditions which



t?ivially unply some other properties. Every continuous real-valued fune-
tion on a hyperconnected space ig constant, so such Spaces are necessarily
ﬁudecﬁmpact- On the other hand, no nontrivial ultraconnected space ean
pe \%3:12;:3} ;ﬁ;in one clogsed pom;, 80 none sre T, even though they must all

Quasicomponents and components are equal if (but not only if; see
Example 26} a space has a basis consisting of connected sets ; we call St;Ch a
space locally connected. Equivalently, X is locally connected if the com-
ponents u.f open subsets of X are open in X Local connectedness cEe'arEy
does not imply connectedness, but neither does connectedness imply local
connectedness (Example 116). However, every hyperconnected space is
clf:mrly locally connected, since in such Spaces every open set is connected,
Figure 8 summarizes the relevant cetlntercxa:tapie:;, * o

Connected
(Fi5)
Path connected
(1213
Arc
tonnected
P— {120
A N T e R 1
| (453 {57 (46} ]
i [
g[ Hyperconnectad ?
f {53} £56) (183 |
| i
i |
f % |
e Locally connected |}
____________ o
Figure 8.

Psft,h. components are equal to quasicomponents if a space has a basis
consisting of ;mth connected sets; such a space is ealled locally path con-
nected. Equivalently, X is locally path connected if the path components
of open‘subsets of X areopenin X. Analogously, are components are equal
_te Quasicompaonents if & space has a basis of are connected sets:
is sa:zd to be locally arc connected. Ag abov
implies locally path connected, whick implies locally connected, but neither
converse holds {(Examples 4 and 18). Furthermore, loeally path connected
i independent of puth conuected and focally are eunneet;zd is inde end’ent
of are eonnected (Examples 118 and 32.5). v
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Fuxcrions anp Probucts

Any set S which iz the ynion of conneeted sets 4, and a connected set B
where BM A, # & for each « must be connected since a separation of 8

would necessarily separate B. Since any finite produet I X; of connected
=1
n—1

sets X, can be written as the union of spaces homeomorphic to T X, and
iml

X, 2 simple induction argument shows that any finite product of con-

nected spaces is connected. In fact, a straightforward argument by trans-

finite induction can be used to show that any product I X, of connected
aEA

spaces X, is connected. If the index set 4 is well ordered and if z = (z,) €
X = IL X, is some fixed point, let 8o = {yp) € Xlys = 2 for all g > a}.
Then S, is connected whenever Sa_, is since S, is homeomorphic to S.—y X
X, If  is 6 limit ordinal, 8. = \.J 8, so if each S is connected for 8 < o,
L]
S. must be also, since the collection {8,] is nested. Thus X = LEJ Sa s
. Py}

connected. Indeed we have proved mere since the proof uses only the fact
that in the product topology the subsets X, (C IIX, where X, =
{(ys € Xlys = 25, B # a} are homeomorphic to the X,'s. Thus this
proof applies to the Cartesinn product of the X, with any topology in which
the sets X, are copies of the corresponding X .

If X is connected and f is a continuous funetion on X, then f{X) must
be connected, for if A and B separate fiX), /-(4) and f~}{B) separate X.
Though the continuous image of a locally connected space need not be
locally connected, it is true that local connectedness is preserved under
continuous maps f from a compact space X onto a Hausdorff space Y.
For suppose K is a component of an open subset U of ¥. Then each com-
ponent of f(F) is a component of f~( U} since if @ is a component of
J{UY, then /(G) is connected and thus either contained in E or disjoint
from it. But if X is locally connected, the components of the open set
S7H(UY are open, so f~}(E) must be open. Its complement is closed, thus
compact, so f(X — f71(E)) = ¥ — E is compaet, hence closed {since ¥ is
Hausdorfl). Thus £ is open, and therefore ¥ must be Jocally connected.

DISCONNECTEDNESS

A space is totally pathwise disconnected if the only continuous maps
from the unit interval into X are constant, or, equivalently, if its path
components are single points. A space with single peint components is said
to be totally disconnected; since the points will then be closed, each
such space will be Ty. Clearly no connected set can be totally disconnected,
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though there is a connected set which is totally pathwise disconnected
{l_iixampie 128). Furthermore, only the discrete space can be both totall
disconnected and locally connected, for in such ¢ases each compo :i
{that is, each point) must be oper. poner
) If for every pair of pointsgand bin a space X there exisis 5 separation
U, Vsuchthat a € Uandp € V, we shall say that X is totally sepa-
Fated. .A necessary and sufficient condition that X be totally separated
8 tha.f._xts quasicomponents be single points; clearly every tutaify ;eparateri
space 18 completely Hausdorff and Urysohn. A Hausdorf space in which
the .closure of every open set is open is called extremally disconnected:
equivalently, a Hausdarff space is extremally disconnected iff the interier,
of every closed set is elosed, or, If disjoint open sets always have disj;:int,
elusures. Clearly every extremally disconnected space is totally separated,

Ty

(313)
T (18
7 (28)
_ (120.6) £129) Totally disconsected |
Scattered o
@® @n E @ [em]  am
Extrﬁ?ai}y disconnacted %
1
ﬂis}; ;;u:e (¢4 13} % {113.7)
| @ ;
[Zetodimensional |

/ Scattered and T,

Discrete Extremalj
= E ly Totally Totall
topology disconnecied = separafed = discon;ected

/ :
Urysohn
4

Zero dimensional
Hﬁdfo =3 Regular =“T2 :::“TZ

= Totally pathwise
disconaected

Figure 4.
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A space is zero dimensional if it has a basis consisting of sets which
are both open and closed. Clearly every zero dimensional space is T, though
net necessarily To {Example 5}. Every zero dimensional T, space is totally
separated. A space is called scattered if it contains no nonempty dense-
in-itself subsets; although scattered spaces need not be T, every seattered
T, space must be totally disconnected since in T, spaces, every nontrivial
conmected set is dense-in-itself. However, & scattered space which is not
T, may be connected (Example 57). Thus we may summarize the various
disconnectedness properties in Figure 9.

BicoNnEoTEDNESS AND Ceontinpa

A eomnected set is suid to be biconnected if it is not the union of two
digjoint nondegenerate conneeted subsets. A point p of a connected set X
is called a cut point if X — {p] is disconnected, and a dispersion peint
it X — {p} is totally disconnected; any set having a dispersion point is
biconnected, since the dispersion point can be in at most one of the two
disjoint subsets. There is, however, a biconnected set without a dispersion
point {(Example 131},

Bets which are both compact and connected are ealled continuwa: a
continvum is indecomposable if it is not the union of two different
nondegenerate proper sub-continua, A subset € of a continwum X is a
composant if for some p € XK, { contains all points z such that x and p
are contained in some proper sub-continua of K. A set is said to be puncti-
form if it contains no nondegenerate coniisua. Clearly, each totally dis-
conneeted space is punctiform, although so are some connected spaces
{(Example 128).



SECTION 5
Meftric Spaces

A metric for a set X isa mappingdof X x X into the nonnegative rpal

numbers satislying the following conditions for gll nLy,z € X:

N{l.' d(.’i’,‘,:ﬂ) =0

My: d(z2) < d(zy) + d(y,2)

Ms: d(zy) = d(y,z)

Mi: ifzsy d(z,y) > 0.
We eall d(z,y) the distance between * and y. If d satisfies only M, M,,
and My it is called quasimetric, while if it satisfies M,, M, and M, it is
calied g pseudometric, [t i possible to use a metrie to define a topology
on X by taking ag a basis all open ballg Bl = lye x ld{x,u) < « !.
A topalogical space together with & metric giving its topology is culled o
metric space, Although g single metrie will vield a unique tepolozy on a
given set, it is possible to find more than one metrie which will vield the
same topology. In fact, there gre always an infinite number of metries which
will vield the same metric space (Example 134).

Every metrie space is Hausdorff, since B(p,e) M Blge) = g0 e
d(p,93/2, and also T:. For suppose 4 and B are separated subsets of 5
metric space X; then each pointr € A has g neighborhood B(r,e.) disjoint
[romn B, and each point y € B hag ¢ neighborhood B(y,¢,) disjoint from A,
Then Uy = U Blz,e./2) and Uy = U Bly,e,/2) are disjoint open ueigh-

€4 s

T
borhaods of A ang B, respectively. Thus metric Spaces are completely nop-
mal, und, by a similar argument, perfectly normal, Therefore metrie SIHLCRS
satisly every T separation property. Furthermore, every metric space iy
fully 7, thus fully normal and paracompuet.

Mucl of the sérueture of counfability and eompactuess is also simplified
in metric spaces, Since {B(z,1/n)in = L2,3 .. lisa coumntbable logal

34
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busis at x, each metric space is first countable. If {z,} is a countahle dense
subset of X, the balls B(z,,1/%) form a countable base for the tqp&lﬂgy on
X. Bo for metrie spaces separability implies, and is therefore equivalent to,
second eountability. o

The same is true of metric spaces which are Lindelsf, since in such spaces,
for each integer k&, the open covers {B(z,1/k)|x € X} have eountable sub-
eovers. The union of all such subcovers is a countable base for X. Thus
every Lindelof metric space is also second countable. _ ‘

Since each metric space X is firsg countable, seqm?ntaa.l ‘ompactness is
equivalent to eountable compactness, which, since X is T, i equivalent to
weak countable eompactness. More important, countable compaciness in
metric spaces is equivalent to compactness, since every countably compact
metrie space Is separable: for each n, a countably compac?; metric space
ean be covered by finitely many balls B{:::l-",l/.n), 80 {‘x,-"} 18 & countable
dense subset. Thuseach countably compaet metric space is second countable,
and every countably compaet second countable space is compaet.

Since metric spaces are Hausdorff , the concepts ?f local compactness and
strong Jocal compactness are equivalent. So in metric space, we h.ave amuch
simplified implication chart {Figure 1{});_ thatl the§e mplications do not
reverse is shown by the counterexamples listed in Figure 11,

; - locally
Sequentially ER— a
compact compact
Countably @ - compact
compact
Compact Separabie
ﬁ Lindetsf
Weakly ¢
countably Sceond
compact countable
Figure 10.

Although in general the metrie structure of a space does not appx"eciab]y
simplify its connectedness properties, we ean sho\.v that every metric space
which is extremally disconnected is discrete. For in any metric space, each
point p emn be written as ihe mtersection of the elosed metric ballg
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Bipnlp); then U = :\_)1 Bipip) — Byjaniny(p) is an open set which hagp as a

noninterior limit point] Provided p is not open. So if ¥ is not discrete, it
eannot be extremally disconnected.

CoupLETE Merric Spacss

t_otaliy bounded {(precompact) iff for every e > 0, K may be covered by a
finite collection of open balls of radius 5. We call such 4 cover an e-net."A
subset & is called bounded if there exists a real number g sueh that
d(w,y) < 8 wherever Ly € £ the least bound of & 15 called the diameter
of E. Clearly every totally bounded set s bounded, but not conversely
(Example 134); furthermore, tatally bounded is not » topologioal property,

Every compact metric space is totally bounded, sinee every covering by
eballs has a finite subcover, and every totally bounded set is second
countuble, since the union of enetsfore = |1, §, 1, .. .formsa countable
basis. But neitherof these iniplications reverses (Examples 80.10 and 134).

To discover the reason that totally bounded sets may fail to be compact,
we st examing the convergent sequences. A sequence {z,} in a metric
space { X,d) is called & Cauchy sequence jff for every ¢ > 0 there exists
an wteger N such that d(xmx,} < ¢ wherover mn > N, Obviously, every
convergent sequence js g Cauchy sequence; but the converse fails {Exam-
ple 32.0), So we define a complete metrie space as one in which cvery
Cauchy sequence tonverges to some point in the Space, or equivalently

Metric Spaces 37

that the interseciion of every uested sequence of closed balls with radii
tending to zero is nonempty. {A sequence [E,] of sets is nested iff E, C
Lapy for all .} If the radii do not tend to zero, this condition need not be
iiplied by completeness (Kxample 135). Now every compact metrie space
is complete, and more important, every complete and totally bounded
metric space is compact.

We will call a topological space (X,r) topologically complete if there
exists a metric d giving the topology 7 such that (X »1) is a complete metric
space. Topological completeness is a topological property which is weakly
hereditary, though not hereditary (Example 30). Clearly every compact
metric space is complete; though the converse is not true (Example 28), it
is true that a metric space is compaet iff it is complete in every equivalent
metbric. The famous Baire eategory theorem states that every topologically
complete metric space is seeond category.

A completion of a metric space X is any complete metric space which
contains a dense subset to which X is isometric, that is, to which there is
4 bijection which is distance preserving. All metric spaces have completions
and even more surprising, ali of the completions of a given space are iso-
metric. Furthermore completeness is preserved by isometries but unlike
topological completeness not by hemeomorphisms (Example 32.10).

MEeTRIZABILITY

A fopological space (X ) is called metrizable if there exists a metric ¢
which yiclds the topology 7. Every regular second eountahle space is metriz-
able, but not conversely (Example 3); in fact, a topological space is metriz-
able iff it is regular and has g ¢-locally finite base, that is, a base which
is the countable union of locally finite families, Although this requirement
is very elose to paracompactuess, and though every metric space Is para-
rompact, there exist regular paraeompact spaees whieh wre nonmetrizabie
(Examples 51 and 141).

UnirormITIES

A quasiuniformity on a set X is a collection U of subsets of X % X
which satisfies the following axioms:

U Toralluw € U, A C w, where A = Hea)r € X4,

Vs: Forw € Uand p € UV,uMe € 17,

Us: iquUan{ithvCXXX,thﬁnvEU.

Uy For all w € U there is v € 1 such that » 0 v C w where © iy
defined by « 0 v = {{(x,2}] there is a y € X sueh that (xS v
and (y,2) € ).
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The quasiuniformity U is a uniformity if the following additional condi-
tion is satisfied:

Us: Ifu € U, then u=? € 17 where ' = ),y € U).

A set u which is an element of the quasiuniformity 7 is called an entourage
(or a relation). The entourage u is said to be symmetric if v = 41, The
set A is called the diagonal of X X X. The quasiuniformity U is said to be
separated if the intersection of all the members of U is the diagonal A,

The first three axioms say that every quasiuniformity on a set X is a
Giteron X x X. Further, a quasiuniformity Uisa uniformity iff there is g,
symmetric base for U, that is a filter base of symmnietric sets.

Every quasiuniformity I/ on asot, X yiekds a topology ron X by taking
as u neighborhood system for X the sets u(z} where v« € U and ua) =
{9l{z,5) € u}; there may be more than one quasiuniformity generating a
given topology (Example 44). If two quasiuniformities generate the same
topology on the set X, they are said to be compatible. A set X with a
quasiuniformity U and the topology r generated by U is said to be a
quasiuniform space and we may use the notation {{X,U},7) to denote
this or the shorter notation (X,U) where r is understood to be the topology
gencrated on X by U. A topological space ( X,r} is sald to be quasiuni-
formizable if there is a quasiuniformity U such that (X, ) is a
quasiuniform space.

The problem of when a topological space (X,r) is quasiunformizable or
uniformizable is simpler than the corresponding metrization problem. If
(X7} is a topological wpace, the set I/ — fugivg = (@ X GV (X —
G X X) and @ € 7} is a filter subbase for a quasiuniformity on X which
generates 7, and thus every topological space is quasiuniformizable. A
topological space ( X,r) is uniformizable iff i is # Ty space.

Mzrric Unirormrmins

If {X,d) is a pseudometrie space, then the family U of all sets % which
contain a set of the form u, = {ld(z,y) < e is a uniformity on X,
which ylelds the same topology as the pscudometric 4. Such g unif ormity is
called pseudometrizable {or, if appropriate, metrizable). Not every uni-
formity which yields a metrizable tepological space need be metrizable
(Example 44).

PART i
Counterexamples



1. Finite Discrete Topology

2. Countable Discrete Topology

3. Uncountable Discrete Topology

On any set X we define the discrete topology by taking all subsets of X
to be open. Any subset is then both open and closed. We distinguish three
cases, the finite diserete topology, the eountable diserete tepology, and
the uncountable discrete topology accarding to whether the set X js
finite, countably infinite, or uncountable.

1

6.

This topology is the finest topology for X, since any open set of
any other topology is an open set jn this topology.

Every point is an isolated point.

% 15 not a limit point of the sequence x, x, x, . . . considered 55 a
set, although it is an adherent point of the set.

Foranyset A C X, A — Ao — A- and 4% = g,

Any function from g set X with the discrete topology is
continuous,

The topology on a discrete space may be obtained from the dis-
crete metric: d(z,y) = Tif 2 3« ¥, and d(z,y) = 0if z = 3. Thus
every discrete space satisfies all separation properties.

Each discrete space is strongly locally compact since cach point
is & neighborhood of itself. Such spaces are elearly first countable

41



10.

11.

and, since the upen cover by discreto points is Ioeally finite ang
finer than all other opet covers, diserete spaces are paracompaet,

Countable discrete Spaces are o-compact, Lindelsf, second eotlitt.
able, and separable byt uhcountable discrete spaees nre none of
the above. Fiuite discrete  spaces satisfly all compactness
properties.

Since only the empty set is nowhere dense, every discrete space
18 of the seeond catlegory. (In fact, a discrete space is a eomplete
metric space.) F urthermore, no diserete space Is dense-in-itself,

If X consists of more than one point, it, is clearly not connected
and thuy neither path nor are connected. Rut it is locally path
commected, nud thas | wally connceted

The topology on the discrete space is generated by the discrete
uniformity which consists of ali subsets of X X X which contaiy
the diagonal A. The disgona) A ig a buse for thig uniformity.

4. Indiscrete Topology

For any set X, the indiscrate topology is the topology whose ouly ele-
ments are the empty set & and X itgelf, (We assume X hag at least two

points.)

1. 'Thig topology is the coarsest one for X, I is comparable with
aty other topology for X

2. Nosubset 4 Xor &Fis Upen, closed, ¥, or @,

3. Every subset is compact and sequentially compact.

4. Every pointof ¥ is a limit point fop every subset of X, and every
Sequence converges to every point of X. If X is uncountable,
every sequence hag uncountably many limig points.

5. Every subset containing more than One point is dense-in-itself,
The only nowhere dense subget is &, 80 X is of the second
category,

6. For A = X, Ao = fo- = oo _ & and for A 7 oA =
A== gy IfA #Xor g Ab = X, A% = o

7. X ig separable, since any subset is dense. F urthermore, X is
second countable,

8.

Every function Lo a space with the indiserete topology s
contineous,

10.

1L
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The indiscrete space is path eonnected and thus conneeted, but
Is are connected only if it is uncountable. It is both hypercon-
nected and ultraconnected.

Bince the only open set containing any given point is X itself,
the indiserete space fails to be To. But it is T, Ty, and Ty
vacuously.

Clearly X iz pseudemetrizable, although not metrizable.

5. Pardition Topology

6. Odd-Even ‘Topology

7. Deleted Integer Topology
Each partition 2 of any set X into disjgint subsets, together with &, is

ab

asis for a topology on X, known as a partition topology. A subset of X

is then open if and only if it is the union of sets belonging to P,

1.

The partition topolegy is characterized by the fact that every
open seb s also elosed ; esch set in the partition Pisa component of
the space X. Thus X /P is diserats,

The trivial partitions vield the discrete or indiscrete topologies,
It any other case. X with g partition topology is not Ty sinee BOIMe
element of the partition contains two or more points neither of
which can be separated from the other. Thus X is not Teyy Ty,
or Ty. However a subset of X is open iff it is & union of elements of
the partition and thus its complement is also open; thus a set is
open iff it is elosed. Hence X js T, Toy, Ty, and T

An important, example of a partition topology is the odd-even
topology on the set X of positive integers, generated by the parti-
tion P = { {2k ~ |, 2k1}. Clearly this space is second countable,
thus first countable, separable, and Lindelof. Since every non-
empty subset of X has » Hmit point in this topology, X ix weakly
countably compact. Buy X s not countably compuct, sinee 2
itself is a countable open tovering of X which has no finite
subcover,

If X is the set of positive integers with the odd-even topology,
and if Z* is the same set with the discrete topology, thern the
npping f: X — Z+ defined by f{2k) = by {2k — 1) = ks cone
tinuous. But X ig weakly countably compact, whereas Z* is not.
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So weak countable compactness is not preserved under continuos
maps.

A common variation of the odd-even topology is the deletod inte
ger topology: in this case X is the union of the open intervals
m—1n)forn=123, ... » and the topology on X is gen-
erated by the partition P = {(n — 1,m)}. This exanple has most
of the properties of the odd-even topology.

Every parhitioz} space 15 pseudometrizable since the pseudometric
defined by_Igttmg dlz,y) = 0iff = and y belong to the same set
u_f _the bartition, and letting d(x,y) = 1 otherwise yields the par.
tition topology.

If we double the points of the resl numbers with the diserete
topology, we obtain a partition topology with uncountably many

disjoint open sets. This topology is weakl
y countably ¢ .
but not Lindelsf, ¥ compact

8. Finite Particular Point Topology

9. Countable Particular Point Topology

1. Uncountable Particular Point Topology

11.  Sierpinski Space

12. Closed Extension Topology

On any set X, we can define the o
subset of X that contains a partic

pen sets of a topology to be @ and any
ular point p. We distinguish three cases,

finite, countable, and uneountable according to the size of X

1,

The only sequences {a:} which converge are those for which the
a; are _equal for all but a finite number of indices, The only accu-
mulftt-aon points for sequences are the points b; that the g, equal
f{}? {nﬁnitely many indices, So any countably infinite set con-
taming p has a limit point, but never even an accumulation point
when considered as a sequence in any ordering.

Every point except pin X is a limit point of P, su the closure of
any open set other than ¥ is X. Closed sets other than X do not

confain p, so the interior of any closed set other than X is [oR

1.
12

13.

4.

Closed Extension Topology 456

Let Y be a subset containing the particular point p. Then every
point ¢ # pis a limit point of ¥ but not an w-sccumulation point.

Every particular point topelogy is ‘T, but sinee there are no dis-
joint open sets, none of the higher separation axioms are satisfied
unless X has only two points.

A = ip} is compact, but A = X is not compact if X iz infinite,
In this case, X is locally compact but not strongly locally com-
pact, since the closure of any set containing p is X. Tn fact, if X
is uncountable, it is not even Lindelsf.

X is separable, since {p] is a countable dense subset. But, if X
is uncountable, X — {p} is not separable.

If X is uncountable, it is first countable, but not second eount-
able, since X — {p} is discrete.

If on a given set X, we define -, to be the collection of all sets
containing a point p, and 72 to be the collection of all sets con-
taining g # p, the spaces (X,;r)) and (X,7s) are homeomorphie,
but 7, und r: are not comparable.

X is scattered, since every subset not containing p has no limit
point, and for a subset which contains p, p itself is not a limit
point. Thus X contains no nenempty dense-in-itsslf subsets.

X is hyperconnected, since every open set must contain p. But
if X contains at least three points, it is not ultraconnected since
two points not equal to p are disjoint closed sets.

Since X — {p} is diserete, p is s dispersion point for X.

X is not weakly eountably compact since any set which does not
contain p has no limit points. But since there are no disjoint open
sets, every continuous real valued function on X is constant.
Thus X is pseudocompact.

X is path connected and loeally path connected since if ¢ € X
we can map | to g and [0,1} to p to form a path from g to p.
But X is not are connected since the inverse image {under a
homeomorphism) of the open set » would be one point, which is
not an open set in [0,11.

X is not of the first category, sinee if it were, some nowhere dense
set would have to contain p, and its closure would then be X.

(X,r) 1 locally compact sinee each point has & compact neighbor-
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16.

17.

18.

19,

20.

21.

hood, namely itself together with p; but if X is infinite, it is not
strongly locally compact since the elosure of any neighborhood
isall of X,

If we replace the particular point p with two points p;, ps, the
resulting space is weakly countably compact since either p, or
M is a limit point of any subset.

An important particular point topology is Sierpinski space, the
space {0,1} with the particular point 0. Sinee the only open seis
are &, X, and {8}, the sequence 0, 1, 0,1, .. has 0 as an
secumulation point and 1 as a limit point.

Sierpinski space is hyperconnected, ultraconnected, and path
connected, but not arc connected. Also it is T, and Ts vacuously,

Let (X,r) be a countable set with the diserete topology, which
15 then paracomipact, and let ¥ = {0,1] be Sierpinski space with
0 open, which is compact; then X % ¥ is paracompact. If
(X U {p},0} is a particular point space with particular point p
then the cover { {p,a}la € X] is u countable cover with no point
finite refinement. Thus (X \J {pl,o) is not even countably meta-
vompact. However the function f: ¥ X ¥ - X U {p} defined
by f(z,0) = p and f(z,1) = z is open and continvous. Thus the
open continuous image of a paracompact space need not even he
countably metacompact,

The particular point topology permits the following useful ex-
tension. Let (X ,r) be any nonempty space, and let p be a point
net in X. We define X* = XU {p} and describe a topology +*

on X* by calling o set in X* open iff it is the empty set or is of

the form U\ {p} where ! € . Since the closed sets of X*
other than X* itself ars precisely the closed sets of X we call
(X*7") the closed extension of (X ;7). The particular point to-

pology on X is the closed extension of the diserete topology on
X - {pl.

The properties of the closed extension topology are the same as
the properties of the particular point topology except in the
cases where the properties of the particular point topelogy de-
penrd on the disereteness of X — {p}. Thus (X5 is T, iff
(X,r} is Ty; but {X"7*) is net Ty, Ty, or Ta. Further {X*7) is
Taor Ts iff (X7) is T, or Ts vacuously amd in this case the cone
dition on (X*,r*} is also vacuous.

13.

4.

15.

16.
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Finite Excluded Point Fopology

Countable Excluded Point Topology

Uncountable Excluded Point Topolopy

Open Extension Topology

The excluded point topology may be defined on any set X by. dec]a?i_ng
open, in addition to X itself, all sets which do not include a given point
p € X. As usual, we distinguish three special cases depending on %he
curdinglity of X: finite, countable, or uncountable excluded pomt
topology.

I.

]

If X has just two points, the excluded point topology on X 'is
just the Sierpinski topology. We cousider this to be the tn'vml
case, and asstune hereafter that X has at least three distinet
points.

X is Ty, but since the only neighbarhood of p is X itself, X is not
Ty, and thus not T; or Ts. However, every nonempty closed set
contains p so X is T, vacuously. Sinece any two sets in X are
separated iff they are disjoint subsets of X — {p}, and since
such sets are open, X is T; nonvacuously.

Again, since X is the only upen set containing p, X must be both
eompact and connected. Since every closed set other than o
contains p, X is ultraconnected, but it is not hyperconnected,
since two points distinet from p are disjoint open sets. 'Ijhus
X is path eonneeted, though it cannot be are comnected since
the inverse image of 2 single point distinet from p musé be an
open set in [3,1]. Similady X is loeally path connected but not
loecally are connested.

Sinee {p} i= closed, and since the only open set which contains p
is X itself, X is not perfectly T..

X contains no nonempty dense-in-itself subsets since only » ean
be a limit point of any set. Thus X is seattered. Further p is a
dispersion point of X,

& is always fisst countable, and thus sequentially compa‘m:. But
it is second countable and separable culy when X is finite or
equntable.

The excluded point topology may be varied by selecting as open
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fxil sets \\'_hich are disjoint from a fixed subget A, together with ¥
itself. This excluded set topology is similar to the exeluded Frivint
topology exeept that it will in general fail to be T,

8. The excluded point topology is a special case of the following
Let .(X ,7) be a nonempty topological space, and let 2 be a point
not in X. We define X* = X\ {p} and describe a topology ¢
on X* by calling a set in X* open iff it is X* or in +. We egl
(X",r*) the open extension of (X} since other than X* itself the
open sets_ of v* are just the open sets of r. The excluded puaing
topology is then the open extension of the disercte topology.

9. Exeept where the preceding arpuments depend on the discrete

ness of X — {p] the properties of (X*r°) are the same as thos

of the excluded point topology. Thus (X*") is T, iff (X7)is T

}aut ()l(‘,r') always fails to be Ty, Ty, Ts. It is always T; but i;

flt'l"ﬁ iff ()i';’;gi iH-L'Skilni[ale (X*+") is compact, s:oxmecti;d, and
raconnected. Likewise (X*7%) ; ;

cotntable it (ko (X' is separable, first or second

10. The open extension of the particular point topology is T, and

3 ;iyb};'t_mlther Ty nor T since the particular point topology js

17. Either-Or Topology

The_ either-or to}?olc-:gy is defined on the interval X — f—1,1] by de
claring a set open iff it either does not contain {03 or does contain (—1,1)

Thus {1}, |- - i
310:; {s&}tig'{ 1}, {=1,1} and any set containing {0} are the nontrivial

1. A straightforward consideration of cases shows that X is T, and
Ty, but neither T, nor Ts. In fact, X is Ts, since if 4 and B are
sepax_'ated sets neither of which containg 0, they are then open
But if one, say A4, containg 0, then 0 cannot be in B. So £ can b{;

only {1}, [—'?}_, or [—11}, and in any of these cases B and
X — B wre disjoint open sets containing B and 4.

2, Sm'ce any open cover c_Jf X must include an open seb containing ¢
X is compact, thus Lindelsf, But the sybspace X — 10} i= dis;-P
crete, thus not Lindeldf, .

3. X' 15 clearly first cuountable, although not separable since X con-
t_ams uncountahiqr many open polnts. X is not of the first category,
filce no open point can be contained in any nowhere dense set.

Finite Complement Topology on an Uncountable Space 49

4. X islocally path connected since every point except 0 is open, and
the neighborhood (—1,1) of 0 is path connected: if p € {—1,1),
the function which takes 0 to 0 and (0,1} to p is a path joining 0
to p. Thus X is also locally connected, but not locally arc
eonnected.

However X is scattered, since there are no nonempty dense-in-
itself subsets, for 0 is the only possible limit point of any subset.

‘L’t

Finite Complement Topology on a Countable Space

19. Finite Complement Topology on an Uncountable Space

We define the topology + of finite complements (or ecofinite topology)
on any set X by declaring open those sets with finite complements, to-
gether with @ (and X). Then the only closed sets are X, ¢, and finite
sets. If X is finite, the topology of finite complements is the discrete
topology. So, to avoid trivialities, we will assume that X is infinite, and
distinguish {wo cases, the topology of finite complements on a countable
space, and the topology of finite complements on an uncountable space.

1. Each point of X is a limit point of any infinite subset A, since
then any open set of X contains a point of A. In particular, if 4
is countably infinite, A = X, so X is separable.

2. The space X and every subspace of X is compact. If we have a
collecticon of apen sets eovering X, any one of the sets will cover
all but & finite number of points of X, say n points of X. We can
choose n other sets of the colleetion, one for each point, and
together these n + 1 open sets will constitute a finite subcover
of X. '

3. If X is uncountable, open sets are uncountable, so are not F,-
sets. By complementation, closed sets are not Gy-sets. Thus X ix
not perfectly Ts. In this case, the countably infinite sets are
F-sets, which are neither open nor closed, arid the complements
of countably infinite sets are (fs-sets, also neither open nor closed.

4. For uncountable X, this topology is not first countable, and
therefore not second countable. Suppose at some point z there
exists a countable Ioenl basis. Then there exists a countable
collection of vpen sets ®,, each containing z, such that every
gpen neighborhood of z eontains some set B € ®,. So M@, =

fz}, and thus X — {z} = X — M@, = U (X — B). Each of
BE®,



t‘he.a X — B are finite by definition, and the countable unjgy o
fnutfe s.ets s countable, so ¥ — fx} must be countable, o ey
tradiction. But X g separable, since any infinite set is dense,

5. Mabex ythen 0, = x _ b} is an open set containing g hy
motb,and Oy = y _ fe} contains b byt note, so Xisa T, space,

6. Sinee no two open sets are disjoint (since X 1s assumed infinite)
(X1 is hyperconnected and therefore ot Ty, Ty, Ty, or s, '

7. If one doubles the points of X, the i isfi
! € , esulting space satisfie ‘
axioms, hut s stij) compact, § Ppace satisfies no 1

8 risthe smages't (or coarsest) topology on X in which points ap
closed, thus it is often called the minimal 7, topology.

9. Since X is hyperconnected it is eonnected and lecally connected

10. H X is. countable, it cannot he path connected for if f:001} =)
is conppu.nus, {Falzex }is & countable colleetion ujf naste
a:IIy disjoint closed sets whose union is [0,1]. But this s impog
sible. For the same reason, X cannot be locally path connected,

11. IfXig uncomtable, and if we assume the continyum hypothesis
PAIE of points ¢, b € X iq eontained in sope setts
Tv}fﬂse cardinality is that of [0,1]. X7 7: 01> 8isa bijection
itis cor}tinuaus, so Sisanarcin X ioining @ and 5, Thus in thjs'
case X is are connected and similarly, locally are conniected,

2. Countable Complement Topoiogy

21. Double Pointed Countable Complement Topology

1,

Slfl(:.e‘ the topology of' countable complenents 15 finer than the
mining) Tl. topuf:.:gy, s Ty and T, ; but it does not satisfy any
other T; axioms smee no two gpen sets are disjoing.

are finite sels the space is neither
g-coinpact noy countably compact, though since the complentent
of any open set ig countable the space js Lindelsf,

- )
X 18 not even {irst countable for the same reason th

: 1 at the topoly
of finite complenients is not, Binee no coumfghle it

set has o Hmig
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point, X is not separable even though it satisfies the countable
chain condition.

X is hyperconnected and thus connected, locally connected, and
pseudocompact.

Since in this topology the intersection of any countable collection
of open sets is open and thys uncountuble, X is not even countably
metacompact.

An interesting variation of this space may be constructed by
doubling each of its points. Technically, this double pointed
countable complement topology is the product of X, the topology
of countable complements, with the two point indiscrete space,
Clearly the double pointed countable complement topology fails
to be Ty or Ty and since each doublet is closed and no two open
sets are disjoint, it fails to satisfy any higher T; axioms.

The double pointed countable complement topology is weakly
countably compact, since if p belongs to any infinite set A, then
its twin p’ is a limit poiut of A. {The ordinary topology of count-
able complements is not weakly countably compact.)

If we further vary this example by forming the open extension of
the double pointed countable complement topology, we will have
aspace which is T, (since all open extension tupologies are T') but
net To, Tl, Tz, Ta, or 'Pa.

22. Compact Complement Topology

On (R,7) the Euelidean space of real numbers, we define a new topology

by letting +* = X C RIX =

& or B — X is compuct in (R7)}. Bince

the compact sets in (R,r) are closed under arbitrary intersection and
finite unions, r* is g topology.

i

Since finite sets are campact in (Ryr), the topology " is finer than
the tupology of finite complements. Thus (R77) is T,.

However, no two open sets in (F,7") can be disjoint, for the com-
plement of their intersection, being the union of their compact
eomplements, cannot be K. Thus X must fail to be Ty, and thus
cannot be Ty, nor, sinee it is Ty, can (R,+*) be Ty, Ty, or T,

For precisely the same reason, (R iy hyperconnected, thus
connected and locally connected. But it s not ultraconnected,

(R7*) is eomipact, sinee if 10,4 1s an open covering of R, ¥ — 0,,
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is cumpz_a.ct in the Euclidean topology {for any O,, € {0,}). Sinee
each O, is open in the Euclidean topology, a finite number of they
must cover i — 0.,

Sets of the form (—on} U (p — Un, p+ 1/n) U (n,%0) fam
a c?untable local basis at PER So (B+*) is firgt countable ang
stmilarly, also second countable. Thus it g alsg sequentiafly
compact.

Since. (R,7*} is coarser than the Euclidean topology, the rational
remain dense in the new topelogy, Thus (R+")is separable,

23. Countable Fort Space

24, Uncountable Fort Space

i Xis any infinito s¢t, and p a particulap boint of X, we can define g
to;')ology on X by declaring open any set whose complement, either is
finite or includes p.If X is countabfy mfinite, we eall this space COUIt-
able Fort space; if X js uncountable, then uncotntable Fort space.

[

excluded point, topology together with the topology of finite com.
plemeunts, and thus (X,r) is T,.

(Ji-' ) is Ty, sinee if 4 and B are separated sets and neither eon.
tafns o, they are both open. Otherwise, since A and I are disjoint
P15 jn exactly one of them, say 4 ; then B jg open, but so tog i;
X = B. For if B were not closed it would eontain infinitely many
boints, while every open set containing p hag 5 finite complement,
8o p, which belongs to 4, would be in B, and thus 4 N 8 could

not be empty. 8o (X.0)is completely normal, and thus satisfies all
weaker separation conditions.

Xis tompact, since any open covering of X must eontyjn 4 neigh-
borhoud £ of P whose complement is finite. 8p U, together with
one neighborhood containing exch point of X — U, is a finite sul.-
cover, F urthermore, X jg sequentially compact since every se.
quence of infinitely many distinet points conbaing g subseqﬁence

-t
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which converges to p. In fact, if X i uncountable, p is the only
limit point of any infnite countable subset, 50 such an X cannot be
separable,

Tf X is uncountable, it is not first countable either, since p cannot
have a countable local base. For suppose {I7;] is a countable col-
lection of neighborhoods of p; then X — U, is finite, so
VX -U)=X-NU, i at most  eountable, Thuyg

f=1 i=1

M U # p, 50 there exists a peint ¢ # p in NU,, and hence
i=l

X — ¢ is a neighborhood of p which does net contain any U,
So {U;} is not a neighborhood base of p.

But if X is countable, it must be separable (it is a countable dense
subset of itself) as well a5 second countuble, for the total number
of neighborhoods of p—the only point in question—is countable,
being in one-to-one correspondence with the totality of all finite
sets. So countable Fort space, since it is regular, must be
metrizable,

Every point q of X, except p, is both open and closed, s0 {g] and
X — (g} separate X. Thus X is totally separated. But X is not
extremally disconnected, for if A s an infinite set with an infinite
complement which containg p, then 4 is open, although 4 =
A\t {p} s not open.

X is seattered since in T spaces, every dense-in-itself subset must
contain an infinite number of points. But this is impossible in X .
since every point except p is oper.

Since every set containing p is closed, p has a loeal basis of open
and closed sets. Since each other point is open, X will be Zero
dimensionsl.

25. Fortissimo Space

If X is any uncountable set, and p a particular point of X » we can define
a topology on X by declaring open any set whose complement either is
countable or includes p.

I.

This space, Bke uncountuble F ort space, is completely normal and,
like the countable complement topology, is Lindelsf but not com.
pact, separable, or first countable, and thus not metrizable. But
It is paracompact, since every open cover has a refinement con-



sisting of one specin] opest set which eontaing P together with open
points.

3. Xisnot pssudocompact since the function which Maps 4 neigh-
borkood of p to 0 and the elements of its countable complement
one-to-one onta the remaining integers n g js continuous.

4. If we double the points of X we obtain 1 space that is wenkly
coutibably compaet and Lindelof but stiil neither e-Compact nor
pseudocompact,

26,  Arens-Fort Space

Le_t (X,r) be the set of a]l ordered pairg of nounegative integers with each
PRIr open exeept (0,0). Open neighborhoods &7 of (0,0) are defined 80
that for all but 4 finite nuniber of integers m, the sets &, =
inl(mmn) € U} are cach finte, Thus each open neighborhood of the

uri_gin contains all but g finjte number of peints in each of all but a
finite number of columpns,

1. 'T]‘ co&:tains Fort’s topology with particulur Point (0,0), so it iy Ty,
1y [

2. ris s for the same reason that Fort space is. The only nontrivial
case oeeurs when A and B ale separated sets where {0,0) € 4,

poixft of the c:t:ump]nm_ent of &, 50 1 is closed iff (0,0) ¢ Band if
(0,0 € B then 4 N B# Asodand B &re not separated. Thusg
(X,7) is coinpletely normal.

3. (X1} is not first countable, for it does pot have a countable local
bu.s.is' at .(0,0). For suppose 1U:) was such » basis; then for cach
positive integer 7, there are integers My g each greater thap %,
such that (min) € U, Then X — {mynfi = 1,23 .. s
anr open neighborhwod of the origin which containg none of the
sets I/,

4. Since X iS_ eountable, it jg separable, g-compact, and Lindelsf.
But nw neighborhowd of 0,03 is compact and hence X is not
locally compact, and thus neither eqgm pact nor countably compact,
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5. Since X iz Ty and Lindelsf, it is paracompaet. This can also be
shown directly by selecting from an arbitrary open covering of X
one set, say U/, which contains (0,0). Then the covering consisting
of U together with all of the open points in X — U is 5 lacally
finite refinement of the original cover,

6. The identity mapping of X with the diserete topology ento (X,r)
1s o continuous funetion from a space which is both first and second
countable to one which is neither.

7. (X,r} is neither connected nor locally connected since every neigh-
borhood {7 of (0,0) has a separation, namely, U — {p} and ipl,
where p € 17, p = (0,00,

8. Every neighborhood of (0,0) is closed since its complement con-
sists of a discrete set of points, so X is zern dimensional, and thus
totally separated. Also since every point but (0,0) is isolated, X is
scatltercd, and not first category.

9. X is not extremally disconnecied, for the eclosure of the set § =
{(mn}|m is even} is S \U {(G,00}. But this set is not open, for it
does not contain any neighborhood of (0,03,

27. Modified Fort Space

Let the set X be the unien of any infinite set N and two distinet one point.
sets Lo} aud fre). We topologize X by calling any subset of ;¥ open and
calling any set containing z; or x, open iff it contains all but a finite num-
ber of points in N.

L. X'is compact for in any caver there js some open set containing z,,
the complement of this set js then finite and hence covered by a
finite subcover.

2. XisT, for each point in N is open and both 2, and z, have neigh-
borhoods not containing any other given point.

3. Xisnot T, for x, and 7, do not have any disjoint neighborhoods,
thus X is not Ty, Ty, or T;.

4. Every point of X isa component since every set containing more
than oue point is separated, thus X is totally disconnected, and
not locally connected.

8. X =4AURisu separation of X and 2; € A then A is a closed
and open set containing z,. Then since the elosure of any apen set
coutaining 1, contains x,, s € 4. Thus the quasicomponent of z,
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contains {z;} \J [22}. But no point of N is in the quasicomponent
of {z:}, Thus {z;} \ {2} is & quasicomponent, though every com-
ponent consists of & single point. So X is totally disconnected but
not totally separated, and not zero dimensional.

X 1s scattered since it is T, and thus any dense-in-itself subset
must be infinite; but any set with three or more points contains
an isolated poiot.

X is sequentially compact since any sequence has either one point
repeated infinitely many times or infinitely many distinct points
In the first case the subsequence of repeated points converges to
itself, while in the second case the subsequence of distinet points
converges to both x; and x,.

28. Euclidean ‘Topology

We define the Euclidean (or, usual) topology en the set R of real num-
bers by using as a hbasis sets of the form (a,b) = {zla <z < b and
obx € R}.

1.

The Euclidean topology on E is generated by the metric d(x,y) =
|+ — yl, where |z| denotes, as usual, the absolute value of the
real number z. So the metric space R satisfies all of the separation
axioms. Furthermere, R is complete, so of the second category.

R is second countable (and therefore first countable and Lindelsf)
since sets of the form (e,b) where a and b are rational, form a
countable basis for . Since the rationals are a countable dense
subset of the reals, R is separable.

If {u.} is the sequence 1, 1, 1, 2, 1,3, . . ., listhe only accumu-
lation point of the sequence, but is not & limit point of the
sequence,

R is not countably compact, since the open intervals {m,n + 2),
n=0,=41,32, ... cover R but no finite subcolleetion covers K.
But R is locally compact and a-compact, since the elosed and
bounded intervals [a,b] are compact.

Every closed subset 4 of R is a eset sinee A = M A, where
nx=l

A, is a neighborhood of A4 of radius i/n—that is, A4, =
é} B(z,1/n). Each point not in A is comtained in an eball
zC A

which is disjoint from A, and thus disjoint from some 4 ,.
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Any open cover for B covers each of the compact intervals
[7,n 4 1], s0 an open cover can be reduced to a sequence of finite
subcovers {G,™] for each interval {n,n + 1}. Then the sets &, M
(n — 1,n + 2) form a locally finite refinement of the original open
cover. Thus R is paracompact.

The topology on R can be given also by a gquasimetric such as
dizy) =y —xif y 2 2, and diz,y) = 2z — y) if y < . Basia
neighborhoods are off-center intervals, since points to the right
of z are closer to it than are points to the left.

The collection of sets Su = {{z)|vy < b or 2y >ai, where
o, b € K and a < b, is a subbase for o uniformity {7 which gener-
ates the usual topology on R, but U is clearly not the usual metric
uniformity.

Euclidean n-space Rr is defined to b the product of n copies of R.
The product topology is that generated by the basis of open rec-
tangles, sets formed by the cross product of one open interval
from each copy of E. An equivalent basis consists of open n-
spheres, the metric balls under the metric d(z,y) = [Z(z: — ).

29. The Cantor Set

The Cantor set (' consists of all points in the closed unit interval which
can be expressed to the base 3 without using the digit 1. This representa-
tion of points of (' is unique, for even though many rational rumbers
have two possible ternary expansions—such as % = 0.10000 . . . =
0.022222 . . .—no number can be written int more than one way without
using the digit 1,

1.

Geometrically, the Cantor set is the set obtained by deleting a
sequence of open sets, known as middle thirds, from the closed
unit interval. The exact construction is as follows. From the
closed mmterval E, = [0,1], first remove the open interval (4,3),
leaving &p = [0,3] \/ [4,1). From the remaining intervals, delete
the open intervals (1/9, 2/9) and (7/9, 8/8}. Four closed intervals
will remain; E; will denote their union. From these four, remove
middle thirds as before, leaving ¥,, the union of eight closed
intervads. The Cantor set € is then the intersection of the suc-
cessive closed remainders: (' = f"tl E..

The ('antor set is closed and compact beeause it is the intersection
of closed subsets of the unit interval which is compact. Thus ¢



15 a complete melrie spmee gy therefore satisfies a] T axioms,
I*'urtlxennure, € is secongd countable since the unit intervyl is.

€ is dense-ir-itself since EYerY npen set Containing a point p € g
contains points of ' distinet from P Thus € i5 ot scaltered, and,
sinee i is closed, it is perfect.

The Cantor set s nowhere dense in [3,1] since it is closed, angd ng
Open interval ip {0,1] is disjoing from ull the deleted open interyalg
of {0,1]. Being nowhere dense iy, 10,1], € ig obviously of the first
category in the eloseq unit interva), Bat, being itself 4 compleia
metric space, it is of secongd category in itgelf.

The Cantor set iy uncountzable, We cuy define 5 funetion f fram
the Cantor seb onto the ureountable gt [0,1] as follows, I € N
Is written uniquely to the hage 3 without using the digit, I, f(@) is
the point in [0,1} whose binary Cxpansion jg obtained by replucing
ench digit w97 5, the ternary expansion of z by the digit 3 »
Clearly ali points in (0,1} may be obtained by sych 4 process,

The components of (7 gre single points, forif g < b are tyo Points
in C there exists 4 pegl number r ¢ ¢ gyueh thate < r « ¢, Then
A=o0n [0r) and B = CM(ri]is g separation of ¢ where
e€dandp e g Thus € is totally separated,

But € is not extremally disconnected, sinee (' 8,1/4) and
CM™N{/4,1] are disjoint open subsets of ¢ wigh intersecting
closures, sinee | /4 = 0.02020202 - - - belongs to both closures.

fyl |z — Y <elforze C and e a positive number. In 114 ay the
sets of the form ey € 4.]a, s fixed for 1<« o} form a bagis
The funetion J taking ench point
- of T4, to the point Q.qympq, | | is & homeomor-
phism of HA, onto ¢, Clearly both fand f¥ gre continuous, sinee

they take basis elements to basis elemontg,

Sinee  ig totally Separated, it is noy locally Connected. But ¢ js
the countable broduct of copies of the locally tonnected discrete
Space {§,2}.
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3. The Rational Numbers

31. The Irrational Numbers

- 1 E.Then B — @ is the set of
Let @ be the set of rational numbers, Q C :
irrat%nals. In each case we impose the topology induced by the usual

topology on R.

1.

If B, is the set containing the single rafiiona.l a, then '/, B, = o
but \, B, = B. Also (\MB.)* = & while MB.s = R — Q.

@ is an F,-set in R that is neither closed nor G, sinee ity comple-
‘ ' = » 1 ]
ment is neither open nor F,. Thus R—Qisa Gi-set, in fact

E—Q= QQ (£ — {a}).

QMR -—Q = Q’bthﬂ{RmQ)zR.

The Euclidean metric makes both Q and B — @ into metllc
spaces and thus they are completely normal and paracompact.

If {r.} is an enumeration of @, we can define a new metric on B by

The metric d adds to the Euclidesn dis.,tanc:? between = and cgl,r a
contribution which measures the rclsjtxve d:star'mes of z an g;'
from the rationals &.1f B,(p) is 3 Euclidean metric ball and Af.(;rl;
a d-metric ball, it is clear that A«(p) C B.{(p). The converse .al. S
since if r is rational and e sufﬁcient]ly small, A.{r) = {r}; hence in
1 ce (R,d) the rationals are open,

th;'iﬁj‘.égiisprtﬁ:rfct’ d) to the irrationals £ — Q, we can always
find, for each ¢, a & so that Bi(p} C A.(p).. Thu§ the_ mei?:rc space
(B — Qd)is homeomorphic to th‘e Euclidean irrationals. Bk

But (R - Q) is ecomplete, since no sequience fon) w l;;e
converges in the Euelidean topology to a ratmpal e t:an; ’
Cauchy: for each x, in such a sequence, there exlsf;s a;f m,-- -
(where m > n) such that A(Tutm} 2 |20 — 10] + 2—( c(,;u se(;
those sequences which are Cauchy converge to irrationals, s
R—@Qis topologically complete.

max

— max ———
igi |E— 7] i<i (¥ — 7l

day) = |r — y| + 2 2"'inf(1,
im1

The complete metric space £ — is‘of the seco‘nd ;,Et.lieggiifé
while 2, the countable union of ane-point subsets, is of the firs

category.

f.

=
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7. Q is clearly separable and R — @ is separable since the ima-

=

10,

tionals of the form = + ¢, § € Q are dense in R — Q. Thus ¢
and B — Q are second countable.

Since in either @ or B — € the only compact sets are nowhere
dense, it follows that neither Q nor R — @ are locally eompact
or o-locally compaet. However Q, being countable, is g-compact.

Both@and R — ¢ are totally separated, but since @ and B — @

are both dense-in-themselves neither is scattered, though both
are zero dimensional.

[0,1IM Q is totally bounded, but not compact.

32. Special Subsets of the Real Line

If R is the real line with the Euclidean topology, we consider the fol-
lowing subsets:

1.

4.

Let A be the set of all points L/n, forn = 1, 2, 3, - ..

(8) 4 =AWV 0.

(b) D is a limit point and an w-accumulation point but not a
condensation point of the uncountable set A\ [2,3].

(¢) The set A contains a Cauchy sequence (1, 3, 1, . . .} which
hag no limit peint in A,

Let 4 = {0} U {1/an = 1,238 ...

(a) 4 is not lecally connected, for no neighborhocd of 0 is
connected.

(b} If B is any countable diserete space, and f: B— A any
one-to-one correspondence, then B is loeally connected and
£ is continuous, but A = J(B) is not locally connected.

(e) A is totaily separated, since if a,b € A where ¢ < b, we
may select an jrrational & such that o <a<h and
4 N [0,a) and A N (4,1] separates 4 so both the compo-
nents and quasicomponents of A are single points.

(d) A isnot extremally disconnected since {1/2k} is open, but
145 closure contains 0 and js not open,

Let {a.} be the sequence V4, 14+ 1/8, 1/2, 14 1/2, 1/3,
L+ 3/3, ..., 1/m 1+ I/m, . .. 0isalimit point and an
w-accwmulation puint of the set of numbers in the sequenee. It is
an aceurnulation point but not g limit point of {a,!

Let A, = (1 —1/n, 14 I/myforn=1,23 ... N4,

LIN

I

M40 = 1 A0 = {1)* = @, 50 (Nda)e is properly con-
tained in /4,0

Let A = {(0,1) Y (3,1). N o
(a) A= fi", Ao = A= (0,1}, and A=A~ = A4~ =
[0,1}. )
(M) A== (0,1), so A® is & proper subset of A*. ' .
(¢) (0,%) and (3,1} are both regular open, but their union, A,
is net regular open. .
) If By =(0,3) and By = (§,1), (B:N\ Ba) = &, but BiM
Bz = {%}
= 3l intersection of the regu-
Tf Ay = [0,3] and Ay = [§,1], {5} is 1:,he in
lar ciosec‘[; ;:ts A, and A,, but is not itsell regular closed. A, anzl
A, are also an example of sets for which 4,2\ A.° ## (4,4 49)°,
gince A2V A = [01%} W (%)1}: but (Al U A‘!)°= (0:1}
Let A = {0,1) and B = [0,1]. 4 15 homeomorphic to t}Tte subset
(0,1) of [{},1,], B is homeomorphic to the subset [1/4,3/4] of 4,
but A and B are not homeomorphic.

Let A = {0} [1,21 {3} and let B = [0,1] U {21\ {3). A
and B are homeomorphic as subspaces, but there is no homeomor-
phism of B onto E taking A onto B.

Consider theset 4 = {1/nln = 1,2,3, . . .} (2,3)}1\_} {3\,4):.‘)l
{43} U 5,6] \ {x|x is rational and 7 < T < 8]_. T ere aﬁ:e !
distinct sets that can be formed from A (inchuding A itself) by
slceessive applieations of the cinm.lre an'd {:r.}mplement Opera-
tions; these sets are depicted graphically in Figure 12.

Let Zt be the set of positive integers. If d(‘x,y} = +|:t: — ylis tl}_e
usual metrie for 2+, we define a new metric on 2 +by 5(3:,3,{)) ;;1
|z — |/zy. The metric topologies for- (Z+,dy and (Z+,5) aée oh
discrete and thus are homeomorphic. Clearly, every T:;c y
sequence in (Z+,d) must eventually be clonst%nt and s0 {?;n,c e) 112
complete. The sequence 1, 2, 3, . . ., is o Cauchy seq;af, o In
(Z+,8) since for ¢ > 0 if we choose an integer N E)e) > l/e o
formm > N{e) we have 6(m,n) <e. .But clearly 1,2, . . .cann
converge in (Z+,8) und thus (Z,§) is not eomplete.

33. Special Subsets of the Plane

Let B = R X R be the Fuclidean plane. The set 4 of &?pporl;';tz
) ley > 1), where 2y € lf\’, is a (:l‘osed subse_t (,)rf’ . .D 9:1
projection map p: B*— R tak}t1g {,2) in FB? to x in K, 5 open,
but it is mot closed since p(A) is not closed.
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A Crisin o » m
* { ratioﬂa!s]
2 3 4 5

the union of the lines r = , ¥ = 3 is an arc connected subset of X

A Ommeo—o 1 . ¢ 7 £ containing (z,,y,) and {(a,b). llence any point of A can be connected
o E ? imationalsf by an arc to (z,,1:).
: ? * 4 5 6 7 3
A o 1 b_\) f— H. One Point Compactification Topology
3 4 5 6 7 %
A e e H—-———] s E ] 35, Ome Point Compactification of the Rationals
0 2 3 . . .
. : ¢ 5 6 4 8 Let (X,7) be a nonempty topological space, and let p be a puint not in X.
AT ey —o—3 — ¢ We d‘eﬁne X =.Xl\{ {‘p} a,n(_i describe a topology r* on X* by calling
o ! 2 3 4 5 " 7 8 aset In X* open iff it is in r or is the complement of & elosed and compat
A= q- — . subset of (X,r).
f—— _— . .
0 ] 2 3 4 5 p 7 3 L (X%7") is compact since any open cover U of X* contains an open
Afa 40~ set about p and the complement of this open set is covered by a
0 ! m SE 63 finite number of sats in .
7 I .
A¥ = g0 2 (X)) s T iff (X 1) is sinceif z € X,z # p then X* — {7} is
0 i W £ — — an open set containing p when (X 7) is T,. Conversely (X,7) is a
) o i 6 7 & subspace of (X*,r"} henee is T; when {X* 7"} 1a.
AP= 49
0 | g__‘E}-—_; £ K 3. (X" is T iff (X7} is T, and locally compact. Forif 3y € X
g ¢ ? B they may clearly be separated in X* ;ify = pand (X,7) is Ty then

Am = 4°72 - ' !
R} — —_—— any compact neighborhood of z is closed so its complement is

0 i 2 3 4 3 6 5 R an open set about p disjoint from some open sct about z. Cone
AN = A-n-[_._%__] versely if {X*+")is Tys0is (X,r) as a subspace. To see that (X ,7)
0 t 2 3 4E ] — f i3 locally compact let x € X, and let U be an open neighborhood
3 6 7 8 of z disjoint from an epen neighborhood V of p. Then X' — Vis
A=A E\] —3 a compact neighborheod of x. Thus since (X*7%) is compact
Y I 2 3 4 g 6 E‘——_i (X‘,r‘) is Tyaf 1t 15 Ts.
Av=q7ee )
E-—\) — ¢ ] 4. If (Q,7) is the rationals with the topology indueed by the Euelidean
N : 2 3 4 5 6 T f; topology on the réals, (Q°+*) is not Hausdorff, since (1) is not
AT= 0 D'R] locally compact. But since (Q7) is T, 50 is (€",7") and thus (Q* 7
0 1 3 —— — satisfies oo higher separation axioms.
3 4 g 6 4 s '
Fi 9. pis a dispersion point of Q* for, clearly, @* — {p} is totally dis-
‘gure 12. connected and Q° is conneeted since uny open set containing p
2 Let . b has a nowhere dense, and thus non open eomplement. Thus
et .1 be the subset of =R p eonsisting of g Points with (Q*,+") is biconnected.

at lenst ae irrationyl coordinate, and let 4 ha
tf}polt)g},'. A is are comnected sinee g poing {re,y
tional covrdinates 1y be joined by an are to y
as follows. Since {(.b) € A cither g or b i jre

ve the induced
) with two ipra-
any point {ad) € 4
ubional, say w. Then

6. Lvery sequence in ((J*r*) must either be contained in a compact
subset, or must contain a subsequence converging to p, In either
case, the original sequence must contain a convergent subse-
quence, so {Q"7r") is sequentially compact.
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36. Hilbert Space

37. Fréchet Space

Hilbert space H ig the set of a)) sequences x = (x,) of reg) numbers z,

such that Zz2 converges together with g topology generated by the
metric d(z,y) = [(z, — Wi,

1.

%3]

H is a complete metric spaee, for whenever zh 2% 3% . isa
Cauchy sequence in H, then for each L) s a Cauchy se
quence in the eomplete metric space R and thus COnverges 4o g
point of R, say z.. Then iz = (r), the points z — 25 cventually
belong to H a5 7 = (r — 2% 4 2/ must, be i H, and d{r,z?) — 0,

H i3 separable since the set of all points having finitely many
rational coordinates and the rest zero is a countable dense sub-

set. Thus, since /7 is 4 metric space it is also second countable
and Lindelof.

H is not localiy compact since the closed balis B(z,e) =
{yld(z,y) < ¢} are not compact. For the pointg Yn = {1, 25, . . .,
Tnty Xn € Tppy, . . . are in B(z,e), yeb 8(Ya,ym) = /3, when-
ever# # m. Thus {y,} has no convergent subsequence.

Since ¥ is Hausdorff ally compact subset ¢ is clysed. If a set (
has honempty mterior it is not compact since H jg not locally
compact at any point. Thug any compact subset of H is nowhere
dense, Hence, since  is a complete metric Space and thus secand
category, H is not F-COmpact,.

H is arc connected since the entire line segment joining any two
points of H lies entirely in H. That is,if z = (z,) and ¥ = {y) are
in H, then the function f; [0,1] > H defined by fity = 12 +
1-ty= {tr: + (1 — Byd is g path joining z to I, sinee
2(tr; + (1 — 0y:)? converges.

His homeomorphic to K=, the countuble infinite product of copies
of the real numbers R,

A direct comparison of the corresponding basis clements shows

that the product topalogy oy R« may be given algo by the Fréchet
product metric:

_ 279y, - y.l
dz,y) = iF TT__—_I}_‘]
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In this case we call the metric space (R~,d) Fréchefr, space, and can
prove, as with Hilbert space, thut Fréchet space is complete.

i an be mapped homeomor-

Lvery separable metric space (X,d) can . -

phiczﬂly onto a subspace of Fréchet space by the function f(x) =

{d(x,x}) where z € X and {z;} is a countable dense subset of X.
g

38. Hilbert Cube
The subspace F¢ of Hilbert space consisting of all points z = (13, X,

gy -

) such that 0 < x; < 1/5 (or homeomorphically, |z, < 1 /7 for

cach integer 7) is known as the Hilbert cube.

1.

I« is honteomorphic to the countable infinite product of the closed
unit interval, I = [0,1]. f:l“‘-—a'_IIl Liby flay, 2 23, . . )=

(x1, 222, Bas, . . .} is a bijective function which is both open and
C()l’ltinl-,:l'lus. {This is why the Hilbert cube is denoted by «.)

I+, being a subspace of Hilbert space, is a metric space and thus
’
completely normal.

1 is separable and second countable, for the points with ratlfm:ﬁi

coordmates for a fintte number of z,; and 0 for the other x, fo

a countable dense subset,. }

I 15 compact since it is homeamorphic to ‘121 1, which is compact
by the Tychonoff theorem. This may also be proved duect:};hl-)s{
considering a sequence {x,} of peints of I«. The sequ;nceb 0 -
voordinates, |z} ecousists of real numbers from t eﬁu‘lmapar_
interval [0,1], so there is a subsequence of {3.:‘}.“'1105& 1 rs Lu?ld
dinates converge to some point z, € [0,1]. Simlllarly, the seco !
coordinates of this subsequence belong to [{},_51, so there m]u:

exist anuvther subsequence whose ssccmul' cosmlmatt;s converge :,
a number 2, € [0,4]. We muy use induction tu continue this proe-
ess of constructing subsequences. Then the diagonal sui;lsequenrfg
consisting of the first member of the first subsequence, the sec(; h@
member of the second subsequence, and so on, converges to the
sequence {xy, s, €3, . . .), which belongs to Je.

I« is are connected for if z = {&,} and y = {y.) belong to ,i“ th:ﬁ
so do the elements fz + (1 — dy = (fx: +.(1 — Dy ‘urr

0 <t <L Similarly, each metric k.lall. cc?ntafns the Oenélrf{n;e
seg_;_ment, joining its center to any pt‘)gnt in it (smce' for sis ,
d(ztx + (1 — Oy) < d(z,p)). So 1« is locally arc connected.
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39. Order Topology

Let X Pc & set which s linearly urdered by the travsitive relation “ «
We define the order (or interval) topology on X by taking as a basis the

open intervals (y,z) = € Xly <2 < z} for each pair #.z2 © X where
¥ <z

1.

We will call a set S C X convex whenever it containg all puints
which lie between any twe of its points: jf a,b € S and if g <
.t < b, then { € §. This concept is to be distinguished from an
Interval in X which is a set of points fying between two fixed
pouets of x; as usual we denote intervals by (a,h), |a.b), (a b], or
[a,f}] according to whether they do or do not contain it}:cilf c;ld-
points. Clearly every interval is convex but not conversely.,

The_ unj.cm of any collection of convex sets with nonempty inter-
section 1s convex. R any subset S of X ean be uniquely expressed
45 a wnion of disjeint, nonemply, maximal convex .sets called
convex components; the componént of § which contains the poing
P € Sis just the union of all eonvex subsets of S which contain 7.

Suppose A and B are separated subsets of X let 4* = \U ablla

€A leblN\B = &), and let 5* — Uﬁ[’a,;J]Ia,b € B, [i,[b]’rjwl.}g
= &}. Then A C A* since for e € A, [g,q] = 1a] is disjoint
from B. Further 4" N B* = & for if g € A* B*, then there
must _be points a,b € A and e,d € B such that p € fed] M [e,d).
But since neither ¢ nor can belong to [a,b], and neither o nor b to
le,d], we must have [@,b] N fe,d] = ]

In fact, we can prove more: A* and B® must be separated, To
prove this, we observe first that A C AU 4. For sUppOse
? ¢ A" 4. Then there exists an open interval {s,£) disjoint
.fr(.)n1‘A but containing p. The interval (5,) may intersect A* only
if it intersects some interval (8,85} C 4 where a,b € A. But since
(s M A = Zand a,b € A then (5,8) C (a,b) which would imply
that p € A°. But since p ¢ A, we must have (s,6) M A* = Qf
Thus p ¢ A°. Thus 4° N B* ¢ LV HNB = U nopyU
ANE) = g

If we now write A, B and (A* W B*) as the union of convex
components, A = \J4, B* = B and (4* '\ BYY =\, the
co]lecltmu,ﬁ[ = {Aa,Bs,",} inherits a linear erder from X and is
thus itself » lincarly urdered set. We claim that in the ordered
set _M ) eae.h of the sets A, (and similarly, cach of the sets H3) has
an 1mmediate sucecasor whenever A, intersects the elosure of &,
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the set of strict upper bounds for A.. In this case we can show that
the successor to A4, is an element of {C,}, which we will denote
by C,*.

For suppose 4./M 8, = & then 4,M &, contains precisely
one point, say p, which belongs to the complement of the closed
set B, so there exists a neighborhood (2,y) of p disjoint from B°.
Then {z,y) N 8. # &, so0 (p,y) = &. But {p,4) is disjoint from
both A* and B®, so there must exist some set C, containing (p,y).
In the linear order on 3, (', i the immediate suecessor to A,
and we will eall it ¢t

For each v, sclect and fix some point ky € C,. Then whenever
A.M 8. # F, there exists a unique k.t € €%, the immediate
suecessor of A,. In such cases, let I, = [p,k,*} where pEANS,;
otherwise, if A M8, = &, let F, = . Define J, stmilarly for
the strict lower bounds of 4, {using the same collection of points
ky € Cy). Then for each &, let U7, = J.\J 4_\U I, and similarly
for each 8, let Vi = J, U Byt 1;. Each U7, and Vg is elearly a
convex open set containing A, and B,, respectively, Thus I/ =
\JUs V = \UV, are vpen sets containing A* and B*, respectively.
Since no A, intersects any B, and the use of the same k., through-
out implies that no Jy or I5 may intersect any J, or I, it is clear
that no U, can intersect any Vo. Thus UN ¥ = &f yand hence X
is Ty, Since the points of X are clearly closed, X is Ty, and thus
completely normai.

The order topology on X is compact iff it is complete—that is,
iff every nonempty subset of X has greatest lower bound and a
least upper bound. This condition is clearly necessary, for if
A C X and if A has no least upper bound, then the sets P, =
{zlx < o} and S5 = [z]z > B} for o € A and 8 an upper bound
of A cover X but they contain no finite subcover. To prove it
sufficient we need ouly eonsider, for any given open cover U of X,
the set & of those elements y € X for which (2,4} {where a =
g.lb. X} can be covered by finitely many members of W. If o =
Lub.Sandifa € U € W, then I/ C 8. There then exists, unless
e = lub. X, an interval (x,y) C U such that o € (x4}, Then
(a,y) = & since &« = Lub. 8. But this would mean that ¥ €S,
which is impossible. Thus S = X

Whenever X contains two consecutive points (that is, whenever
some interval (o) is empty), X can be separated by [2ir < a}
and [x|r > b}. Similarly, if X contuins a bounded set A with no
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46.

41.

42,

43.

Closed ordinal space consists of the set
or equal to some limit ordinal T, togethe
{Jpen ordinal space is the subspace [0,T) comn
less than T'. Sets of the form (a8 + 1) =
form a basis for this topology. We will «

least upper bound, the set of upper bounds for 4 and its comple-
ment separate X. Thus X ig connected only if it contains no eon.
secutive points, and. if every bounded subset has g least upper
bound. These conditions are in fact sufficien

marized by the Dedekind cut axiom: if 4 and B are digjoint non-
empty subsets of X whose uniay is X, and if every point of 4 is
less than every point of B, then there exists Jub, 4 and it equals
g.Lb. B. We will use this version to prove sufficiency.

Suppose U and V are disjoint nonempty open sets whose uniog
is X, and assume that [7 contains a point % which is less than sonie
point v € V. Let I be the convex component of € which gon-
tains u, and let 4 = 2\ frEXz<ul IfB=x - A, then
v € B and so the Dedekind cut axiom guarantees the existence of
apoint p=1lub. 4 =¢glh B. If P € 4, then it must be in g
and thus in 7; so there exist points 2,y such thiat P € (xy),
() CECU. But since p=1lub. A, (py = & which is
impossible since ¥ cannot be the immediate successor of p. T
P € A. By a similar argument

gives the desired contradiction.

hus
it can be seen that # 4 B, which

If X is a connected set with the order topology, any point p € X

Is & cut point, since X — {p! is separated by P, = {2 € X
T <pland §, = {r € X[z > p}.

Open Ordinal Space [0,1') (T < m
Closed Ordinat Space [0,1') (I' < )
Open Ordinal Space [0,9)

Closed QOrdinal Space [0,0]

of all ordinal numbers less than

sisting of all ordinals strictly
(Bl = {2]x < 2 < B+ 1
onsider two speeial cuses:

I' = 4, the first uncountable ordinal, and I < .

I. In ordinal space {0,9], {2} iz a closed sot that is not a Gy-set.

{9} is closed since its complernent [0,2) isan open set, It is not a
Gi-set, since for any countable collection G, nf OpeR sekS con-
taining Q, we can find a collection of basis elements of the form

t; and are often sum. |
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(@8] C G, for each 7. The least upper b(_)und of the a, is an
ordinal v less than , sinee each e, or equivalently, ea:ch [0,a)
is countable and the countable union of .countable sets is count-
able. Therefore MG D (v,9] = {G].

Thus ordinal space [0,2] is not first countable, sir'me t}‘le .painy @
does not have a countablo local basis. In fact, @ is a kmit point
of the set (a,2) but it is not the limit point of any sequence of
points in («,).

Similar reasoning shows that [0,0) is not separaitble, for the lea.s;
upper bound of any countable subset of [0,0) is cwnmbl?, nn
will be strictly less than f2. Therefore, there will always be an
open interval (e, in the complement of a eounta.hie. 'subs;t.
Thus both [0,2) and [0,] fail to be sepa;:a.bie. But un.h%ue}:1 [g, 1,
[0,9) is first countable, since the.only point of [0,2] which does
not have a countable local basis is Q.

Since all order topologies satisfy all the sepa.ratign axioms, ea,(l:h
ordinal space is completely normal. But [0,2] is not perfectly
normal, since the closed set {2} is not G4,

Although neither [0,9] nor [0,2) are secqnd countable, b(l):;h 1[0,1;
and [0,I") are (for T < 2) since each peint has a countable oe

basis, and there are only countably many peints. Thus! sthr:.lce
ordinal spaces are regular, hoth [0,I} and [0,T") are metrizable.

Every subset of each ordinal space has a greatest lower bound
(its first element;) and every subset of [0,I'] has a least uplper
hound. Therefore, [0,T} is a complete order t_npol?gy, a.z;d td s
compact. Similarly, the closure of each basis neighborhood is
compact, so every ordinal space is strongly locally compact.

The open subset [0,I')} of [0,T] fails to be compact s%mxe t.he‘col-
lection {{0,a}|la < I'} is an open cover with no finite subcover
(since T is a limit ordinal).

Since [0,9] is compact, it is countably ‘corgpact. Thus cvery
sequence in [0,2) has an accumulation point in (0,2} Bu‘t Q can-
not be an accumulation point of any sequence in [O,Q): Bo every
sequence in (0,2} bas an accumulation psint in [0,9), which means
that [0,Q2) is countably compact.

Because a space is compact if it is both countably compact a.m:llG
metacompact, and since [0,Q) is countably compact but no
compact, [0,Q) cannot be metacompact or paracompact.
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10. Sinee every Ty Lindelgf space s paracompact, 0,0) is 1ol . X is well-ordered, since it is a subset of [0,Q) yet its topology
Lindelsf, and thuyg ot s-compact. Bug [0,9] being compagt, is is discrete since X M (o +2) = o+ 1} is open in X. Thys
both Lindelsf and o-eompact. the topology on X is not the topology given by its natural ordering.

11. Sinee it is first countable and countably eompact, [0,9) is e 2. The product set (0,2} X Z, where Z is the integers with. the lexico-
quentially compact, ’ graphic order ((a,n) < (@) ifa <o orif g = e and n < n’

12. Any continuous real-yalued funeti 0 7 18 a linearly ordered set in \'-h.ic:h every clement hay butb an im-
tally constant—thag i o LLLtlon { on | ‘»51) mustrf?e ever- mediate prcden%s:or and an mmn_ad:atf: suceessor. Thus 1t order
this, we verify firet the axi us :\n oD some set (a,2). To proye topelogy is alse diserete and 80, since it has the same cardinality

. oY first the existence of 4 sequence a, € [0,2) suck as X, it is homeomorphic to X
that |f(g) — Had| < 1/m whenever 8 > 4, For if 10 such ge. . . ] . PP
quence existed, therc would be some integer n, for which we 3. The diserete metrie o X yields the dlscrete,umformlty f: L \:-l‘nch
could constryet iuductivety an jncreasin;.'; sequence v, € oy hM.”‘S a bm&.c the d:a:guna,l‘ A=) € X x Xlz € X1. Thus
such that |f(y3 ~ j (vl 2 1/my for ench L. But the chue;;cg Ui is a metrizable uniformity.
¥i COnvVerges to ity least Upper bound v, hereas the points f(y } 4. The uniformity U, which s generated X [
cannot converge, This I8 Impossible for 4 continuous funetion i by the basis of all sets of the form |
So the sequence “n €Xisty, and it has a Jegst upper bound a < g B:=aUlry) €Exx Xlz > zand f
Clearly f js constant on (a,0). ¥ > 2} also yields the discrete topol- :
13. All ordinaj SPaces are zero dimensinpal since the bagfy elements ogy. However Qz does nc)tl, haveb]a.
(,8] are elosed. But none of thep are extremally disconneota countable base since every countable
since the Open set 4 = f1, 3,57 ... | has as jis clos uﬂ; subset of X h‘a;-: a Ieus-t upper bound
A\ {w), a set which is not Open. ‘ lc..ss than i Thus (X,Us) is a nonme-
. trizable uniform space whose topology

M. Since ordinals aye well-:)rdered, every subset of ordinal space is metrizable.
with at least tyo points containg byih a first and a second ele-
ment; thus the fipgy clement cannot be & limit poing of the sot, 45. The Long Line
50 no nonempty suhset, of ordinal space cpg be dense-in-jtsolf.

Thus each ordinal space is scattered. 46. The Extended Long Line

15. The ordinal space [0,20) is, like [0,52), sequentially compact hug The long line L is sonstructed from the opdinaj space [0, (where 77 ig
not compact. But, unlike (0,2), {0,20) is not first countable, the least uncountable ordinal) by placing between each ordinal & and

Hi 1ts successor o 4 1 a copy of the unit interval 7 — (0,1). L is then

If we expand the interval topology on K,08) by declaring apen
each ordxrli}l B, we will have, essentially, 5 countably infinjie
sum of copies of [0,2). This new space will fail, like (0,52, to be

lincarly nrdered, and we give it the order topology. The extended long

line

LY is construeted similarty from [0.9].

metacompact and furthermare it wij) fail to be ot Com- 1. L is not ecompact, since the open covering by sets of -the form
pact since the summands form countable cover with finite Wy < a}, a € 0,2 has no finite subcover. In fact, it has no
subcover. Byt clearky [0,09) with the new tupology will sgij] be countable subcover, since the least upper bound of any couutable
countabiy Paracompact, ) collection of srdings o = 10,) mwust be eountable, and therefure
cannot equal 2. Thus L is not Lindeldf, and therefore not

44. Uncou i o-tompact,.
nable Diserete Ordinal Space 2. For a similar reason, L s not separable. If D is & countable subset

of L, and ¥ 8 i the least upper bound of 1), the set ly € Lly > ,Q}
i5 1 nonempty open subset of £, which is disjoint from 72, So b

cannot be dense iy 7.

I.('t‘ X be the set of points of the form o + 1 ip [0,2} where o is a Hmit
ordinal, together with the subspace topology induced by the order
topology on 0,2,
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3. L ig first countable since each pointx € L is the least upper bound

~r

of a countable collection {2} of points in & which precede it. So

{@ax + 1/8)) is n countabie locul basis for the topulogy at the
point z,

Sinee L and L* earry the order topology, they are both completely
normal, Furthermore, slthough 1 fails to be perfectly normal
since R € I*) L is perfectly nomoal. For cach point ¥ € I, hag
countably many predecessors and may thus be written as g
countable intersection of intervals which contain it. Ind eed, every
closed set is a countable intersection of nested open sets, for pach
point in the complement of & closed set 4 s contained in sonie
open interval whick i disjoint from A and which is eventually
disjoint from the nested open neighborhowds of A.

L is compact sinee each open neighborhood of Q has a eompact
complement. 8o L is countably compact, for just as in the ordinal
space [0,2), every sequence in £, has ap accumulation point which
must be in L. Clearly L is not compact, and thus, since it is count-
ably compact, neither metacompact nor paracompnet,

L is arc connected since whenever pg € L, the interval [p,q] is
homeomarphic to the vlosed unit interval. L’, being the ¢losure

of I, is thus connected, but it is not path cotmected, for no path
can join any point to @.

Since both L and L* are countably compact and regular, they are
of the second category.

An Altered Long Line

To the long line we add a point p. Open sets of L\ {p} are the open
scts of L together with those generated by the folluwing neighborhomds

2
ol p: Ug(p) = {pj W | U (e + 1)} {where | < g < 2). Us(p} is then
a=p

4 right-hand ray less the ordinal puints. We consider P to be the greatest
cletment of L\ In}.

[

2

.

If ab € L {p}, say a < b, then there exists z 2 such that
4 <2z <& Thus {zz < z} and {z|x > 2} are disjoint neighbor-
hoods of & and b, so L\J {p} is T,.

No Us(p} containg UL ) for any e. Hence L\J {p] is not Ts;
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but sinee it is Ty, it cannot be compact. Yet, L\J {p], Eke the
extended long line, s countably compact, eonnectf:d,v and not
separnble. But it is not Lindelof, for the cover consisting of the
sets (8,8 + 2) together with U{p) has no countable subcover,

48. Lexicographic Ordering on the Unit Square

Let X be the unit square in the plane: X = [(m,g!)lo <z<1,0<yx<1}.
We order X lexieographieally () <{up) iff 2 < w, or = u and
¥ < #) and place the order topology on X

i

2.

Sinee X earries the order topology, it is completely normal.

Every nonempty subset A of X has a lenst upper bound. AIt.houg}l
this is not obvious, it is at least clear that the set 'of‘ﬁrst coordi-
nates of points of 4, being a subset of the closed unit interval, has
a least upper bound;; let & = Lu.b. {(x,0)|(z,yj_ € A for some yi.
Then if AN (el <y <1y = &, (a,0) i3 the least upper
bound for 4. Otherwise, Lub. A = lLu.b. {lay) €A <y < 1),
Thus X is a complete ordered space, and hence compact.

The set L = {(z,)|y = 3} is an uocountable @-set (triviall;y)
which contains no perfect set. That is, L is an uncounta,b_le dljs—
crete subspace, which means that X eannot be separable since it
contains an uncountable collection of disjoint open sets and thus
fails to satisfy the countable chain condition.

Sinee X is compact but not separable, it is not metrizable. How-
ever, it is first countable.

Since in the linear order on X there are no consecutive puints, an‘d

since every {bounded} subset of X has n least upper bo_uud, X 13
connected. But X is not path conmected since any path in X join-
ing, say, {0,0) and (1,1} must be connected, and therefore must
contain all of X—sinee in g linearly ordered space any GOfxnccted
set containing two given points must contuin the entire interval
between them. But X cannot be the continuous image of [0,1]
since X contains an uncountable collection of disjoint open sets
whose inverse images would form an uneo.u_ntabl'e collection of
disjoint open sets in [0,1]. But this is impossible sinee each such
upen set would have to contain a rational.
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50. Right Order Topology on R

I X js g lincarly ordeged set, the topology generated by b

iusis sets of

the form §, = tzlxr > a} is called the right mder topology on X, (A

left order topology is defined similarly using the sets J
1.

h

o

.

= {alr < al.)
For any point ¢ X, every ¢ < gisa Limit point for fal. 8o the
closure of fny apen set is the whole space .Y, and every right order
topalogy is weakly countably compact,

Clearly X is both hyperconuected and ultmmmnectc&d,

thus path
connected, losally eonnected, and Pseudocompaet.

X is aluays loeallhy compact, but it is compact iff it containg a
first clement. Byt sinee the closnre of Any open set is the whole
8pace, X will be strongly locally compaet iff ¥ ig colpact,

Ha <y then Sz 18 an open neighborhood of ¥ which does not
contain ., So X is T, but clearly not Ti. Thus it is not Ty, Ty,
T But since there are no disjoint eloged
Similarty, X is Ty vacuously since thepe
in X:if A and g are disjoint and nonem

sets, X is T, vacuously.
can be no separated soty

X is net perfectly T, sinee the only oben set which containg

any
closed set js X

An interesting special case is the right order tepology on the real
numbers & call thig space (K,7). Then (7} 1s seeond countuble
sinee {8 )reo is u countable busis for . Thus (R,7) is Lindelsf,
and therefore not countably tompact since i js not eampact.

But, since (R,7) is thus both locally compact angd Lindelsf, it must,
€ o-compact,

Kach set p, = x € Rlz < 7
which equals
in-itself. T

is nowhere dense in (R,7), so R,
U P, s first category. But each P, is dense-
€0

The open cover {8,} of &, where # iy an integer, has no point
finite refinement, so {R,7) is not countably metacompuct,

Any finite set ip (R.r} has infinitely muny limit points, but po
w-accumelation points. Thys if we add to a finite set its w-necumuy-
lation poinis, we will not produce a closed sot,
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51. Right Half-Open Interval Topology

Onthe set X of all real numbers (or, more genelml}y, a:zlly ]ifneﬁriitzr;lfe:ﬁi
i be the family of a

sct), we choose a basis for a topology + to _ .

.fttxj;t ‘[zxebc) where a,b € X For obvious reasons, (X7 is (Eall.ed the i‘lght

I::;f-upén,interval topology, or sometines the l;m'er En’;:; t;};c: ?ﬁij
X — B, or [e,+ =) are both oper

Then sets of the form (— w« a), [a,b), . : h u

fl ::::1 Sets of the form (a,b) or (a,+ =) are open in X, since {n,b) :

U{{a E))|a < a < b}. They are not closed, since sets of t!)e form {— w a],

e, 4] Iamlzl {p} are not open, not being the union of basis elements,

Wy

I

A= (@to), A= (te), 4= (~og), wd 4% =
(2,4 ©). We sce that de D) Ae, hut Aee 2 Ao

X is Haunsdorff since the topology is an expansion of the u:iteévsi
topology on X X is in fact completely normal, x{m lcg ftihan Dhe
: i Then for each s € X — ere
two separated sets in X. [ r e - s

. — e X — B is open. We
€ Xsuchthat [az. ) C X — B since
E;e 04 ; \J la,x.). Oy containing B is defined analogously. If
€4

. ; € 4, b € B we have [a,z,) M
04M Og = &, then for sone a s e o) 1
ihzs) % . Say a < b: theu b€Efga,)CX -8B ac
tion. So G4 and Op are disjoint.

. . e
X is not second eountable, for if § = {lropali € ;’ .} ;: tf;:;{
countable set of basis elements there exists sn a E such tl "
a # z; for any ¢ € Z*. Then for any b > g, [a,b) is not a unio
of any collection of elements of S.

eV LI l,; & 3 ﬂabl r It COHE}( t» on UE
HO\‘ eF X I fl‘b O t G, fD t a& pt) tl >y t-he 107
LS i 1[8 ‘ i i Ha T ol 1
h i | i « 'lt ¥
5e Q tl orni [w,a—-‘), \119 e d; B3 a4 10Tk Ll l)UIllbO f m i
- 1)) thellll(]I‘B, .'\ 18 E!Epa-l able SInee t‘he
ratluual nu}n.belb are df_‘-]l-‘.‘e 1 4‘1- lhlls, sS1naee :l 13 ll(")t SECOI!(]
Cﬂllllt&blt., lb (,il.llllut EJO I’nctl Ur“bie-

Every compact subset of (X,r) is nowhere dense in t?efugld;m:
’ 4 i i ace, as usual, by R. Fo
logy on X; we will denote Lh{s space, ' )

zzg:u:i} Adis a,subset, of K which is not nnwl}ere dense,bthen l;t

.cmltaius some subset B which is dense in an interval [a, ] i: b.

If {b;} is an increasing sequence in B N [Gf,b] couv'ergll}:}}g?J oel;

tuh(?ll [_ G:I:I&')J [a)bi): 1{E‘i:bl'+l) l:n=1 szi {bs OG) ma {c?unt? eeazfli

covering of A which ean have no finite subcover, since for )
fabi) M 4 = @,

{X,7) cannot be o-compact, forif X = \J4; for compact 4., then



R = \UA; where each A; is nowhepe dense. But since R is of the
second category, this is mipossible,

_But (X,r)is Lindelof, for i1 {7} is an upen covering of (X% amd
f*f Ue® 15 the FRuclideun interior of U., then since every subsat of g
1z Lindelsf, fU.°} has a countable subcolleciinn U0}
tovers U = U/ o But the complement 4 = y _ U may be
covered by a countable subcolleation of [U.} since 4 iga countsble
set. For if p € 4 there must he gome polnt x, > p such that
Br) N4 = . But these wtervals gre disjoint, 5o there canng
be uncountably many of thep,

of the set U1 (1/2n, 1/(2n — 1)) is not open.
o™

52. Nested Interval Topology

On the open interval X = (0,1) we define 4 topology » by declaring open

all sets of the form U, = (0,1 ~ 1/n), for n = 2,34, .
with & and x. Y

1.

ar

-, together

Since EVery nonempty open set contains both sand § X i not
To, thus net Ty, Ts, or Ty

Similarly, sinee EVEry nonempty open set eontaing 1 i
8 §, EVery neigh-
borhood of the closed set (%,1) must alse. Thus (X7 is not T;,

Since the closure of any set 8 inclides gl points of X greater
than the greatest lowor bound of 3, there can be ng separated sets:
thus (X 1) is Ts vacuously, and thus T, also vacuously. ’

X is clearly hyperconnected and ultraconnectegd and thus is puth
connected, tonnected, locally connected, and pseudocompact,

Since 7 i countable, X is secong countable and thysg first count-
able, separable, and Lindelsf.

Sinee af] nontrivial open setg are of the form 7, = (G — 1/m),
each open get exeept X igelf ig tompaet. F urtheninore, no elosed
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set except (F is compact, since {U7,) is an upen covering of any
closed set which can never have & finite subcover.

Since each point of ¥ is contained in a compact open set
01— 1/n), X is locally compact. X is not strongly locally com-
pact since the closures of neighborhoods are not compact: I, = X
for each #. Since X = VU, X is e-compact and thus a-locally
compact.

X is not countably cumpact for the U, have no finite subcover,
and thus not sequentially compact, X is, however, weakly count-
ably compuet for if p is the greatest lower bound of any infinite
get A, then every point z > P15 a limit point of 4, X is not count-
ably metacompaet sinee the open cover [U,} has no finite refine-
ment and 1/4 is in every set in the cover.

53. Overlapping Interval Topology

On the set [—1,1] we generate 4 topology from sets of the form [—1,b)
for & > 0 and {g,1) for a < o, Then all sets of the form (a,b) are also

open,
1.

X is Ty, but not, Ty, since the point 0 is not closed. Also X is not T,
since {—1} and {1} are closed subsets with no disjoint
neighborhoods.

X is compact, since in any open covering, the two sets which
melude 1 and —1 will cover X.

Every nonempty open set contains 0, and the closure of any non-
empty open set is the whole get A Bo X is dense-in-itself and
hyperconnected and thug connected and locally conneeted,

Since this topology is coarser than the Euclidean topology X is
are connected.

A is second countable since the intervais (—1Le), (s,8) and {s,1]
for rational s,¢ such that § < 0 < tform a countable basis,

The sequence 0, 50,302 .. haso as an aceumulation poing
but not a Timit point but, any point greater than $ is a mit point
of this sequence.

54. Interlocking Interval Topology

Let X = R+ — Z+ tlhe positive real numbers excluding the positive
integers. The topology 7 on X is generated by the sets S, = 0,1/n)\J
(n,n + 1), where n € z+,



s Counterexamples

1. X 1'-; not Ty since 2% and 21 eannot he separated; X is also yy
Ts since (2,3) and (3,4) are disjoint elused sets, but X h

AL 48 no iy
Jomé open sets.

2. Since X is hyperconnected it 1s connected, locally coinected, iy
pseudocompact, ) ’

3. {S,,} js a countable open covering of X with no finite subcove,
S0 (X,7) is not countably compact, and thys not compaet.

4. A basis for ¢ consists of the sets S, together with sels of the fom
(Ei,r 1*"‘"‘.) for n > 2. Since ench of the basis clements js ORI,
(X,7) is locally compact and thus ¢ compact ginee IS, = X ‘

_C..‘!

Sinee {8,} is countable (X)7) is second
" H s ¥ g h Uountabfe d tl
separable and Lindelgf, wne Herclon

6. The open cover {S.} has no refinement. But 8, = 0,1y (1%

¥ ('t - T !f‘ U‘t a T Ut coun ab
l]li("‘ 5ects eve he] B et; 1113 tl]e caver. {;U ‘X T) 15N

7. But the cover fS.} is poing finite, since each point a > 1 belongs
o only one member of the cover, and each point x < ] belongs

to finitely many members of th y Y
e cover {8,}. % I8
metacompact, (5. 5o )

55. Hjalmar Ekdal Topology

E hfe H;j alflmr. Ekdal t'upulogy is defined on the st X of positive
f} including nr prec_lsefy those subsets of X which contain the succesgor
ol every odd integer in them, Thus a set A is closed in (X ,7) iff for cach

evenpnint;r;rinA,p—lEA,f if p— it w ¢ 1
nteger ol in 4 orup—~14¢ 4, it would be an odd

integers

L (X,7) is just the sum of countahly many eopies of Sierpinski space.

2. The sum of s is T; i ; is T si
spaces s T; iff each of the spaces is T siuce to sepn-

T, - 3 1+ 1. PN Y o 1
utf1 bwo sets it iy necessary and suffivient to separate them withiy
€ach summand, {or the summands are both open and tlased. Fhus

X 15 Iﬂ 14 alld ]5 O]}Iy. Ii] th! t« v
il ] 3 case lle BHINIMA ld are h "yub—
nas L t; ¢

3. .‘X-IS n'or, compart since the covering by summands is an upen dis-
joint infinite covering with na finite subcover, But sinee euch
suinniand is second countable s i5 the sum X, The fuet that ‘the
Cover by summands js g refinement of any tpen cover bnplies that

:1 Is paraeompuet, That these summands nre finite implies that X
18 locally compact,
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4. Bince the subspaces {2n — 1,2n} are the components of X, X is
loeally connected and locally path connecled, but neither totally
separated nor totally disconnected. No subset is dense-in-itself,
s0 the space is seattered. In fact, since each even integer is open
and not closed, X is neither first category nor zero dimensional,

56. Prime Ideal Topology

Let X be the set of all prime ideals of integers: that i, X is the set of all
ideals P in Z whaose complenient is multiphicatively closed. We define 4
topology for X by taking as u basis ull sets V, = (P € X jx & P], for
alla € Z+, (Nate that Vo = @& and V, = X))

I. Each basis element ¥, contains all but a finite number of prime
ideals (those generated by the prime factors of %), while the ideal
0 is contained in every basis element V.. Thus a subset of X is
open iff it contains 0 and has a finite complement.

2. A subset U of X is open iff there is an ideal 7 C Z such that
U={PeX|IZPIPorifU = U V, Iistheideal generated

TEAM
by M, and conversely. 8o a set € is closed iff there is an ideal I in

Z such that € = (P € X|I C P}. (This description may be used
to define a topology on the set. of prime ideals in any ring 4 ; this
space is normally called Spec A.)

3. X'is Ty, but not T} since 0 is in every open set. Thus X is not T, or
T;. Sinec any nonzero prime ideal is closed X does have disjoint
closed sets and hence is not T, or Ty, nor metrizable. Again since )
is In every open set X is hyperconnected and thus connected and
locally connected.

4. X is compact since every open set has a finite complement. Also X
15 second countable since the basis |V, s z+ I8 countable.

5. The map f: (0,1} = X defined by f{0) = P, f(1) = Gand f{i) = 0
for ¢ € (0,1} is continuous for any P € X. Thus X is both path
sonnected and locally path connected sinee 0 is in every
neighborhood.

57. Divisor Topology

Let X = {x € Z+x > 2}, together with the topology generated by sets
of the form U, = {x € Z*|z divides u}, for n > 2.

1. X is Ty for if x < y then y ¢ U,; but every neighborhood of 6
contains 3 3o X is not Ty, and thus not "1 or Ty,
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2.

=¥

If  is a point of X the closure of x consists of al} rrultiples of 1
Thus no t\:u'o nenempty closed sets are disjoint, since they mug
both contain the product of any two elerments, one from each sef

Le b} o 3
Thus X i T, vacuously, and also ultraconnected, path connected
and connected,

If neither of z or y‘divides the other they form separuted sets, by
any open set eontaining ¢ or ¥ contains the preatest common disi

sor of z and y. Thus 6 and 8 may not be we sarated b i
X is not Ts. t ¥ open sets y

Tl'le set_ n.f primes is dense in X for every open set containg g
prinie divisors of wli of jts eletnents; in fact eueh prime s apen apg
therefure not nowhere dense s0 X is seeand category.

Smm‘a gach'point has a finite neighborheod, X is locally compaet.
But it is neither countably compact, since the sets S, = U U, =

r<n

izle < n} form an open covering of X with no finite subcover

nhor strongly locally compact, since every closed set is tufinite ang
therefore not compaet,

Since X is countable and all basis elements are finite, it is second
countshble and thus separable and Lindelsf,

X is locally connected, since for enchn € ¥ the set U, bs a small-
esl nperlt set containing n, und thus contiected. X, though cop-
nected, is scattered since each nonempty subs

which is therefore an isolated point of the set, and therefore no
such set can be dense-in-itself.

Each basis neighbarhoud U, is ultraconnected in the induced

topology (since every closed set in 17 i i
0 contains the t
X is locally path connected, ' pomt s

58. Evenly Spaced Integer Topology

Let X be the set of integers with the to
form a + LZ — fa + kia € AR

ol e

integers,

L.

b

ey

pology generated by sets of the
where Z iy the set of integers, und

X. The basis sets are siniply the eosols of subgroups of the

X is Housdorf, for if .3 € X and / ¢ ivi
\ R v does not divide b — g, th
¢+ kZ and b + kZ are disjoint cosets. R

Every basis element is cloged sinee a given coset of u subgroup is

6.
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the complement of the union of the remaining cosets of that sub-
group. Thus X is zerv dimensional and regular.

X is totally separated, since it is Hausdorfl and zero dimensional.
If 8 is the set of odd integers, the sets 2°S,n = 0, 1,2, . . . , are
disjoint, for if @2" = $2=, then a2~ = b which implies either

m=n or one of a and b is even. The sets 4 = \UJ 228 and
n=0

B = U 284§ are then open, disjoint, and contain all the in-
n=0

tegers except 0. If & € 4 then 26 € B and vice versa, thus 0 is
% limit point of both A and B so X is not extremally disconnected.

X 1s clearly second countable and thus, since it is regular, it is
metrizable which in turn implics that X satisfies all the separation
axioms and is paracompact. Since points are closed and not open,
and since X is countable, X is first eategory, and thus not
complete.

The set of primes is an infinite set without a limit point so X is
not countably compaet and thus not eompact. However, since X
is countable and second countable, it is e-compact and Lindelof.

The funetion ¢ 4 kX —  defines a homeomorphism between any
busis element and the entire space. But since X is Hausdorff and
each busis element is closed, this implies that ro neighborhood of
any point is compact. For being compact it would be elosed and
thus contain the elosiire of a basis element which would then be
compact even though it is homeomorphie to X which is not com-
pact. Thus X is not locally compact.

59. The p-adic Topology on Z

Let X = Z be the set of integers, and let p be a fixed prime. We define a
topology r on X by taking as a basis all sets of the form Uun) =
{n + Ape|r € Zj.

1.

The topology r is generated by the metric d(n,m) = 2-* where k
is the largest power of p which divides [n — m|; if n = m,
d(n,m) = 0. The cquivalence of these topologies follows from the
relation B.{2-2) = U, .(n).

Since Ua(n) = {mlpe divides |m ~ n|} = [mld(mmn) < 29},
cuch basis set U.(n) is closed. Thus X is zero dimensional. Since
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no point is open, X has no isolated points; thus Y is dense-in.
1tself, and therefore not seattered.

F'Jach point is closed and no, vpen, thus nowhere dense in X ; thig
since A is countable it is of the first category, hence it can be
nerther topologically complete, nor locally compaet.

60, Relatively Prime Integer Topology

61. Prime Integer Topology

Ontheset X = Z+f positive intepers wo generite a topolugy 7 from the
busis @ = {U,0)ab € X, (ab) = 1] whers Udb) = [b+ ng € ¥
MEZ and a subtopology o from the subbasis @ = H(D)p s
prime}. The topology r will be called the relatively prime Integer tupel-
OBy, and o simply the prime integer topology,

1.

That ® is a basjs for a topology follows direct) ¥ from the observg-
L.mn t.hat the intersection of a0y two of the arithnietie progras-
SIons In @ is itsell an arithmetie progression of the same type, or
empty. In faet, if g € Uy N U(d}, then Valb) M Ufd) =
Uta.c1{g) where [a,c) is the least comman multiple of ¢ and .
Clearly, ¢ + nlae] € U by My Ueld) for ali appropriute n, Con-
versely if x = b4 pg = ¢4 + »'e, then since g =b+ n =
d =+ m'e we have g — 7= (n— na = (n' — Ha')e so [a,e]|o — q
and thus ¢ = Mae] + ¢ for some k, 5oz € Up g (g)- So & iy
indeed a basis.

Uaby N Ufd) 5= i b==g¢ mod(a,e} for if § — ¢ = ra,e)
then there exists mtegers s and { such that r(a,e) = r{as + cl) =
bh—d sod+ elir) = & + af—rs). Thus fur sufficiently large »,
d+ ctr + aen € E.bhynN U.(d). (Junversely if for sonie ny und
7o' we have b 4+ e = d + ny'c, then § — d = n'e — ny =
ka,e), for some bisob=g nuxl(a,¢).

In(X,s), forp > ¢, UL(b) always intersects Uo(d) since (p,q) = 1.
So the eollection @' = {Ub) € Blais square-free} finans a basis
for (X,s) (where an integer is called square-free if it has no pee
peated prime factors),

fabe X, and if P IS u prime greater than g + b, then b #
a miod P 50 Ula) M U, (b) = & Thus (X,0) (and therefore also
(Xyr}y s T, Ty, and T, .

(X,r) s not Ty since the elosure of any upen neighborhood

&

10.
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Ua(b) contains all multiples of a, and thus the closures of any
two open neighborhoods T,(8), Ue(d) contain in common all
multiples of |a,c]. To see this we observe for any k that if (t,ka)
= Lthen (t,a) = 1,50 U,(ke) N Ua(b) # & forka=b mod {t,a).
A similar argument may be applied to (X,¢} with similar results,
80 neither space can be repular or Urysohn,

Since both spaces are HausdorfT but not regular, they are neither
locally compact, paracompact, or compact. Since ® is countable,
(X,r) (and therefore also (X,0)) is second countable, thus first
countable and Lindeltf. Since in second countable Spaces con-
pactness is equivalent to countabic compactness, neither space
can be countably compact.

Since in both spaces the closures of any two disjoint open sets
intersect, cvery real-valued continuous function on (X;1) or
(X,e) is eonstant. Thus both spaces are pseudocompact and
connected.

Suppose N is an open r-neighbarhood of 1 contained in a1y
let 14+ 20 € N for somen > 0. Then U = Usa(l) is an open
subset of L/5(1) whose relative complement V is open and contains
14+ 21 (since V = U,(1) — Una(l) = UL Upn(l + 25)).
Thus UMy N and VN separate N, so U.{1) cannot contain
any open connected neighborhood of 1. Thus (X ,7) I8 not loeully
connected.

Suppose Ua(b) is a basis element of (X,¢) with the induced
topology. If 4 and B are open sets in (X,e) which separate
L'u(b), then each contains some nduced basis neighborhood ; as-
sume N = U () CAN U and M = Uisls) C B M (D),
where (a,c} = (a,d) = 1. Then some multiple r of ed belongs to
Uu(h) since (a,ed) = 1, and we may assume that r € 4, But
then there is an Inducal hasis neighborhiood T,(r) C 4 M .0
where (e,ed) = 1; thus (e,d) = 1. But U.ir) N Uwls) = @,
since r =06 + ya=b + ye = smod (ac,ad} for (e,d) = 1 im-
plies (ac,ad) = a; 50 A NP = Z, a contradiction. Thus there
enn be no separation of I7,(0), which means that (.X,0) is locally
connected since each of its basis neighborhoods is conneeted,

Returning to the space (X,r), we see that if pis a prime £7,.(b)
Is just [7,.(0) togother with all nonzero multiples of p. To see
this wiite & as kp + & where 0 < # < p since (p*0) = 1. Lot
€ = mp + v beany integer where 0 < v < p. Consider I7 {r) N
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1. Ifpisa prime, {J..(b) is regular open in (

12, Since U, () = N Upei(b) where a =
i=l

Upe(b) where (£2) = 1. This intersection is non
= kp + S mod (i,p"). vy = 0iff 2 is & multipl
ease (£,2) = 1 implies (L,p") = 1 5o the intersection ig 1
for all ¢ such that (1,z) = L thusz € T_.3).

& #f x= b mod p*. This holds iff » € [ (b)),

where U,(8) = X. ¥or if kp € U,.(h),
(t,p™) = 1. Thus Ulkp) N Upla) = & for all « where (ee,pm) =
I} in other words, Uilkp) must econtain

some element of every U/
tain elements from at Miost two such sets: U,.(b) itself, plus all
multiples of p. Thus if there are more than two cungruence

classes (that is, if B # 2), then U,(kp) cannot be contained in
U () for any ¢, Thus Up(ble = U oalls).

"

I p, the regular open
i=t
sets generate the basis @ except for sets [7,(b) where ¢ = 2k,
(,,2) = 1--these being the integers that use p* = 2 iy their
prime decomposition, But cach such set may be written ag
Un(d) = Un(d) U Uw(b + 2E). Thus the regular open sets form

8 subbasis, and therefore alse 5 basis for the topology generated
by ®, so (X7 is semiregular.

62. Double Pointed Reals

Let X be the Cartesian produet of
and {0,1} with the indiscrete topul

L

[

the real line with the usyul topology
Ogy.
In X, the interscction of two eom
Let A = {{ab) x 03 U {@b) X 1}, B = f(ap) x 3V fla,b]
X 1]. Sinee Every apen set containing (a,0) containg {&,1) both

A and B are compaet. But 4 My K = {,6) X (0,1) which is not
Compact since (a,b) is not compact.

pact sets need not be eompact.

Clearly X is not o Ty, or Ty; but it is T3, Ty, and 1%,

Since (2,0} is a limit point of every
weakly countably compuct. But eleg
compact nor pseudoconpact.

set cuntaining (e,1), X is
rly it is neither cowmetably

X is are connected, for if f is the ape which

joins the points
T,y € R, then the function g: (0,1} —

X defined by g(t) = (7(1),1)

empty iff mp + 4
e of 7 and in this
1nempty
If ¥ = 0 then take
E=p% (pmp + v) = Lbut (prpn) = prgg Upn2) M U a(b) #

X7} except for Us(b),
then (4,kp) = 1 implies

) mu: {for each appropriate ]
m(a) for o = kp. Buy T () may con
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for 0 <t <1, g(1) = (f(1),0) is an arc joining the .pfaints {x,1)
amd (yT()), Then clearly every two puints of X can be joined by an
nre.

X is paracompact since {0,1} is compact and the rea) line_is pAari-
compact. X is not fully normal since it is not Ty but since the
real line is Fully norinal X is fully T,

63. Countable Complement Extension Topology

If X iz the real line, and if »; is the Euclidean topology on X and r, is
the topology of countable complements en X, we define 7 to be the small-
est topology generated by r¢ '\ 7.

1.

[}

(L

=1

i inri = U — [7 € v, and A is count-
Aget O openinriff 0 = U — 4 where / ‘
able. 8o 4 set € 15 closed in + iff € = K \J B where X is closed in
7 and B is countable.

1t = U — Aisopeninr, the closure in:r of J iz the clos:ure of elcj;
inm, for H K'\J B contains O (where B s ccuntable,_K Is cio§ !
in7) then & D 0. S0 the smallest closed_(m r) set which contains
@ must be closed in 7;; thus it must be 0.

So the only sets in 7 which are regular open are those whicl were
regular open in ry, since if O = [/ — A is the interior of its closure
U, O must be U, and &/ must equal Ue,

The regular open sets in 7, do not form u basis for this topalogy,
for the set of hrationals is open in n, yet is not the union of regular
open sets. Thus X is not semiregular.

As un expansion of the Euclidean topology, this space is T, T,
Ty, Ty, and Urysohn.

Since X i3 Ty but not semiregular, it cannot berTa, T,, or Ty, This
may also be proved directly by observing that X — Q3 the open set
of irrationals, does not contain the closure of any of its (1}]&1{ suh-
sets, sinee such o closure must be identical to t%le usual Buclidean
closure. Thus X — @ cannot contain a closed neighborhood around
each of its points.

A subset of X is compaet iff it is fnite, so X is ueithe:r compact
nov a-compact. But it is Lindeldf, for if {U, — A,] is an open
vover of X (U, € 7, A, countabls} then U/, ecovers X and has o
eountable subcover {74, Then [U, — A,} covers all but count-
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ably many points of X » 50 alt of X can be eovered by seme count.
ahle subcollection of {Ua — 4,1,

A is not first countable, for if {0,},* = {U: — 44 were g
countable collection of open neighborhoods of z and if p g O A
i=1

then 'R — {p} is a neighborhood of = which does not contuin any
0:. Since every countable set 18 closed, X is not separable either.

X is connected for if X = O\ 0, where €, and O: are disjoint,
nonempty and open, then thiy are also elosed, so they must be
closed in 7;, which s impuossible sinee (X,7) B connected. Hut since
the continuous image in X of the Fuelidean unit interval [0,1] is
compuet, it must be finite and therefore just a singleton, Thug X
is totally pathwise disconnected, for no two boints of X may be
connected by a path. :

6+. Smirnov’s Deleted Sequence Topology

Let X be the set of real numbers and let 4 = {I/nm=1213 . g
Define a topology 7 on X by letting 0 € 7if 0 = 17 — B, where B C 4
and U is an open set in the Euelidean topology on &, The topology - is
sinetimes called the Smirnoy topology on X

I
+

Choosing B = & A, it is elear that this tupology 713 finer than
the usual topology on X Therefore, X js Urysohn, as well ag
sz, T?, Tl, ﬂnd Tu.

X is not, hawever, o T space, sinee Every oper set containing the
elosed set, A intorseels every open sel which containg the pointk
0 ¢ A. Of course X also fails then to be Ty, Ty, or T,

X is clearly not compact (since the closed subset_1 is not cempact),
but it is s-compact since the intervals [14 + 1 for { = 0, and
(1/G + 1),1/4] cover X. Since 0 does not have a compact neigh-
borhood, X is not loeally compact.

:\' is not countably baracompact, since the countable opeii cover-
ing by the sets 0, ~ v — (A~ {1/n]) hay no open loewdly finite
rcﬁnet-nunt, since in every refinement every npen set cuvéring‘ 0
must interscet nfinitely many other sets of the refinement. (ne
should note that an e set about @ contains all of an open inter-
val about 0 except, the points 1/x,

X is, however, metacompaet. Suppose X g covered by open sets

Rational Sequence Topology S5

Os=Uq.— B, (where B, C A). Then {U,) forms an open cover-
ing of the Euclidean space R, and thus has an open point finite
refinement [V4). Then the collection [Va— A} is a refinement
of Uy, but it covers only X — A. But each point of 4 is contained
in some {,, $0 we can eover each point 1/n by some centered open
mterval !, of length less than 1/2a{n + 1) which is contained in
an (.. These intervaks will be disjoint, so the refinement of 0,
consisting of {Vy — AJ\J {J «} covers X and is clearly point
finite. Thus X is metacompact.

5. Rational Sequence Topology

Let X be the set of real numbers and for each irrational x we choose a
sequence fai} of rationals converging to it in the Euclidean topology,
The rational sequence topology r is then defined by deelaring each ru-
tional upen, and selecting the sets Uia) = {20, U {2} as a basis for
the irrational point 2.

1.

Sinee every Euclidean open interval contains a r-neighborhood of
each of its points, (X7} is un expansion of the Euclidean topology
and is thus Ty, T\, and [ F urthermore, each rational point and
each basis set U.(z) must be closed, so (X7} is zero dimensional,
and thus regular.

Any subset of X which contains a rational eannot be dense-in-
itself, and any set containing an irrational could be dense-in-
itsell only if it contained some rational. So only the empty set is
dense-in-itself, and thus X is scattered. But X is not extremally
diseonnected, for if |z is the rational sequence associated with
the irrational point x, then {22;] and {72041} are disjoint open sets
whose closures each contain .

X = Qis an uncomtable diserete subspace, s0 X Js not Lindelf,
and thus not second countable, though clearly it is first countable.
Since Q is dense, X is sepurable. Cleurty then, X is not metrizalie.

A s ot countably compact since the set of integers hus no limit
point and thus no aceumuslation point. Since each basis neighbor-
hood is compact and X is Ty, X is strungly locally compact. Since
& contains open puinds it is seeond category. Further, a compact
set can contain only finitely many rrrationals, for the irrationals
ina compact set form a closed, and thus eotipact, discrete subset.
‘Thus X is not o-compact.
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;[f X is the set of real numbers with the Eyue
15 & dense subset of X with ade
crete extension of 1, to be the

of all sets of the form i M Uwhere 17 € 7, and 7', the pointed

tUUNerexamples

Indiscrete Rational Extension of R

Indiscrete Irrational Extension of R

Pointed Rationai Extension of R

Pointed Irrational Extension of R

liddean topolegy 7, and if §
nse complement, we define ", the indis.
topology generuted from ; by the addition

of B, to be the topology generated by all sets {2} \U (L™ UY wher

* € U € r. Ineach case, we will he
the set of rationals, or ) = ¥ — Q. t

1.

particularly interested in J) = 4]
he set of irrationals.

+'ig (:Ecarl.?f 4N expansion of r since if ¢ € {7 € 7, the set {2} U
'(D f‘l.U) I8 centained in IV apd open relative to +. Since p
1tself_ 15 open (D= [z} \U (DN X)if £ € D), + is also an ex-
pansion of 7*, which js elearly an expansion uf 5., Thusr C#* ¢ 1:"

The set D is still denge in 7' since every neighberhood of every

Pui}}t of X — D must contain g point of 1. Therefore b is dense
in +%,

Every open set ¢ in has & large closure; specifieally, O i
al\f.‘ays (:'lUSGd in 7. For Suppise every r-neighborhoesd L: of a
pcu_nt P Intersects O; then £/ N O is a neunempty open set ip 4+
which must intersect the dense set D So {piUibny ) is
a 7' neighborhood of P, 1t must intersect 0, since V € 1, and
therefore every 7-limit point of 0 is a 4 Emit point. Thus ’the T
C]OSlﬂ'fi of 0 is contained in, and thus equal to the 7 closure. If
tJ\T].l € ™ tl:en N E 'r: fltld the 7* closure of ¥ iy n genern] larger
iS :{;Sﬁ irn S?il;]_"e. Thus the same conclusion applies to V- it
EVery ¢onnected subget of (X)) is clearly connected in (X))
since v (C+'. The converse is also true. Since every c{:nnm;t:z-d
S?bsetruf (X7} is an interval, its ' intorior equals its  interior
'I|hus 1t suffiees to show that no T open interval 8 can be -.r"
disconnected. Tor if such an interval § were disconnected in
there would be two disjoint onempty sets &, M € + gueh that’
S =N\ M. Then the r' closure of A" js 7 closed, so M =

fi.

Pointed Irrational Extension of B S0

(X = N} Sis r open; similarly, N is r open, which is impos-
sihle since § is r eonnected.

Since both 7" and +' nre expansions of 7, these spaces are Ty, T,
Ty, Ty, and Uryschn. But in each case if O is an open set con-
taining X — D, then 0 equals X, the r-closure of the dense set
X — D. 8o no point of D can be separated—in either topology—
from X ~ D by means of open’ sets. Thus neither topology is
Ty, Ty, or T, ,

No subset of (X7} which contains a nondegenerate interval cun
be compact, for any such set $ must contain o closed interval
{p.q] where p,g € D. Then the sets (—,p), (g,=}, D, and

H(a,ghix > p, x € X — D) form an open covering of S with no

finite subcovering. Clearly then no subset of (X,7') which con-
tains an interval can be compact.

We can prove much more: in both spaces, a set which contains an
open set cannot be eompact. For if the compaet set C contains an
open set O, it must contain the ¢losure of €3, since C is elozed.
But § must contain an interval so ¢’ cannot be compact.

Suppese f: [0,1) — (X,7*) is continuous; then f([0,1]) is both
compact and connected. But the connected sets of {X,r*) are
precisely those of {X,r), namely intervuls, and the only intervals
which can be compact are the degenerale ones consisting of one
point. 8o f is constant, and hence (X,7*) (and thereiore also
(X;7')} is totally pathwise disconnccted. Yet both spaces are
conneeted, since (X,7) is. No nontrivial subset of D is connected
in (X,r} since X — D is dense in (X,r); thus clearly neither
(X,7"} nor (X,7") can be locally eunnected.

If p,g € @, the sets of the form (p,¢) and {2,9) M D comprise
countable base for7°; thus (X,#*) is always second countable, nnd
thercfurve first countable, Lindelof and separable. But (X 7/) is
second countable if X — D is countable (as when D = X — Q),
for then sets of the form (a,b) N D and |z} U ({a, bl M D)
where g,b,0 € X — D comprise a countable basis for . On the
other hand, if X' — D is uncountable (as when D = ), (X )
is not even Lindeldf, for the open covering of X by sets of the
form {x}\U D, 2 € X — D, has no countable subcover. So in
this case (X,r') is not second countable. But it is first eountable
since the sets |2} \J ((a,b) M D) for o,b € Q form a countable
local base at x.
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10 Ifdis compact in (X,7'), it nyust be compact in (X7}, since the
identity function from (X.r) ko (X,7) is continuous. Bug the
only compaet sets in (X,7) which do not contain a nondegenerafe
interval are nowhere dense in (X7). 8o Gvery compaet subse
of (X;7"), and thus every compact subset of (X,r"), is nowhere
dense in (X 7). Sinee (X 1) is of second category, this means thyt
neither (X7 por {(X,7') can be g-compuet.

Dscrete Rational Extension of R

Discrete Frrational Extension of 2

I Xis the set of rea) nunsbers, and if 7 is dense subset of the Euelidean
~tee (X,r) with a dense complement, we define 7*, the diserete extension
of 7 to be the topology generated from 7 by adding each point of I gy
an open set. Then any subset of L will be open jn ..

examples, we wil] be particularly interested in the p
orf) =X _ 6.

As in the previoys
ases where J3 = ¢

L. Since (X ) is an expansion of

the Fuclidean topology, it i Ty,
Ty, Te, and Urysohn.,

2. No point of D js ever the limit point of a set A in (X,7*), while

8 point of X — Dis 4 Jimit point of A iff it is o r-limit point of 4
Thusif 4 and B are separated subset of (X,2*), then A — (1M D)
and B — (BN D) are separated subsets of {Xr) and we there-
fore contained in disjoint open sets A AWM € 7. Then singe every
subset of I {s open, N \J (4 N DYand A7 (ZM D) are disjoint
neighborhoods of A and B in (X 7 ) Thus (X") is T, hence
regular, normal, and completely normg]

3 IDis countable (for instance, if I = Q
able since r hag g countable basis, Thug o
. Metrizable. We can actually exhibit 3 metyie by first enumerating
D oag {r:bily, and then defining d(,y) = sup Wie < r; < vl
whenever y < Y, and letting dlry) = 0if z = #. Then d{ry,r) >
1/k whenever g = ey 50 B.(r) = fre) whenever « < 1/k; thus in
the metrie topology, eieh point of 53 is open, Now if ¢ < ¥ <z,
we have d(x,y) < d(x,2}, %0 each metric ball B,(x) is an interval,
possibly degenerate. Cleariy then, gvery metrie ball is contained
i some bagis element of (X,7"), and every basis element of
(X,7") is some set B.(x). Thuy (X, d) generates the topology #*.

Lo In geners), {X,#") is not lacally compact, for every ueighborhood
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N of a poind p € X — D contains an infinite sequence witI’fout
& limit poini: simply select a point r € J\f !""a D and consider
{74 1/nl,;. For the same reason, (X} is not countably
compact.

H D is uneountable (for example, ' = X — @), {X 1) ca,nnzlt;l E)e
separable, for apy dense subset would have to contain D, -Fur u}
more, if X — D is countable, we can cover each pom't ¥ O
X — D with an open interval J; of length 2-%, thus lea.ymg ;Jt;
countably many points of D unc{wercd.' The open .cuverléig };?1
consisting of the intervals J; ttbgcthw with ‘ea_eh pmn’? ;r::i - Bmi
no countable subcover. Bo in this case (X 7*) is not Lindelsf. Bu
clearly it is Brst countahle.

Since every subspace of (X,7) is parac‘ompnct, BO toonls' t{-X 'Tc);f.'
For if I/ is an open covering of {Xr*), then the co ec 1;:111 ;
r-interiors of sets in I/ covers some subset of X. Thus it Iz:as :
lacally finite refinement [/ whichlcnvars a?ll of X except gszﬂ 1;)0
certain points of D. But these single points may.be a o
U™ to produce a locally finite refinement of U7 which covers

of X.

72. Rational Extension in the Plane

If (X ,7) is the Euelidean plane, we define & topology r* for X by declaring

open cach pointin theset ) = [(z,1)|x € @,y € Q}, and each set of the
form {e} \ V(DM Uy where 2 € U € 1.,

1.

Clearly (X,7°) s an expansion of {X,r), since‘ every open sct ins
contains a r" neighborhood of ench of its points. Thus (X7°) is
Ty, Ty, Ty, Tay, and Uryschn.

(X7} is not Ty, for if p ¢ D, then A = (X,_ D)h-m t:{l;g:v{} ;Sj
vlosed set since {p} \J 1) is open. Yet every nmghboz: 00 U;ﬂ t
(DM U} of p intersects every neighbnrhof)d of 4, smc(; 'm;s
eontain a peint ¢ € X — 1), and eau;hr fm}ghrlzorllmod of ¢ inter-
sects (2 ML), Thus (X 7% fails to be Ty or 'Fs cither.

The open covering of X by sets {x.} v I) whert_a x E t:X - D;l]?s
no countable subcover, so (X 7% is rfelther Lindels ?ir sec
countable. But it i3 separable since I is countable and dense.

Binee I is diserete, any dense-in-itself subset nu%st be contained
.iu Y — D; but every paint p € X — D has n neighborhood con-



tained jn [pl v D, 50 ng nonempty subset pap be de

nSe-in-jtself
Thus (X;7%) is scattered and, sipge s T, totalhy

disconnected.
9. But it is not totally Separated, for if 7 iy irmtionaI, HO two pajnig
Tt = (L), p = (%,44) on the vertical lne g 4 ¢t be separated.
Forif X = 4 ™ B is a separation of X with ¢, € 4, nep
the set {Gylty) e Alis nonempty angd hag 5 lenst upper bound,
83y (2,5). If (Zu0) € 4, then, sinee A Is open, thee is an open g

of the form i)} (2O eontained in 4 ; then there OXEsts

& point (i) < [7 such that 3 ~ Yo. Clearly (&Y'} is a Timit Point

of 4, and o is in A, which is Impossible since i’ > o Simil:LrIy,
(Z,0) cannot belong ¢, £. 80 there ean be no gyeh SCParation,
and X js therefore not totally separated,

73, Telophase 'I‘opo!ogy

Let (X1 be the topological Space formed by adding to
closed unit interva] [0.1] another right end
(e, 1) W/ {1} ag g local neighborhood basis,

the ordinary
point, say 1*, with the sety

L oXa) s homeomurphic to the quotient spage [— LIJ/R, where
i and {x,~2 for aff

» each of the points g
and 1* have neighborhoods which do pot contain the nthep point,

But the Points 1 ang 1+ do not have disjoing l](.!ighhrn‘hul)ds, 80
(X7} is not Ty, and thys neither 7T, Ty, nor T,

3. Since 10,11 ang 0,1y W 1"} are homeonmrphic
the subspace topology on 10,1} is Euclidcan, Xi
‘Conmpact subspagces and thyg Comipact. By (he g
arc connected,

i 00,1] and 0,1 v {17}
interseetion,

as subspaces, ang
8 the enign of tawvp
ane Fedsoning it is

4re compact gets with nOnCompaet

74. Double Origin Topology

Let X consigt of the set of points of the
Plane &2 together with an additiong) Poing
o Neighborhunds of points othep thup
the: origin o and the point o are the syl
bR sets of g 0; as a bagiy of neigh-
burhoods of ¢ and 0%, we tuke V.0 =

Hormilat + 2 172y > 0p U {0} and
Val0) = { Gyt 4 B < Ity < gy

00
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L X is clearly Hausdorff, though not T, sin(':e 0 and ¢" do not h;vﬂ?
' disjoint elosed neighborhoods: any two nezghl?orhoods F'f (; an
contain a segment of the 2 axig in the intersection of their closures,

is nei °t, nor locally compact for if it
. X is neither compact, para,compa(,r: '
? were 1t would be T; and thus Ty But X is clearly second

eountable.

3. X is arc connected since either 0 or 0* may be confaectedhbgi; an
. arc to any other point of X in the u.sual manner, EJ;{_‘EE;t t z; a:
arc starting at 0 must be contained in fhe upper llmlf-p ?nel mje

short distance, while ope starting at 0* must begin in the lower

half-plane.

75. Irrational Slope Topology

(x.»)

Let X = {(z)ly =0, 5y €0} and i?\

fix some irrational number 6. Tl{e /// N
irrational slope fopology + on X is y

generated by e-ncighborhoods of the - -
form No((x,1)) = {(&,y)} U B.(x + 5 AN

4/6)\J Bz — y/8) where B.(F) =

[r € Q’ lr — 1] < e}, 0 being the rationals on the » axis. Each N ((z,10)
consists of {(x,y)] plus two intervals on th(? Izat'ional z a.xlsrcer‘lierfz(i a;;
the twa irrational points = + y/6; the lines Joining these points to R

have slope +4.

1. (X,r) is Hausdorfl since 8 is Irrational, for no t“i{') points ;n X cl(;ll:
" e ine with s nd i ot of X lies on a line w
lie on g line with slope 8, und if ope P ‘ b
i 4 lic on the line of slope —@ whic

slupe 8, no other point of X ean : ' :
in(tf&r‘-te;ts the original line at its miersection with t?l(-} & axis. 'Il‘hus ,
any two distinet points in X must project {along lines w_xth s] ('lp}(:
+0) onto distinet pairs of irrational points on the r gxis, whie

have disjoint neighhorhoods.

2. The closure of each basis neighborhood ;\i,((.r,y)) contains t/l;;z

. union of the fouy strips of slope :1:{) emanating from Bt(:e: t—:ﬁy 0

and B,fx — /0, sinee every puoint in .(:ugh such r’ay Projec ”’: "
Irrational on the ¥ axis which lies within ¢ of either 4y

N s d
N NOxXT el
~ N \y/ N <,
/5( g

RN <
NN N X 7
N 7 Ny \y

LY

- 7
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* — y/8 So, s a tonsequence, the closures of ev
sets must intersect. Thus (X7} fuils to be Ty,
1s neither T, Ty, Ty, nor T,

3. Sinee the closure of cach b
borhauods around each puit
by the intersection of stri
some such diamond. Thus the regular open se
basis for the topology, so (X, is not semiregular,

1. Bince the closure of
intersection, (X7} iy connceted. So it is
Mausdorf  space, But it eannat be
S0 =X iy continuous, X js countable, so {f~1(p)jp € X
i & countable collection of disjoint closed sets which covery [0,1]
This, however, is impossible.

3. Every real~vajued coutinuous function Sor (X0 is constant, fop
if f were not constant, f(X) would contain two disjoint open sets
with disjoint closures, The inverse images would then be disjoint
bpen sets with disjoint closures, which ig bnpossible. Thus X s
pseudocompact,

6. Bince X is countable fnd since each point of v has
local basis, {X,r) is second countable and thevefore h
finite base. Byt it is not Ty, 80 it is not meteiznble,

7. X is not cven weakly countably compact since the sequence of
integers on the z axis has no limit point,

1 eountable
as a e-locally

Deleted Diameter Topology

Deleted Radius Tepology

Let X be the Euelidean plane, we define the
on X by taking as 1 subbasis for a topology
the horizonta) diameters other than the center, excluded, By deleting

only the horizonta] radius te the right. of the center we describe a sub-
hasi< fur g topology + which we call the deleted radiees topulogy.

deleted diameter topology
o all open dises with al) uf

I Bince both o and 7 nye expansions of the |0

elidesn topology hoth
{(Xoo) and (X)) are Hausdorff, completely Hausdorfl, and
Urysohn,

2. Sinee no deleted (radius or dinmeter) dis: eontains the elosire of

any neighborhood of jey center neither (X,q) yoy {X,7) is regulay

ery two open
and cunsequently

asis weighborheod coutains open neigh.
i in the diamond shaped region formed
% every regular open set must, containy
ts cannot form g

any two open sets must have a nunempty

4 esintable connectod
path conneeted sinee if

Deleted Radius Topology 95

nor semiregular, Thus neither space is locally compafat. In fact,
since no set with & nonempty interior is compact neither (X,ar);
nor (X7} are s-compact since the Baire eategory theorem f{:r.R
shows that &2 cannot be a countable union of compact (which
implies nowhere dense)} sets.

Both (X,s) and (X,7) are connected since the closure of ARy open

H 7 ) )
set in either case is is usual Euclidean closux:e, and thut? any
open and closed set must be open and closed in the Euclidean
topology and thus is & or X.

Neither (X,0) nor (X7} is countably compact since both are ex-
pansions of the Buclidesn topology which is not countably com-
pact. Clearly neither spuce is sequentially compact.

That (X,¢) is neither Lindelaf nor meta.cm?lpmft may he shuwrz} l:)y
considering the cover consisting of the basls_ ue:ghbm:hrmd at E) X 1
of radius 1, the complement of the elosed disc of l'éldll.lS.'?/S at (mt
(0,0}, together with one hasis neighh{)r_hood f(:fr each p(;lmt no yg
covered on the horizontal diameter. Slncq this"cuver 85 No f.;u(i
cover and is uncountable (X,#) is not Lindelsf. Il o4 is & h;e .
refinement of this cover and « € [—7/8, 7/8}, lct 8. be the r% fus
of a disc about (2,0) contained in some element of U. By~th-‘151 tz:ri
category theorem for some e >"D the set of I.EI‘ sue } s:d
& > ¢ is noy nowhere dense, so its closure c?ntams some clo «
interval . Then the point (x,y) where 2 € I', y < ¢ is contain
in infinitely many open sets of the refinement.

Similarly, (X,0) is not countably paracompact: to show thfa we].'
construct s cover by taking the basis neighberhood of mdlm.»; ;
about (0,0} together with the complement of. t.he closed d;sc 0,
radius 7/8 ubout the ortgin as before. Now part:tu_)n the re:tm:{lllt)ll;:
purtion of the horizontal axis (including (0,0) into a cuu:}ta ;
number of disjoint dense subsets (as in the usual ennstructlfml Q
u nonmeasurable subset of BY) and take for each of the mma!mn%
sets of the cover o union of basis neighborhoods of the eleme‘ut‘s 0
one class, where (0,0) & deleted from t?l{: class that c_-ontmu:; 1t:
Any neighborhood of the origin must interseet infinitely m}s:n)i'
members of any refinement of this cover, ut least one for each o
the countably many dense subsets.

We can also show that (X,7) is net countably paracompact by
choosing the same first fwo open sets as lwcfore, thus Iea.vu_1g just
one interval to be covered. Consider the points (1/5,0) which are
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in this interval and inelude the

of radius 1/(n(n + 1)) with center at (1/n,0). Then iy
mgn.t th_e open set tontrining {0,0) interse
taining infinitely many 0.

78. Half-Dise Topology

Il P.= Hraye,y € B oy>
tuclldean topology 7, and if
TonX =pyUyg by adding
where ¢ € L,and Uis 4 1yel

I

o
N

[£=1

0] 18 the open upper half-plane with the
L is the real axis, we generate & topology
to 7 all sets of the form {2} (N Ub)
idean neighborhoged of & in the plane.

Sine . .

: :{r;c;anof;n dlisua form a convenient hasis for the Luelidean topol
¢ Plane, we often think of g +* 45 bei -

erated by a basis consisting of two © fopolowy " as peing gen-

types of neighborhaods: if 1 EP

. 3

a ba.sxs’ element containing x is an 4 A

open dise contained ip P, wherens —'——=——-—..______L___’ K

the basis sety around a point y € £, r

are of the form far} \ P

where B i5 ap open dise around ¥. That is, a basis set

5, ¢

taining y € f consists of i
thogether ith [y s an open half-disc centered at |

Q-
¥},

{(X,7*) is ap expanston i
£ : of (X,r) sinee every st : i

(X, Y sebin 7 ¢ s a7t
neighborhood of cach of its points. Thus (X ‘)I'I-T’l‘m'n‘mi%b ?.‘T
and Urysghp, TRt Ty
The closure of each | i ]

sur 0 half-disc nejghh

z € L x?'h.mh lie on the di oo of ot
upper cirewmference), 8o

| includes all
ameter of the dige (together with the

the co.mpiement of any basis neiphbor.

;:s, s&rer[_:,' neighborhood of that closed set
%0d of y; this means th 1 s
o at (X ,7*) is not

intersects every neighhor
nar, therefore, Ty,

1hg subspace I, ig diserete and uncguntable, g

separftble Ror second ceuntable, Neither is,'t L{

covering by basis neighborhogds :

clearly (X"} is first ecuntable,

The ¢ g o ! i

o lijovﬁ;u;grut: (X7 -) by basis elemients, one for each point of X
point tinite refinement, For consider any refinement of this,

‘X ) 1% neither
indelof, for the
has no countable subcover. But

79.

Irregular Lattice Topology 07

cover and let S, denote the set of points y € L for which the ele-
ment of the refinement eontuining ¥ contains a basis element of
radius greater than 1 /n. By the Baire category theorem for some »,
3, has a nenempty interior. Let I be an open interval contained
in S, and letx € . Thenif 0 < y < 1/n the point (z,7] is con-
tained in infinitely many elements of the refinement. Thus (X,*)
is not metacompact.

However X is countably metacompact. For let {4 = [V} U
{ Ui} be a countable cover where each V; C P, and each I, inter-
sects L; let Sy = Uy M L. The sets Ux — S, together with the V,
form u Euclidean open cover of the upper half-plane which may be
refined t0 & point finite cover {W.}. Now let Tv = 8§ — U §;
J<q
s0 that the T are disjoint although \J 7', = L. Define U/\/ =
i=
Us™ U D, where D, » is a basis neighborheod of s with radius

aETe
1/k. Since Uy’ does not extend more than 1/k sbove L no point

may be in more than finitely many Uv. So {W.) U {U/} covers
X and is point finite.

I {T.} s a countable exhaustive collection of disjoint dense sub-
sets of L, and if U, is a neighborhood of T, then the coantable
cover { U} \J { P} has no locally finite refinement. Thus X is not
countably paracompact.

Irregular Lattice Topology

Let X be the subset of the integral lattice points of the plane consisting
of all {£,k) where i,k > (, together with the points ,0) for ¢ = 0. The
lattice topology on X is determined by its basis elements: each point of
the form (i,k) is itsell open, each point of the form {£,0) i # 0, has as a
local basis sets of the form U,((7,0)) = {(Z,k)lk = 0 or k > =}, while
the sets ¥V, = {(£k)i = k = 0 or i,k > u} form a basis for the point

(0,0}.

1.

Clearly each open set {(,k)} is closed, as is each basis element
7.((.0)}. But the closure of V, includes the points (k,0) where
k 2w, since every neighborhood of these points intersects V.
(Note that each V, is open, though | V.] does not form a local
basis for the point (0,0}.)

X is a completely Hausdorff space, since it may be shown that to
each pair of points 2,5 € X, there eorrespond open neighborhoods
0, and 0, with disjoint closures. Sinee all basis elements except
those around (0,0) are closed, the construction of O, and 0, is
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trivial unless one puint, say x, B (0,0). Buk i that case, if y =
(4,k), we need only take 0, to be ¥, where > /. Then O, will
be disjoint from some (closed) basis element of y.

X is not regular, though, since for each = > 0, the point (0,0)
and the set X ~ V7, do not have disjoint open neighborhoods.
Thus X also fails to be completely regular, normal, and completely

None of the sets 1, can contuin a regular open neighborhood of
(0,0, for the closure of any such neighborhood &7 must contain
some polset (£,0) which is then an interior point of 7. Thus v,
eannot cotbain 72, 0 X is not semiregulur.

Since all but one of the points of X have a local Busis of sets which
are both open and closed, at least one point in every pairgh € X
has this property; suppuse it is o, and suppose N ods an open-
closed neighborhood of a disjoint from b, Then the clutracteristic

function of N is a (continuous) Urysohn function for ¢ and &, so
X is a Urysohn space.

Since X is countable, snd since each point of X has

a countable
local base, X

is second countable. Furthermore, #is neither weakly
countably compact, pseudocompact, nor locally gompact.

Since each point of X is the interseetion of

the sets containing it
which are both open and closed, cach of these points is o I esi-

component of X, so X is totally separated. But it is nat gero
dimensional and not extremally disconneeted sinee {7 = L2k
=123, .. }Jisopen, vet U = {7\ 11,0} } is not open.

X is, however, scattored since any subset which was dense-in.
ttself could contain no isolated points, and thus must be a subset
of § = [l =0,1,2, .. .J. But 8 is discreie in the subspace
topology, so it ean have no nonempty dense-in-itself subsets,

80. Arens Square

A HPNEC]
If S i the set of points in the inte- : e SR () I
rior of the unit square both of whese II L_"__‘?“__'_" :
courdinates are rutional, we define | | I
X to be U {00 U (Lo U | ! l
Har vilr € Q0 < r/3 < 1), : | :
We deline a basis for a topology on b ——__ EI -]
A by granting to each pointof Sthe & L. 1 —— 4
foeul basts of relatively open sets 00 3 v.9

2

whic
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h it inherits from the Euclidean topology on the unit square, and

t the ather points of X the following local bases:

y < 1/n},
100 = (OO [@pe <z <1,0<y<
;1 Ei,ﬁg = (1O [zt <z < 1,0 <y <1/n, and
Uit v3) = Lk <2 <3, ly— r V3 < 1/nl.

With this topology X is Ty. This may be seen by direct consxd-.
eration of cases noting that neither any point of ‘S nor (](}O)f m;;
(0,1) may have the same y coordinate as a point of the for

(3. V2.

Y is not T, and hence not Ty since given (0,0) € U"(O,O()Jtz:;xg;
;KiStS o OPen set U(o,u) such that (0,0} =5 U(o_n)'c U(-E'O)l %loun h,nD
since U o o niust include a point whose x coordinate 1s § g|
such point exists in 7,(0,0) for any n.

We ean show that X is not Uryschn by cr:')nsxdefnlg a;fffuir;ci{zi
§: X — I = [0,1] such that f(O,U)l = Qand j{1,0) = .t F
tinuous we note that the i;n;erse mmgg of Uth(% %I;efnzc [s; (,1‘0) n
2 muzt be open and hence contain U,(U, : all,
i;ﬁiﬁfn} and #, relspectively. Then if 142 < min [1{&1{6‘&; ;,
f(%,r 4/2) is not in both [0,3) and (3,1], so stlppo‘se it {1]8 ;fch tha!;{j
‘then there exists about f(3,r v/2) an open 1r}tewa.‘ et
and [0,3) are disjoint. But then the inverse images 0 U ah[},:] )
under f would be disjoint closed sets l:::mtu;uun%1 upe e
(1r+/2) and (0,0) respectively. But by the ¢ mc% Y
min {1/n,1/m}, these closed se‘Es. fzontulmng (0,

T (3,0 4/2) for some k cannot be disjoint.

4. X is semiregular because the basis neighborhoods are regular open

. Jo = [J
sets: a straightforward check of each ease revesls that U
for each basis neighborhood U,

i |
5. Since X is countable and since each point has a countable loc

e o bl

basis, X is second countable. But it is neither weakly countably
) Fa

gomipact nor locally compact.

. . e e

6. The components of N are each single points, am:? a-i(l: are thzqua;; :

' components except for the set {(O,(}},.{l,())} whie blsta ‘: toptua oy
quasicomponent. Thus X 1s totally disconnected but no

separated.

i 1 3Em i Tkm] Zero
7. X is not scattered since each basis set is dense-in itself, nor




81.

b <y« 1/n}

L v Hagld <+ < LOo<y
< E/m} are the local bases for (0.0

L.

6,

82, Niemytzki’s Tangent pj

41T connected,

crRRiLAGINDles

» 'y cann.{}t' hIWe a Iﬂc'll b i isti
‘ ‘ - ' - € HESE] C(}!}Sl 5
OPOH &ﬂd (,-I()h_ed b’%ts Since f()l‘ ﬁ!u.thcle[ltl y Sn]:lﬂ ) Lhe p{]i"ts K }'
el

Simplified Arens Square

f.f 8 is the set of points in the inte.
110 of the unjt Square, we dofipe ¥
b be S\ {(G,{]),(I,O)}. Pointsin §
mli_ be given the Euclidean loeq]
trisig neighborhoods, while U7,(0,0)

10,00} v @ < ¢ « 4,

and Ual1,0) = 1 Uetlr

) and (1,0, respectively,

X =
f 4l - U

, since 0. and (L,®) do not have

is ! : S semiregular o

Biven basis congistg of regular Open sets. Thus X i5 n%)t T:’ ;3“{;‘3 f.l!‘]e
A8 " en 1 t , " )

Clearly X i not Sequentially compaet, since the induced to

on the open upit square § is the Euclidean topology polosy

_X 1;:1 secﬂnd1 countable ang Separable sipe
 the Fucligegn topology is, thys Xis1

hot Ty, it is not
L 1 Paracoripact .
stnee 1t is Lindels piehand thua not

e the open upjg sijuare
indelsf. Byg sinee X ig
. countably Paracompact
Jl 18 metacompact sinee the upen unit, SyUnre

e indyuced topology and the addition £
each of the two points (0,0} apg )
would not destroy itg Ppoint fini,

s metacompact iy

The identity map from the sot

- X - ; * -
o the given space X is continy with the Euclidean topology

OUs 50 X is both ape and locally

I SC Topology
Of)ell = {{.r,y)lx,y ER y> 0} is the
X . .
pen upner half-plane with the Euelid- £

ean topulegy ;. and i L is the reg} axis,
We generate g topology +* oy, X -

|
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I'U L by adding to 7 all sets of the form {z] \U D, wherez € L and D
i an epen disc in P which is tangent to L at the point z.

1.

(X,7") is an expansion of the Euclidean subspace topology on X.
Forlet U (C X be open in the Euclidean subspace topology, and
letx € U.Thenifz € P, there
i# an open neighborhood of
contained in ¥ since for such «,
the two topologies have the

same local bases. If x € L, then
there exists a disc A, centered .

st z, and open in the entire

plane, such that ANX C U. =

Clearly then there is a dise a

AL C P with radius half that of

4, which is tangent to L at z, and which is contained in A,
and hence in U. Thus (X;7*) is Tay, Ty, Ty, and Ty,

To show that (X ,+*) is campletely regular, we select a closed set 4
and apointb ¢ A.Ifb € P, then there is a neighborhood 17 of £
which is contained in X — A, and is open in both r* and the
Euclidean topology. So its complement, X — [/, is closed in the
Euclidean topology, and since thag tapology is completely regu-
lar, there is a Urysohn function for X — U7 and b. But this
function is continuous relative to +*, and is a Urysohn funetion
forAC X — Uand b,

So we consider the case where b € [.. There must then exist a
disc D, tangent to L at b, which does not intersect A; let its
ruddius be 8. We define a function f: X —10,1] by requiring that
flz) = 1ifx ¢ D\J {b}, f(b) = 0, and at the peint (x,y) € D,
fx,y) = [(= — b + 12)/28y. [ is continuous, since f~1([0,a)) is
the open set (b} \J D, where D, is the open disc of radius §a
tangent to L at b and f~Y{(q,1]) is the open set X — D,. Hence f
is & Urysohn function for A and b, s0 {X,r") 15 completely regular.

Since each basis neighbarhood of each « G/, conliing ab st
ane point of L, every subset of L is closed, In particular, the
rationals @ C L and the irrationals J C L are disjoint closed
sets which do not have disjoint open neighborhoods, so (X%
is not normuk. For suppose U D Qand V O J are open sets in
(X,7"). Then to each point x € V there corresponds a dise
Do C Vof radius r,, tangent to L at z;let S, = {z € Ilr, > 1/n}.
Then the callection {Sa} together with the puints of Q forms a



=1

s

“uuntable eoyeyp of the second category space (L7}, where 7 jy the
Euclidean topology. Thus some one of the setg S fails 1o [
nowhere denge m (L7)—g0 for some integer o, there ig np intep:
val (a,b) in which (€ Llr, & L/} is dengo, ‘Then every neigh,
borhaod of every rational jp (a,0) mugt Mtersect V,so U7 and
“annot be digjoing.

X is separghle Since | (z,y)lxy € &} is tountable gpg tlense, hyy
the uncountable ¢jgged subspace 7, iy ot separably, since (h
induced topology oy, 7, s discrotp,

X must not be secoyy toutntable sineg otherwise 7 would e
Second countahle vet not separable. Iy Barticnlay, cach poing of
Lising basis elemong, vontaining other poing of L. Sinee 4, hs
tnemitably ARy pointy, Ry basis gyt bo Heountable,
Clearly they, X is not Lindelsf.

HANis, neighbr_n-huud of the poiyt 5 S L, and if iy {r}isy
basis ge where B C N, then the r:ircumferem:e of I3 eontaing »
sequence of Points which tonverges to 1 jp the Euclidesy, topol-

compact, so N can be neither Compaet oy countably cmnpaci.
Thus X i5 not logally compaget

X is nog paracompact-, sinee every Paracompaet J Tausdopsy Spage
IS norma). urthermore, X is not countahjy Paracompact, fop
SUppose (B4 s a eonuntalyle burtition of g, Into CONgrient die.
joint dense stbsets ench of Becund category i 7, Let {17 i] be
an open Covering of y where . C U, and UNig = s et
{Va) be g refinement of (U}, For each 7 ang each n jot § 5 he
the set of Points iy 7, which have 4 tangent dig basis nelghbor-
hood in SOE F, of radiug = 1in, Then for cach ¢ gt least one
of the sotg 8. must, fail 4o be nowhepe dense i L, singe s 8, =
E; which js second Category in . g, in particulyp fori = 1, there
1S some Iteryy] (a) C 7 ind some integer 5, such that the
in di ius > I/ns which ire
tangent ¢, S on some denge subset # f (a,b). These disey Miust
intersect, every element f the refinginen whieh tontaing » peing
of (a,b) ang thus ng POIRE of F By & neighborkogg which iyt
Sects only finitely Many members of | V.l Henee (U3 has no
for:a”y finite reﬁnement, 50 X is pot countably Haracomppeg,

AS in the half-dise topelogy, x is cuuntably Metacompyet but
nog metacompact.

)
.

wely add ne _
a{'}(i]:(;‘i)en in (X7, und U contains all but fing

of L. Then ¥ = X \UJ |5} is normal. N
If we double the points of X the resulting space is only T,
16, we

'E‘a*.
83. Metrizable Tangent Disc Topology

N be o countable subwet, of the » 3lxiei i {he
Ilﬂi:- !.Etw‘ subspuce of the tangent dise tupalog
:\“;ll‘;l} # is the open upper hubf-planc, | e
Since N is countable, since tluls l'iltlt‘)tl:ki I:Lt]t‘.:v? {30!:1 s
m X, and stnce X is clearly first eountable, (2
able. Thus

1.

" aspace ¥
We can construet from X a spa.tex
pletely normal since ¥ containg
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which is normal yet not com-
as a subspace. To do this we

= h (&
ik pU“l p ti ] ¥ n f:, YOF h{)()d‘i [ &)

and

plane. We define (X7
¥ consisting of U8,

are dense
.7} 13 second count-
"space, X is metrizable
since it 1s a subspace of a regular space, Visn
1

: act.
and thus completely normal and paracomp

84.  Sorgenfrey’s Half-Open Square Topology

|
Let S = (R,7) be the real line with the xc-;gh: f
alf-open i : the produc
half-open interval topology p ‘|
> ‘e -Y B » " r T - l
b«f) 3;"8 topology in which a typical nﬂl{;,hb{:}ﬂ'. |
;(])od of 2 point {z,y) is & recbangle b((;; : o
square) including its boundary only be eu ,
tge diagonal with negative stope, Ifip A
note the busic hulf-open square of side
by S(p,f).

1.

{}f pf) I h- f'd' {]! W Ill p ?e}dx‘) € l}t-&l)]ﬂ
1 t»‘.: n t L] [.,0 A Ch B.I)pl‘l)d(,]l E o COLE

set with no limit point. 8o (X
countably compact.

] ence
a clused disc tangent to the r axis at ©. Then a sequ

7} 15 neither loeally compact nor

= 8§ X § then carries the half-open

ad of € > 0, we will oo
itried Tower befb cormoer peiind p

=3 L p y g ] i ! } (.t-; *
][ m etel re u]af SERCE o 14 ¢ RED k| )l(.. legu]dr- (II
0 B Com ] tr(‘l 1 f&l Y

i : al.)

Is completely norma -
i al. This may

‘ithough & is completely normal, X is not even Ij[.};mj:.:} oy

I proved by the second category argument u:a(,1 lp o diag;ma]

b i logy is not normaj.

shivw that the tungent dise topo . i sy agonal

?’h{}“Ltha Hedly = —21 is elosed in X and is discrete

ine L = |(x,

e gy (si S | whenever 7 : B0
. ‘en { since L1V S(p,e) {p .
{Z:l th{.]? —tm?{}:-a(ﬂa Is i!‘ration&l} and its complement I, — K
0 " = 1



are elosed in Thenif 77 jy 5 neigl
e e : ‘ 4 neighborhogd of K, ther -
conmj.::sz(g] l:ni t’:(:olme subset 4 C K whose Eucfid(c::z?ln:;:: :
oo (Otherij:\ful ‘I of L SllL'}ll that S(p,u) Cu whem-:
o “»ereL \ fh“mid be: wribten as the countable yy;
Bug e it vere r:)cl:\\( [ere tdense in the Buclidear topology ant:
foing om0 ot == K)OY T ean have g neig;hhnrhoud i
s8R and L — K cannot be separated by upen w:

X i ;
s donae o g Sinee the countable subset 1)
Base m X; yet [ j -
uncountable tlid dbi 1ot scparable, evey though clused, for s
dirctly b m. d serete in the induepd topology !l‘],li ) ¥
a IV ‘naite v ., (LI 8 Doy
be 2 continyg '_ ernate proof that, \ i Lot normal. Phepe il
- s real-vatued fanetions on 4, i A
rable, there yre ouly 2% conting : ; o b, sinee v g5 Seps.
So not e . o real-valued functions oy y
ver . : unctions o
can be extc;‘:di?jntzu::')m real function gn the closed subys ,n ;
t @) , .y ! : SPace
shows, mon, one 1[‘ R \l\ hich meang X cunnot be nnrm-l? ILI
) d ritly, that any sp i o bl
Y Space with o donge «
€ set [ and y

e pace LS {}f (,'aldl]lﬂ] 0% ]a I ]l‘ A

Hzp)le,y € Gl

ﬁ;{:}r:‘]_tl;;l(?}lgh the space (8,7) ig Lindelsf, x —
#08 since the clogeq subset I, is not Li;idelc‘if

X is not met
acompact since (X — g .
open coveri P A KU SeDp € Ky s,
a0y Tofing H:3gn :’lf i‘f 1.; l.th 10 point finite reﬁnement‘lg(}r i, }al;S .
basic squur ) of thig tovering must haye S0t whi .,p-- 0"_&
Hares 12(p,e) fo some fixed ¢ > ad p 6 A!q. 1}ﬁ,untmn
‘ where the

Euelidean ¢
osure of A includes o i
such refinement tan be poipt ﬂnit:aome mereal of 2 Flearly no

X8 is not

A simjlar in
parammp::ziuxllf}gftiin{iga ;Jszfi to shgw that X is ot countably
paracor - a & reiinement of th
cove Fgé)u; ‘_(L :- Ky {Stp)p e _ K}. T}?erf(;‘i;?tab-lle
ot L ifi can select a s
» Such that S(p,8,) 18 con.
t(ff).med m some 1/, fupther each
S(;-, (;&;1 r:;;ntaiu at most ong ’of the
eaﬂ}; " .E K{ U.} were locally finite
barhogd would _have 4 neigh-
forho N, that Intersects only
Y many of the U,, and thys
f)nly finitely many of the S(p,8,)
T hert_afore with each ¢ E K we ,c;:L
associate ap € > 080 that 5(g,e,) 1‘;

Michael's Produet Topology 105

disjoint from all 8(p,8,) where p € L — K. Thus by applying the
preceding category argutuent to the set K with its topologically
complete nterval topology we can guarantes the existence of an
e > 0 and ae interval I C K such that the Euclidean closure of
g € Kle; > €} contains I. So if p € (L — K) M 1, S(p,8,) can-
not be disjoint from all 8(g¢,) for ¢ € K. But this is centrary
o the definition of S{g.¢,), 50 [UVal canmot be locally finite.

88, Michael’s Predluct Topology

TGk 1a the rend Tine with the Fuclidean topology and 0 1Y — K ¢,
we deline (X,0) = (7" X {87 where 5% 1= the Geeational) diserote
extension of 7 by the dense set D, und ' is the induced Euclidean topol-

gy on D,

I

(3]

(D7) 1= o separable metric space, and (R,7*) is a completely nor-
mal parncompact space, yet the produet space (X7) is not even
rormal. Congider the digjoint sets A = Q X I = [(a,5)]r €@,
¥y €D} and B = {(z,2)e € D}. A is closed since () is closed in
(7)), while B is closed since both (R +*) und (D7) are Hausdorf.
But since basie neighborhoods of points of B are vertical intervals
while neighborhoods of A are rectangles, a category argument
similar to that used in the tan-
gent dise topology will show that
A snd B canoot have disjoing
vpen neighborhoods in (X,e).
Specifically, any neighborhood
N of B must contain, for some
p > 0, intervals of length greator o
than g which intersect B in a set o
whose luelidean closure con- o
tains some interval. Then every o
neighborhood of 4 must inter-
sect N,
Since X is not normal, it is clearly not paracompact. But it is
wmetacompaet for if {T,} s an open eovering of X, the Euclidean
interiors U7,° form an open eovering of \J/I7,2 which has o Euclid-
ean (and hence 7) open point finite refinement, {0,}. Now the
complement K = X — UU,° is metacompact on each vertical
fine, s0 we can find on each line a point finite refinement consisting
of open subsets of the lne. The union of all these refinements
together with {(.} is & puint finite refinement of {U,}.

th7)

.
o
)
|

[

[ YT TTITIIILE N

— (R 1™




1 Counlerexamples

806.

87.

Tychonoff Plank

Deleted Tychonoff Plank

If €t is the first uncountable ordinal, and if o is the first infinite ordinal,
then the Tychonoff plank 7' is defined to he {0,0] X {0,e], where both
ankinal spaces [0,02] and [0,0] we given the interval topology. The sub-
spaee T'o = ' — {(Qw)} will be called the deleted 1'yehonoff plank.

I. Since omdinal space {0,T] is compact and Hausdorff, su is the
Tyehonodf plank 7', Sinee every eompact awsdorT spaee is nor-
mal, 7 is thus normal. (Nole that even though [0,00] and [3,8] are
normal, we cannot conclude directly that 7' is normf, sinee
normality need not be preserved under products.)

-

2. 7T fails, however, to be completely normal sinee the deleted plank
Ty, is not nomal. ¥or Jet 4 = {(@n)0 <n < w] and B =
{(0,@)[0 € & < ). Then 4 and B are subsets of T which are
closed in the subspace topology on T, since their complements in
T are clearly open. Now suppose £ C T'., is a4 neighhorhood of A.
For each point (1) € A, there is an ordinsl a, < § such that
flan)|e. <a <0} CU.

Let & be an upper bound @) #
for the ay; & < Q sinee Q (_- [ . ..............U
has uncountably wany |
predecessors, while @ has
only countably many.
Thus the set (39 X
[0,6) C £, 80 any neigh- e eeraaas
borhood of (& + 1,w) € B ©.0

must intersect 7. Thus

any neighborhood V of B will intersect U/ ; 80 17, 18 not normal.

PErERttsumann e
®  erarrETettesenT  mimeresssenssas
8 asrsssavanra *ars  ramesrensansana A
- RFNFARRAE R AL ARSI LR YRYYRY )

LLE T T T T

(2.0

3. That T is not perfectly normal follows from the faet thut 7 is not
completely normal, Tt also follows directly froan the observation
that the closed set {(2,w)} is not the countsble intersection of
open sets. But it is the interseetion of all open sets which contain
it, 5o T cannot be first countable or scparable.

. Taisnot weakly countably compaet, since A = P00 < 0 < !
is an infinite set with ne Jimit point. But it is pseudocompact, sinee
every continuous real-valued funetion f on 7', ean be extended to
a contingous function fon the compact set T, and therefore both
f and f are bounded. For we know that on each set L, =
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on Ly =B = {{a,)l0 € a <}
2 w0 for cach n € [0,0), there exists vo < &

15 tually eonstant, so for cach n 0,0, :
f!h'f?v:;lt f ((ix w)) = x, for all @ Z ¥a B0 the extension of [ to
?‘-JLT —R givén by (@)} = z. will be continuous since sup

e < S

)0 S a & 0} as well as

ro dimensional, scattered, but not ex-

fach ordinal space 18 7€ thered, \
- too are T and T, for exactly the sane

tremally disconnected; so
reasons.

Ln

6. 1f we double the points of the Tychonaff plank the resulting space

is T3, Ty, ad Toonly.

§8. Alexandroff Plank

— sach with the interval
[ roduct of [0,2) and [—1,1], eac _
- 1(}£ IT') }3;3 ;:h: ?ﬂ 0) € X, we let obe the expansion of 7 gene:;ated
t)(;rpz;dgi}r;g to + the sets of the form Ulan) = {p} \J (e8] X (0,1/n}.

+1

-1 o
0 P2 w

ansion {X,0) is Urysohn. But (X,o)
O)]e < 2} is a elosed seb m_)t eon-
intersects every neighbor-

1. Since (X,r} is regular, the exp
is not regular since € = {(e, ;
taining p, yet every neighborhood of ¢
houd of p.

1 usis i is

9. [X,s) is clearly semiregular since each buasis rectangle in 7

. , ‘ ]

regular ojies, us 13 cach set U{a,n).

ably compact since the set [, —1/n)n = ‘%,
. Neither is (X,e) mct&con‘:paﬁ‘t:.lf
rdinal space [0,9) with no potnt finite
of X defined by U, = {p} Y
3¢ [--1,1} has

3. (X,0) is nob count ‘ ‘
3, . ..} has no hmit pou
{V, is a covering of the 0 -
refinement, then the covering { Ua} ofned
10,01 X (@1}, /2 = [0,8] X {—t0), and Uy = Va
no point finite refinement.



A Countemmmples

49, Dieudonné Plank

Let X be [0,0] x [0,6] —

0 it
Plank, witi s opalogy HOw)], the points of the deleted Tychong

7 generated by declaring open each point of

(@ w) (8,w} {Zw

{6L.8)

(0,03
(58,0}

0.2) X [0,w) together with the
) ), ts U.(8) =
Ful) = (r)la <y < gy, o B)

. The Dieydonnd topology + on X is fip
topolc:gy on Iy = X, so (X)r) is Ty
(X,7) 1s not weakly counts .

[{B:7)e < v < w] and

1 er than the Tychonof
‘2, T, and Ty, Simi )
ibly compact, ! o. Similurly,

L&

Each usis

o ecn géhf;l:e i;u;?n l:u{su, e;-ets Ua(#) and Va(#3, together with eacl)
1 : S0 closed, so (X,7) is comp) tely

dimensional, But the sets 4 = {(Q,'n)llﬂ iie: ;Eiu}]mz;::;dlgem

T e——
—_——

h_ —_

few)n < ' 1sj
eaﬂhmzljﬁg?lbi r:(,g C}I c];r-miwb h;t;:e disjoint open neighborhoods sinee
sect cuch hugiy neighhnrhuuda. s g ot inor

of each point
SUp a, T . ) € B, wher
P a. <% < The efore, (X,r} is nat normaI{.‘Y “ r Where

{X,7)is metacompact sipee
ment consisting of one b
But any such refinemen
ean he contained ip at n

© Iy open covering of X |
Asis ne}ghbnrhnod for each point 5 € X
t I8 point finite Sihee an arbitrary ]}uinf:
wist three such basie neighborhoods.

as a prefing-
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1. The space {X,r) is not countably paracompact since the open
covering of X by thesets Us = X' — 4 and U, = Vo(n — 13 for
n=1, %23, ... has no locally finite refinement. For if {W,)

|

I

|

)

I :
| ]
j v
i

i

S

—|_Ul

refines { U/, ], we may define for each integer n an ordinal o, to be
the least ordinal such that 17, (n) is conlained in just one IV,
Then if o = sup . < 2, every neighborhoud of {o,w) will intersect
minntely many elements of |W,].

90. Tychonoff Corkscrew

Deleted Tychonoff Corkscrew

For each ordinnl o, let A, denote the linearly ordered set (—0, —1,
-2, ..., .. .,2 1,00 with the order topology. Let P be the
product space Jdg X 4, (where o is the first infinite ordinal, and 2 is

(0,01 (2.0) (4,0
A 7
I 1 ] I |
I |
| I
| N [ A
(—(l,w)l Ll 40— ——— —9———-* {0,.w)
I 102, w)
| ! '
| I |
| |
! i 2
(-0,-0} 112,-0) 0,-

the first vneountable ordinal); let P* be the subspace P — {(Qw)].
Then P may be thonght of as a rectangular lattice of points with
coordinate axes o and A.. We then use an infinite stack of copies of P
to formn x reetangulae corkserew Iattice S, spiraling in both directions, by
slitting each P* immediately below the positive Ay, axis and then joining
the fourth quadrant of one plane to the first quadrant of the one im-
mediately below it. If {Ae ()| _ . is the indexed collection of posi-

S —
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and battom of the wxis of Uhe
berhoods of @t consist of all points of

as infinity
corkserew; usis neigh.
X which lie above {or, for o

¥

+

\\\

S

SANNN

oy

NS
{
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1haed funetion f on X, Hince the
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restriction of f to each guadrant of each P* may be extended
continuously to the missing center peint (Qw}, and since f s
eventually eonstant on cach positive and negative Ay axis, we soee
by induction that f must be constant on some set which includes
at each level a deleted open interval around (R} on the Ag uxis.
Thus there exists a sequence {a,}”. on which f is constunt,
where lim a; = et aud  lim a; = a—. Since f is conlinuous, it

i §— —

follows that f{a*) = f(a™), so X cannot be either Urysohn or
completely regular.

1. Sinee X is oot Urysohn, it cannot be either totally separated or
soro dimensional. In fuct, [a¥,a7} is the only quasicomponent of X
containing more than one point. But X is totally disconnected
since {a*,a~] is discrete in the induced topology.

& If we double the points of the corkscrew X the resulting space
will be T; only.

6. The deleted corkscrew Y is regular sinee it is a subspace of X,
but it is also Grysohn since every point of X exeept @ can be
separated from a* by n continuous function. flowever Y is still
not completely regular, for, as above, the point a* may not be
separated by a continueus function from the closed set in Y con-
sisting of the complement of a basis neighborhood of a*.

7. Y is totally sepurated sinee no more than one peint of any given
quasicomponent of X lies in Y. Further Y is not zero dimensional
sinee o had a basis of open and closed neighborheods in Y these
neighborhoods would also form a basis of open and closed neigh-
borhoods of &' in X in contradietion to the fuet that @t and o
together form o quasicomponent of X The basis neighboriiunds
o at have netopen closires so ¥ s pod extremathy discontected
Sinee the Tyehonofl plank is seattensd o s N and thas alao )
and X,

92, Hewitt’s Condensed Corkscrew

T =38\ {at} W {a} s the Tychonoff corkserew und if [0,2) is the
sct of countable ordinals, we let A = 7 3 [0,2) and define X to be the
subset of A consisting of 8§ X [0,2). We think of /4 as an uncountable
sequence of corkscrews Ay where X € [0i), and of X as the same
sequence of corkserews missing all ideal {or infinity) points. If I'; X X
X — [0,0) 15 0 one-tv-one correspondence, and if «; (2 = 1,2) are the
courdinate projections from X % X to X, we define a function ¥ from
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A~ Xonto X by ¢lat,) = ml=%A) and Yoy = mIYA), Then if ;
and y are two distinet puints of X, there exists some A € fren, nanicly
= I'(r,y), such that both of the sets g1 (@) and y-1(y) intersect 4,

The topology on 4 i determined by basis neighborhoods N of enck
T € X with the property that y~1(y N x ) C N, together with Aj-bagts
-neighborhoods (ealled tails) of each poing ¢ € A — X: X wil) inherit
the subspace topology from A, To construct a typical basis neighborhged
of £ € X, we begin with a a-neighbarhood N, of U ¢7(x) where o i
the produet fopology on 4 = 7 X {0,2) where f0,2) is discrete. Then
inductively, we Jet, Nibe g a-neighborhood of NoUy v, n X)
and N = Uy, Clearly g—4(¥ Ny X)CW.

L. X is Ty in the indueed topology since each point £ € X ig the
intersection of al] of its basis neighborhoods.

2. Ifx € X, each basis neighborhond N of x is the unign of relatively

OPen sets N C A, M X, We claim that & is simply the union of
corresponding M (where A denotes the closure of Nrin A4, Ny X,
and N is the clusure of N ip ¥ J. Buppose not; then there would he
& point y ¢ \JNA every neighborhood of which intersected N
But every neighborhood 17 of ¥ 15 a union of certaiy relatively
epen sets M* C 4, My A, and the only way that every such set
could intersect & weld be for euch 47 N to contain » tail in
some corkscrew A,. Byt this eans that the corresponding jdeg]
point, say a*, can be traced back via ¢ to another tail eontained
in both M and N. Repeating this finitely many times produces
cithery € ¥ g2 € 3 ; the former vontradicts the selection of ¥,

and the latter must fail for some neighborhood 1/ of ¥. Thus it is
true thay ¥ = i,

93,

.
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inc Ay i lar, each open basis neighbor-

3. Clearly now, since each A, is regular, si bor-

’ hnﬁd 137 contains o basis neighborhood M such that /7 C &, This
shows that X also is regular.

T i : A — X — X permits a natural extension of any
" fl;;}:ﬁztflzi]\'d;u;i ‘;’ :10 0t f}fmctiunpf on A by deﬁping f(_;r) = fiz) 1f
zC X and fla) = f(§la)) ifa E A — X If fis trontmu{::s,(;ﬁo r,
[ since for any open set U, f"(U)‘= v fo |[;)X{ T}hl;
FAUY NI fY(U)) where fFY(U) s an open St_lb};sgt(;l Od s
Uy = XN (JNY) where each N, is a o-neighborho
and N & open in A, Thus
JHU) = X N QUN)IY (X N (UND))]
= [MNIX NNV (X NN
= UN.

since (X NNYC Ny und N; C (.X NGy X NN
Hence f~1(I7} is open in A, so fis continuous on 4,

5. Hvery real-valued continuous funection fon X is eznstarit_.} fir :f
y € X and if X = Plzy), then ¢{at) = z an :bga —)‘f{a"J)-
1‘!:111; [ is continuous on A and hence on _Ah so fla _,.))—= f{?;
where flaty) = f(p(a*)) = J@2) and f(an) = f((a )-
Thus f(z) = f(y) for any two points of 2,y € X.

Thomas' Plank

Thomas' Corkscrew

Let X = CJ L, be the union of

i=0 E

lines in the plane where L, = - 'L,
|(x,0)lx € (0,1)}, and for 1.2 1, ": .
Li={{x, 1Dz € [0,1)}.11{ > ]:, E '
each paint of L; exeept for (0,1/7) E — me
is open; basis neighborhouds' of g; : ;

(0,1/4) are subsets of .L,- with £ . =)
finite complements. Similarly, & - ) L,

the sets Ufx,00 = {(2,0)} \ o
{(x,1/n}ne > 7} form a basis for the points in L.

i &8 W is
1. Ewery basis neighborhood of X is closed as \?elui 5}; op;en, Tsu X
zero dimensional and therefore regular sinee it is clear y Ty

P ] o
2. X is also completely regular since if C is a closed set and p f C,
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95. Weak Parallel Line Topology

96. Strong Paralle] Line Topology
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el ling torlog
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parallel Fne topology r consista of the sets U7 together with sets IV =
trthla < o < b} (e, Dja <z <L),

[ £

Since each W may be written as VU U, where V = WM B

and the union is taken over all U, C W, we see that ¢ is a finer
topology than 7.

I we define {x,2) < (i,5) (1,7 = 0,1) whenever 2 < yor z =y
und ¢ < j we see that for any two points py, ps of X either p, < py
wp: < prIn(X7), W= [x0e <z <V Hz)la<z <h)
= {p € X|{(a0) < p < (3,0)},; since cach U may be expressed
similarly, (X,7) is an order topology and is therefore completely
normal. (X,s} however iz not 'I'y since the closure of each 17 con-
tains points on the lower line, so no open subset of B ean contain
s elosed neighborhood.

If ppE€A, the sets C={p € Xip <y} and D = |p € X|
p > m} are both open and closed in bothoand =, Thus f: X — R
defined by fip) = 0if p € Cand f(p) = 1if p € D is continuous.
Thus both spaces are totally separated, Urysohn, Hausdorff, and
not locally connected.

X is not sequentially compact with the topology + since a mono-
tone increasing sequence Of points of B which iz hounded shove
eontains no convergent subsequence. Thus (X,s) is alsn not
sequentially compact.

Considerations entirely analogous to those given for the right
half-vpen interval topology show that neither (X,¢) nor (X0 is
locally compact, s-compact, or second countable. Clearly both
topologies are first countable, and as in the right half-open
interval topelogy, are Lindelsf and sepurable.

Since no set Vocontaing any closed neighborhoml, (X,¢) & not
vegular, and thus s ot zero dimenstonal sinee it ois lauscordl,
But the closures of the sets I7 (or 1¥ for that matter) are just. the
union of the set U7 and a set of the form 1} and thus are alse open.
These sets forme a basis Tor 7 for each {7 or 1V iy the union of all
such sets contained in it. Thus (X,7) is zerv dimensional.

Since in either topology all the basis elements are dense-in-
themiselves neither space is scattered.

Neither (X,s) nor (X7} is extremally disconnected for, as in the
right half-open interval topology, & certain infinite union of dis-
juint basis elements has & closure which is not upen.
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Uy, nested sequences of intervals together with their deleted
projections.
V' is not separable since no countable subset is dense in €. Since

X is compacet, it is Lindelsf and thus not metrizable.

The components of X are ¢, and each of the points of (.

98. Appert Space

Let X be the set of positive integers. Let N (n,F) denote the number of
integers in a set & C X which are less than or equal to n. We deseribe
Appert’s topology on X by declaring open any set which excludes the
integer 1, or any set £ containing 1 for whieh lim N (ndl)/m =1,

1.

_I".."l

6.

N—+ 0

Appert space is an cxpansion of countable Fort space; a set
€ is closed in Appert space if 1 € C, or if 1 ¢ C and
lim N{(»,C)/n = 0,

H— @

Appert space is clearly Hausdorff, und in fact, completely norma).
If A and B re separated sets, and if 1 f A\J B, then A and B
are open. If 1 € 4, then lim N(n,B}/n = 0 (otherwise 1 would

H=—} w

be a limit point of B) and so Band X — B are disjoint open neigh-
burhoods of B and A respectively. If 1 € B, the argument is

similar.

X is not countably compact, for the infinite set {27}, n.> I, has
ne Jimit point: no x > I can be a limit point since each such point
is open, and 1 cannol be & limit point of {2°} sinee X — {27] is
apen,

Since X is ecuntable, it is g-compact, Lindelsf, and separable.

X is not first countable, since the point 1 does not have a eount-
able local basis. Suppose {B.} were a countable local basis at 1.
Then each B, must be infinite, so we can select an z, € B. such
that @, > 10%; then U/ = X — {za} does not contain any of the
sets £, yet it is an open neighborhood of I, for N(n, T/} =
n -~ logw n, and thus lim N(n,U)/n = 1.

= m

X is not locally eompact, since the point 1 does not have a cormpait
neighborhuod, for any neighborhood of 1 is infinite, and may be
eovered by a (smaller) neighborhood of 1, together with a disjeint
mfinite collection of upen points.
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7. Appert space is seattered since in T; spaces every dense-in-itself
:‘suhset,.must contain an inknite number of points. But this B
Impossible in X since every point other than 1 is open.

8. Sin_ce any set containing 1 is closed, 1 has a local basis of sety
which are both open and elosed. Since ull other points are dis
crete, X iIs zero dimensional.

9. _X is not extremally disconnected sinee the set £ of even integery
15 an open set whose closure &\ {1} is not open

99.  Mazximal Compact Topology

I.E'}t. X he_ the set of all luttice points (4,)) of positive integems together
with two_ldeﬂ.l points x and y. The topalogy r on X is defined b}-’Adevlarin
each lattice point to be open, and by taking us apen neighbm‘hooc’ls of f,
s‘et,.s of the form X — A where A is auy seb of lattice points with atlmost
fa;;telfyt }rlnafuy p;ints ;);1 each row, and as ()ﬁen neighborhoods of y all
sets of the form X — ‘here B i £ i i

2t st Fmitaly o n\:‘fzrc Bis any set of lattice peints selected from

1. }(IX (,)Zl) isfnot Hausdorff, for there are no disjoint open neighbor-
00ds of z and y. Hut it is T, since each point i ' i
; : s the g
of its neighborhoods, ’ erseetion

2. (X,r) is compael since if X — A and X' — B are open ueighbor
hoods of ;t.-.and 4, respectively, then X — (X — AYUHX — 8y
= A M B is finite.

3. Every comps‘lct subset of X is closed, for suppose that £ C X is
not elosed. Since each lattice point (7,5) is open, X can fail to he
::losedm only if 7 or ¥ is o limit point of, yet not in, . Suppose
¥y € & — E; then E must contain points from an inf%nite number
of rows. A = [{i.7.)} is a collection of points in I, one in each
of 1:'1ﬁn1tee]y many raws, X — A together with the di:serete potnts
(‘1.,.,_;_,,) fmr{ns an open covering of £ but has no finite subcover
&mu]_zu'ly ifx € B~ E, then ¥ must contain an infinite numb;er:
;)f p;)'mt:-‘, from Sonie one row; so we let B be that row and cover £
i;); (:ml;; i;Zt:-md singletons, Thus @ set which iy not elosed eannot

+. Supposeyr' D7 is a compaet topology for X. If the eontainment
\\"ere striet, there would be o subset A which way closed under
7" but not under 7. But then A would be compact under +* but
not' unfier 7, which is elearly impossible. Hence ne topology on X
which is strictly larger than 7 ean be compuct; that is, r is a maxi
mal compact, non-Hausdorff Lopology, J , N
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5. X is zsecond countable since it is Grst countable and countable. To
see that X Is first countable we observe that all points other than
x and y are vpen. Fhe collection of sets A is countable so x has a
eountable basis; on the other hand, y has a countable local basis,
the sets consisting of X — T where T ts 4 finite eollection of rows.

i. The doublet [x,4} is & quasicomponent of X which 1s not & com-
ponent. Thus X is totally disconnected, but not totally separnied.
Clearly X is scattered since in a Ty space any dense-in-itself sub-
set must be infinite, but all points except = and y are open.

100. Minimal Hausdorff Topology

If 4 is the linearfy ordered set {1,2,3, . . . ,w@, . .., =3, —2, —1]
with the interval Lopolegy, and if Z+ is the set of positive integers with
the discrete topology, we define X to be 4 X Z+ together with two
ideal points @ and —a. The topology + on X is determined by the prod-
uct topology on 4 X Z71 together with basis neighborhoods M, +Ha) =

LA M M- o
\ v \________......__"___‘ r__.f _______ _f w}l
\‘ - " * Icl . - [ (

| . * I oot l
i - " b .
.

e . M . :
TS 1 I
. . . . . . .

. . e . . ..

- - - L BT B ) - e B aw - - -
fad

fa} U Gl < w j>nt wnd M{(—a) = {—a} UG > o
j>nl.

1. A straightforward cousideration of cases shows that (Xr) is
Hausdorff, though not completely Hausdorff stce for all integers
nand m, M, *a) N\ M, (—a) = {{wd)|i > max (mn}} = J.
Clearly each basis neighborhood is the interior of its closure, so
(X,r) is semiregular. But it is not regular since it is not com-
pletely Hausdorf?.

3. The basis neighborhoods form an open covering of X with no
finite subcovering, sinee the points (w,j) are contained only in
their own netghborhoods, Thus X is not compact.

4. However, X js almost compact since any collection of open sets
which cuvers X must have a finite subeollection whose closures

[ 2-]
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cover X. This follows from the fact that the closures of any neighe
borhoods of ¢ and —a contuin all but finitely many of the poins
{w,7}- A strajghtiorward consideration of cases shows similugly

that the complement of any basis neighborhood is also almest
compact.

Row suppose r* C 7, suppose N is a basis neighborhood of 1 and
suppose {(s] is a 7 -open eovering of X ~ N. It is then a r-open
covering, so there exist finitely many sets 0, . . . , Oy the union
of whose r-closures covers X — N. But the r* closure of O, con-
tains the r-closure, so X — N is covered by the union of the s
closures of Oy, O, . . ., 0,  In other words, ¥ — N i3 s
almust compact subset of (X 7*).

Suppose 7* is 2 proper subtopology of r. Then there would be
some basis neighborhood N € 7 for which X — N would not be

22 121

hoods, containing (zi,3n) and (aw,3r), respectively. If w3 = y,,
then either £, # 31 or &= 2% yo; suy 7, # ¥, Then any open hori-
zontal strip containing (rsys} less the vertical line through
(xi,4n) und any basis veighborhood of (2,7} are disjeint neigh-
borhouds of (x1,1)) snd {(22,50).

Buppose A and B are separated subsets of X. Then each point

a = {a,4:) © A has a neighborhood N (a) or M.(a) which is

disjoint from B. If ¢ € A we may assume (by selecting « suffi-

ciently small) that M. (a) M A= {(:c,:c)li:c — ] < ¢}. Then

U= W Npe)i\ (V' M.(a))isanopenset containing
sEA -4 acAMa

4, and we may define similarly an open set V containing B.

Clearly UNV = &, so (X,r) is Ty and therefore completely
normal.

closed in 7%, and s0 there would be a peint x € N such that T 3. Let {U.} be an open covering of X, and let B = {a|U. M A =
belongs to the 7* closure of X — N. Let {Ca} be the family of @&}. If = is the projection map of X onto the y axis, {#(Ua)}acn
T-closed neighborhoods of 2, and suppose (X — €. covers is an open covering of {0,1] and thus has a finite subcovering, say
X~ N. Then forsome €, ... C,, X—NC VX — C:; but fr ()} e Then [U. 4%, covers all of X except for finitely
X — (s closed, s0 must contain z. Since the C'; are neighbor- many closed vertical line segments, and each of these may be
heeds of z, this is impussible, so {X — C,} could not have covered by finitely many U,. Thus (X,7) is compact.
covered X — ¥, Thus N, contains more than just the point z,
so 7" eannot be Hausdorff. This means that r is a minimal 4. No peint on the diagonal A can have a countable local basis so
Hausdorfl topology for X. {X,7) is not first eountable. But X is sequentially compact since
every sequence has a subsequence {(x;y,)} which converges in
101. Alexandroff Square the Euclidean topology on X to & point, say (5,5). Then {{z.,y:)}
. . converges in (X,r) to (y,y) unless all but finitely many of the z;
If X is the closed unit square [0,1] X [0,1], ¢ are equal; in this ease, {(xqy.}} converge to (z,y).
we define a topology = by taking as a l . ) ) L
neighborhood basis of all points (5,0 off the 8. The u_‘:duced topcl}tggy on ea‘ch vertical line in X, 88 well ag on
diagonal A = {(z,7)|z € [0,1]} the inter- the diagonal A, is the Euclidean topology. Since these are arc
section of X — A with an Op,en vertical line F—T—~T-——7%———- connected, so too is (X,r) for two points in X may be join‘aed by a
segment centered at p: N,(5,0) = Hsy) € I :[ I path consisting of two verti:?al line segments and an _m?,erval
xX— : (S T 4SRN U along the diagonal. Thus X is connected. But clearly it is not
Allt — yl <¢}. Neighborhoods of : o . .
: . . locally conneeted sinee no nonteivial neighborhood of auy point
points (z,3) € A are the intersection with }" . "
. , on A is connected. .
X of open horizontal strips less a finite !
number of vertical lipes: a7 {850 = ‘
f(x,y) € X“y_3|<f,$?5$o, Ty o oo ., Xnl, 102. 2z

Let Z+ be the positive integers with the diserete topology; let X =

1. X is Hausdorfl as may be seen by direct examinati
| ; y direct examination of cases, T b \ Ve b . : ; + i
Consider two points (i), (3,05 € X, 1 gy 2% 1 thens ave oy ‘_gm Z*; be the countable Cartesian product of copies of Z+ with the

find disjoint horizontal strips, and thus disjoint upen neighbor- "Tyehonoff product topology -.
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6.

=

I{ i = () and y = (y,) are points of X, and i £, deuoty
{1 € ZHa, 5 33, we can define o metrie for A by dla, ) =

L9 Sigee r ! . : o
R Blunce Koy \J K, D E, L d s a meteio for X; sinee

By (a) C x7{a)), the Cartesian product topology is finer thag
] it1

the metric topology. But since M T a;) C Byi{a}, the topol-
Jom]

tgles must be equal.

H a subset ¥ of X is compact, . (Y), the projection of ¥ onty
Phc n th coordinate, is compuet and thus finite. S0 no eampact set
e X ean eontuin an open subset, fur ench openset £ C X wmust
have some projection m{7) which equals Z+ Thus X is nat
locally compact.

X is not o-compaet either, for if X = Yy Ve eompact, we
cun {le_ﬁnc m{n,k) to be the greatest integer in 2.{Y,). Then
.the polnt whose uth coordinate is m(rmd 4 1isin X, but not
i any Y, ,

X is second countable, and thus Lindclsf, since it is the count
able produet of second countable spaces,

Since Z* is totally disconnected, each projection map must take

a connected subset of X o o point; thus only one-point sub-

_lifet.: n:”l X m'uiy be connected, so X iy todally ‘discnnnected. In

aek, the subbusis sols 7% 0 are 41 : SHILG

are the inverse images :unif{ir ltl'({;lxli;(l:;;::dnti‘)S-C(L e ey
4 aps of upen and

closed sets, so X is zero dimensional and thus totally separated.

NG I}U]nt “f i 1) i.b{.']i.'lt( d w0 2!. k] -in-i
< > & < I dﬂ“b(“. 11 lt.‘i{_“.lf 51
5(::1! 1 ere I ¥ a“d 'thll. Gtv

A sequence of points {r,] C X converges to the point = iff cach
coordimate 2, eventually equals x, (for sufficiently farge 1)
Indeed, each coordingte in a Cauchy sequence evc:'m:al]y be:
tomes constant, 8o X is a complete metric space.

In the space (X 4}, the open ball B.-(a) is the set {(a,, fla, . . .

Uy, X, o : X = i s «i
T Tivy -3 0D 2 = a4, and its closurs i simply

J
o= _{"\ m%a;). Thus
Be@) is elosed in (X in (X1) e
- sed m (X,d) but open in (X.r)—yet buth spaces
have the same topology.

the sot [(al; dsy . . L Uy Xjgry g, .

e =(, 1,1, ..., 1,08, 0, .. ) with ¢ consecutive 1's,

10,

= . . .. s LT WIS Il KT =

W Benler). But B = el U U Bi(e), so e cannot be an
i=1 it

interior point of B since every point of B — {e} must eontain
some eonsecutive getos, yet every neighborhood of e eontains
a point with just one zero. Hence B is an open set whose closure

is not open, 50 X is not extremslly disconnected.

The Baire metric on X defined by 8(x,y) = 1/n where n is the
index of the first coordinate at which x and y differ has the same
Cauchy sequences as the metric d. Thus it yields the same

topology.

103. Uncountahble Products of Z*

If Z+ is the discrete space of positive integers, we let Xy = T Z#,,

a4

where A is the cadinality of A. We assume that 3 > NRe—that is, that
A Is uncountable.

1.

L2

X, is clearly Hausdor and completely regular since these prop-
erties are preserved by arbitrary products.

X, is neither first nor second countable, Assume {B.} is a count-
able local base at the point p € X,. For each 1, m.(B,) = Z* for
all but finitely many o since there are uncountably many o,
we can seleet one, suy ay, such that r. (B) = Z+ for all 4. Then
Fao (Dot = (4 € Xa\lay = Pay] 18 an open neighborhood of p
which contains no B, so {B.} is not a local base at p.

If A< 2% X,is separable. For in this case there exists u bijee-

tion ¢ ot A onto & proper subset of the unit interval I. Let J),

Js, . . ., Ji be any finite pairwise disjoint collection of closed

subintervals of T with rational endpoints, and #y, nz, . . . ,7xbea

finite subset of Z+ Let p(Jy, . . ., J3,my, . . ., 7 bethe point

{pay © X\ where p, = n; if ¢(e} € J, and p, = 0 otherwise,
The et of all such points p(Jfy, 2, . . o Fe, My Ry o L, W)

is clearly countable; it is also dense, for given any open set in X,

&
of the form M x, =Y {/5), where U, is any open set (that is, any
J=1
seb) in £, we can find o pairwise disjoint collection J,, . . .,
Jisuch that ¢(e;) € J, and for each j, an n; such that n; € U,
k
Then p(fy, . . . 1, . ..

= n; € U,,

L) € M a7 (U,), since when-
i=1

ever ¢la;) € J;, pa
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4. Conversely, if » > 2"", Xy is not separable. For suppose D w

a countable dense subset of X »; then for each a8 € 4 the s;
D r;u w,;'l(l)lund D M\ mi (1) are distinet, since each ba.-;is neighs
borhood w,~1(1} and _wa—l(l} is both open and closed. Thus the
map ¢: A — P(D) given by ®(a) = D N 7 (1) is injective, g
A = card 4 < card P(D) = 2™ '

'X » is neither ¢ompact, o-compact, nor loeally comnpact since Z4
Is none of these and they are all preserved by open continuo

maps. Also like Z2, X, is zero dimensional—since each subb Eﬂ
set r.~Yp,) is both open and elosed —but not scatiernd .

t]j}(}\r t=0and I, let P.-' C X\ be the eollection of w)) puints with
1 p::opcrl;y that eu:ch Integer except ¢ appears at most once as g
spordz;ate. I‘{‘hen since A is uncountable, Py Py = g and
mee Xy — Pi= \J (x,! ~ i i
> (ma= ) M g "), Piis closed. We will
LY
show that any two neighborhoods 7 i
d ¥V
50 X cannot be normal, s etPoand B et
Each finite subset F C A de i i
_ termines & basis ne; hborhood
F(z} of any pomt x € X, by F(z) = N o Nz, %ﬁ’c define
akEF

Inductively a nested increasing sequence F, = |a1"  of finite
su:bset.s of A together with gn asscelated seque:llc:i';f points
; € P, Let za' =0 for all o € A, and suppose that and

n—1 BT¢ given; select ', D F,_, by requiring thut # ) C U
and then select z+t € Py 50 that z, vh = ¥ whenev&:r , EF ,
and z,"H = otherwise. Now Jet ¥ € P, be defined b;hy =M'
Eh.enever a4 € UF, and g, = 1 otherwise. Then thearejz Jis i

nite Eet G C 4 such that G(y} C V. Then for some integer m,
Gﬂni Fo=GMNF,, so we may define a point 2 € X by
::;d— k=w111enever ,fxt EF 20, =0 whenever o, € Foy1 — F,,
wis:i} Eotherm 8e. Then z, = g if o £ G M\ Fn, and other-
wise kc; IG:;:, ——; Yo = 1; thus 2 € Gy} C V. Furthermore,
}::* b=, ¥ o €F, and Ty =0 = gmt if o €
w1~ Fop thus z € TN = Frplz™ (U, So

aC Fp,,

2 € UMV, which was to be proved.

104. Baire Metric on R«
IftX =

v is the st 11 R, w h R, i
se _Hl R, where each R, s a copy of the Euclidean

rea] line, we define thze.]}aire metri
; » ' Pmetric on X by d({(zd () = [ /¢ w ;
15 the firat coordinate where z and y differ, 7 e /¢ where s

105.

g

£r125

A Baire basis set By, {x) consists of all y € X whose first ¢ coor-
dinates agree with those of z. Clearly no basis set of the Tychonoff
product topology on H* can be contained in By;(z), but By«x)

is contained in the Tychonoff basis set N x;{U/;) where z; € U,
i=1

for all 7 < 1. Thus the Baire topology is strictly finer than the
Tychonoff topology on R,

If {x.} is a Cauchy sequence in X, and if z; , is the ith coordinate
of the term z,, then for each 7 the sequence ziy, z:2, zi 4, .

s eventually constant, say . Then clearly [z,} converges to
£ = {z%). Thus X is complete.

The indueed topology on each coordinate axis R is discrete. In
i

fact, since By(x) = M =;7Yz,), the topology generated on B«
f=1

i=
by the Baire metrie is precisely the Tychonuff produet topology
where the factors E; are assumed discrete. But clearly X is not
discrete.

Since the projection of every compact subset of X onto each
discrete factor space R.is compact and therefore finite, a compact
subset of X can be at most countable. But X itself is uncountable,
50 it cannot be e~coinpact. Similarly, since every basis set in X
is uncountable, X cannot be locally compact.

Since the discrete topology on each factor space R; is non-
separable, X cannot be separable.

Since the subbasis sets #;~(2,} are the inverse images under con-
tinuous maps of sets which are both open and closed, they, and
therefore the corresponding basis sets, are both open and elosed.
Thus X is zero dimensional. Bince no point is open, X is dense-
in-itself and therefore not scattered; since X is metrizable and
not discrete, it is not extremally discounected.

Let 7' be the uncountable Cartesian product of the closed unit interval

I=

1.

EO,I]: n=n I,’.
=¥
1" is compact and Hausdorff sinee T is compact and Hausdorff.
Thus I' is normal, Similarly sinee I is connected, so is 7.



2 4= {1/m€ fy e 2, I containg ¥ I A4 the sty

i€

Space topology on ¥ ig homeumorphic to T z+
(e g

duced topology on A4 js homeomorphie to the

on Z*. Thus ¥ js g subspace of 77 which is
¢onnot be completely norma].

i Since the Il

diserete topology.
not normal, g g

3. Suppuse {B, }is a countable local hasis ut 5 point y € f1. Siney
for esch g, wo(8,) = [ for sl but finitely MANY a, and sinee f jy
Uncountable, there muys be an &, such that Taol Bu) = I forylly
So if U is an open neighborhood of Yay L5 T T, (U7} s ay

open neighborhood of ¥ which containg e B, Thus {1 i not
first countable.

4. Points of 1 are functions from J tol, and 4
% CONverges in [7 by o jiff the functions ax
t a——that is iff for each x € J, () con ,
This eguivaience follaws direg thy from the definition of the prod.
uct topology on I, for open neighborhoody in 77 restriet only

finitely many coordinates gt 5 tine, and thig I brecisely point.
wise canvergence,

sequence of poipty
CONVErge pointyise

o FT g et sequentially tompact since the go
@ € I defined by a.(x) = the nth digit in ¢
of x has ne tonvergent subsequence, For suppose fan ! is n sub.
sequence which CORYerges ty n Puint a & g, Then for each
TE S ) converges in [ to olr). Let p € f have the prop-
erty that o, (p) = Our | according to whether 1 Is odd or even, _

Then the sequence fa,,(p)} is 6101, . .. » Which eannot
converge.

quence of funetions
he binary expanston

106. [0,0) % r

Lel X be the Product of [0.2) with the

interval topology ung fr with
the Cartesian product Lopalogy .

l. Xis Hausdorff ang comjlete)

¥ regular since both 1,
fre.

HLOP spreegy
2. Since (0,923 is countubly compaet anh J g o
ably compaet. However Y is neither comp

compact sinee these are preserved by proje
to be compaeg while 77 faiis 1o be sequent]

ompact, X is count-
act nor Sequentially
ctions and [0,Q) fails
ally compact,

Helly Space 127

. . also
Since [0,9) is neither separable, Lmde;()[i nor.cr-zm}:p;ct;o‘f s
: e sonditi Similarly, sine :
" satisly these (.‘{Jlldltlt)lllﬂ- = all
L'u“:o):b?:z neither is X. But since both I7 and [0,2) are loeally
¢our ]
cumpaet, so is X,

197, Helly Space

i lons is call
Il bspace X of I7 consisting of all nondecreasing funetions is called
The suhspace sis '
liclly space; it carries the induced topology,

1.

Iffe M — X, it is not nondecressing. Thus thfre «‘{t)ri*-_ IJ;{I;;-]
: JJE i s‘m:h that © < y but f(z) > f(y). If « i E{f(l_l(U j nr
J-’Jd if U= B, (f(x)} and U, = :Bf(f(y))s . en’[';:w Xsis .
&ﬂ_ s @ nei hborhood of f disjuint frodm X. :

m (U 15 2 nelg set I, s0 X s a compact Haus-
p;u-e.ed subspace of the compact set I, so X i

dorff space.

i 5 st countably many points of
E'ach i:lliﬂz:mlfete A)f bt,a:higen:)(osiits of disconth}uity togi::]a:;
:f]:t(l?:h{, rationals in thehunit itnteti:v&tluf ; ﬁtllllzg 41 :; ;:1:‘;:;:; eble
set. We claim that the se of tersetions of
- ; aS Ajandj=1,23, ... ¢
;:t;f?)ii;(lf {f{:}]r}} ff: verify this we need oillf(;hz:,;k et'.l};z:,efi:/teré,; S:Er
— "“i!:"}f‘}"”l:?‘r"’;if :y;‘gjgf;{g)zj)f ((i,i(:{toi;inuity of f, we merely
‘«‘"untfl_ble %:111; )l/ < ¢ and take =, 71 (B, (f (1. 1f not, then {
E""?Ee('t tint e £ 'r] su]there is a & such that f1"{;19) € ;sz{_f{y)l
N contlnuuTus aflJLi 5. 8o if a 15 n rational in the fnt.erv]a
Lnoneves lxﬁ b{) large that By f(a)) C B.(f(1)}, and sumial,:: ¥
b0 Mi" Jnﬂl in (y — &) and Bix(f(0)) C B.(f(n)), t Brtl
. b'l'sfanzizljl of X in x, "By, {fla))) f\n—‘{B”k(f(b))). mus
fa:;eilx': w,li‘(B,( F()). Thus X is first countable.

) . \ 2
A, be the set of diadic rationals in [ with d.enom;)nazgrof ;
};ftn {lA :} 19 an increasing nested sequence of finite S;J(,fsi o
:r'lfnqc ut‘liun is dense in f. For cach i,}]f}ti };ilt:;;;{;;;anal ontin-
l is¢ | : el in X which ta -
tecewise linear functions in . _ ial vatues
ot o0 511191)()int of A; and which are lincar bet\\»eenhtheberé) s
glas}}: Y-l is countable, so ¥ = \U¥, is also. Furthermo N
dense in X, so X is separable.

. - Sy =010 ¢t < a,
The colloeis f funetions f, defined by. fi(
;‘ ?e) wulmrri?fﬁ(t) in‘i if ¢ > z 15 an uncountable subset of X
27X} = 3, *
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.which is discrete in the indueced topology. Thus, this subspace
18 not, s'ecoud countable, and so therefore neither is X ; Turther-
more, since X s separable, it cannot be metrizable.

108. Cjo,1]

The space of real-valued continuous functions on the unit interval J will
be denoted by C[0,1]; it is a metric space under the sup norm distance:
d(f,g) = sup If(6) — g{8)]. :

. . . .

1. 'LIO,T i} is a complete metrie spuce, sinee cach Cauchy sequence
in 1] Is a uniformly convergent sequence of continuous fune-
tions, which must have a eontinuous fonetion as a limit.

2 Q[G,li is separable since the polynomials with rational coeffi-
ctents form a countable dense subset,

3. Every open ball B.(f) contains a sequence {f;! such that
A(fofid = € (for § = J) and which therefore has no convergent
subsequence. To see this we define
#. € C0,1] to be —¢/2 on {0,1/2 —
¢/2n], +¢/2 on [1/2 + ¢/2n,1] and
linear in between. Then fi=f+
$: € Bf) and satisfies d(f,, D =¢ [ 1
Thus €[0,1] has no compaet neigh- / i
borhoods, so is neither locally com-
pact nor, sinee it is of second
category, v-compact.

C[0,1} is both are connected and locally are connected since each
ball B.(f) is convex. That is, the function ¢: [0,1] — 10,1] de-
ﬁn:ad1 bydt) =g+ (1 - Dhisa path joining ¢ to k: if ,g and
h lie in B,(f), so does each #{t). ,

109. Boolean Product Topology on R

If X = Bvis the set 5111 &;, where each R, is the Fuclidean real line,
we genfrate the Boolean product topology 7 from basis sets of the

form 'I'I] U: where each U, is open in Fo
-

L. Clearly each busis set of the ‘Tychonoff topology is open in the
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Boolean topology, so 7 is strictly finer than the Tychonoff prod-
uct topology on X, Thus (X,7) is Hausdorff.

2. (X7} s also T, for suppose 4 and B are separated subsets of X.
Then excha = {a;} € A is contained in some basis neighborhood
U (a;}, disjoint from B, where each Ui{a:) is an interval in R,
centered at the coordinate o, Let U e} be the middle half of
the interval Ua}, and let U*(a) = O (@), If V*(b) is de-
fined similarly for each b € B, then U = \J U*(a) and V =

aEA
\/ F*(b) are disjoint open sets containing 4 and B respectively.
[2¥)
3. Sinee in the induced topology each of the translates R/ =
{y € Xly; = z,, © % j} is homeomorphic to the connected set
Ri, X is connected.

4. Since {X,7) is an expunsion of the Tychonofl topology on Re,
which is homeomarphic to Hilbert space, any compact subset of
X must be compact in Hilbert space. Thus, since Hilbert space
is not s-compact, neither is {X,r). But (X r) is locally compact
sinee the product of compaet intervals is compact.

5. Suppose {U.} is a countable local basis at the point x € X; let
U; = I U,;. Then for each ¢, let V; be a proper subset of Us;
j=1
containing z,; then N V, is a neighborhood of x = {z;) which
i=1

does not contain any_of the sets {U;}. Thus {U;} cannot be &
basis at z, s0 X is not first eountable.

6. Neither is X separable, for if, for each ¢, U;; is the open interval
(. + 1) in R, then the collection of all sets A, = I Uy,
i=1

where {7;} 13 an infinite subset of the integers, formas an uncount-
able disjoini collection of open sets in X. This shows in fact that
X does not satisfy the countable chain eondition.

110. Stone-Cech Compactification

Let (X,r) be a completely regular space, let I be the closed unit interval
0,11 C R, and let C(X,!) be the gollection of all continuous functions

from X to ]. Let 764 = 11 I, where [ is a copy of I indexed
AECQ(X,E}

by A € C(X,I). We denote by (1) the element of JCX.D whose Mh coor-
dinate is f,. Then if ky: X — J€X9 js defined by hx(z) = (A(2)w), the
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im:_;ge of hx, hx(X), is a subset of
80 1ts closure X = hx(X7] is a con
Stone-Cech compactifieation, ol {

I.

o

hxisa homeomorphism of X

the compact Hausdorff space JOXLh
npaet HausdorfT space known ag the
X7

. oo by (X), a dense subset y
Since py O by = ) for each A € seb of BX

tion of 117, onto 7 b hix is continuor

X.1) (where g, is the projec-
18. 1t is also injoctive sinee if

LY E X 5y thoreis a continuous funetion A ¥ -, I guch
that Az) = 0 and AMy) = 1. Thys hx(x) # ha(y). Tn fact hy iy

Injective iff X ijs Urysohn.

Finully, we can show that fy i

[ ) v, : PRy
open mapping by selecting any upen set IF " poing
z € U7, Since (X,7) is completely rogul
such that AMx) = 0 while ) =< I on the

A, and & poing
ar, there exists A X -5 g
closed set X — ¢7, Then

hx(X) MY oy ((— @ ,1}) is an open subset of Ax(U) which con-

tains hyfzr). So hx (U7} is open.

7 3 2 1
Every continuyous function f from X to

# compuct 1lausdorff

space ¥ has a unlgue continuous extension to BX; that i, for
2y

each continuous J: X =Y there exists g ¢
J: BX — ¥ such that fohy = I To prov

sntinuous function
e this we nute first

that fo_r any space ¥, a continuous function f: X — v induces
8 contlauous function p- jox.n = 1D gy follows. TF L €

?f«'((f’i) then ko e CX, D) so we may define F: joixn
2 by F((h)) = {{teo)n); that is, the & © fth coordinate of

.(h) is tﬂ.L:en us the Ath coordinate of F{t)). Binee p, ©
15 & continuous map for each L, ¥
Now we show that 7 Ohy =

eoordinate: (F o bxfz)), =
(hx(@ear = &k © flx) =
(hr (J(@))}s. Thus P(hx (X ) C
hv(Y) so by the continuity of
¥, FBX} CFhe(XT) C BY.
Thus F restricts to Bf: BX —
8¥ such that 8/ O by = hy Of.
Now sinee ¥V is compact by
Y—‘»BY s & hmneomorphism
80 f = by O Bf is the dosired
continuous extension of 5 for
O hy = ky—t O Bfo hy = hy!

dorff, f is unique, for a map from
space Y is determined by its valu

The properties that BX is compact, A(X} is dense in BX
H

. ) « O F =pe,
itself Is o continuous map.

hy O f by computing the Lth

£un » FLALNs
F

Chy OF = f Since Y is Huus-
anry space X to o Hausdorff
€ on any dense subset of X,

and

4.

"

k.
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that every map from: X to a com-
pact Hausdorfl space ¥ may be
extended uniguely to 8X charac-
terize BX. For let T have those
properties. Then there exists an
inclugion f of X indo T with &
unique exteunsion /1 X — T, and
a upique extension £ to T of
the inclusion h of X into X, T
Since buth & O fand the identity
©: BX — X are extensions to 8X of h: X — X, £ O { must be
the identity on gX; likewise f O £ is the identity on T. Hence
B8X and T are homeomorphic.

A second description of 8X may be given as follows. We call
A C X u zero set if for some continuous real-valued function f
on X, A = {z € X|f(z} = 0}. Clearly, for a completely regular
space X, the collection Z of zero-sets forms a basis for the set
of closed sets of X, that is, every closed set is an intersection of
zero-sets of X. We note that the points of X are In a natural
correspondence with the principal ultrafilters of zero-sets and
we shall identify a puint with the corresponding ultrafilter;
further, we shall restrict our attention to ultrafilters of zero-sets
which are the intersections of ordinary ultrafilters with Z, the
collection of zero-sets. We now take as a new definition of ;¢
the set of all ultrafiliers of zero-sets of X.

With these conventions we define a topology on §X by
taking as a basis of closed sets all sets of the form €, =
{F € BX|A € F|, where 4 is any zero-set; clearly Cy M (' =
Caras. Then the function h: X — 8X which assigns to x the
principal uitrafilter of all zero-sets eontaining x is a homeomor-
phism into 8X and its image is dense in §X with the given
topology. To see this we note that A is one-te-one, since distinct
points give rise to distinet prineipal ultrafilters, and if 4 is a
zero-set in X that A(A4) is just A(X} N Cy; thus k of each closed
set Is closed and A of each open set is open. Since X is the only
set contained in all principal ultrafilters, Cx = BX is the only
clused set containing A(X). Thus k(X)) = gX.

BX is compact since it satisfies the finite intersection axiom. Sup-
pose {Cilaca is a collestion of elosed subsets of 8X with non-
empty finite intersections. Then if each () is the interssetion
of closed basis sets Cap o (that is, Cy = M Cape) the family

]

v
N

AN
7
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{Cao.3} also has Ronempty finite intersections. Hence so does

the family (A () a) 1, which mesns that some ultrafilier F in Y

contains all of the zero-sets Al a). Clearly for all o and )

€ Cro = 16 €BXIAOD €G], s0 FENNCppy
A a

M C,.
A

The two spaces 8X are homeomorphic since they both satisfy
the three characterizing properties enumerated sbove. To con-
p_lete the characterization, we muyst only show that eVery con-
tm_uous funetion from X to g compact Hausdorff space ¥ has g
unique continuous extension to (the new) BX. Binee X i dense
m BX any extension we can produce will be unique ; 50 sUppose
ST XY, and Jet F EBX. Let £ = E(f,F) = {zero-sets
ACYlfuA) € F}; then Eis a filter in v which inherits from
F the property that whenever 4 and B ure zero-sets for which
A\ B. S £, either A or B also belongs to E. Since ¥ is compact,
AQEA 15 nonempty; suppose p and ¢ are both in sach set of E,

P # q. Then since ¥ i completely regular, being compact and
Hausdorff, there exist disjoint open neighborhoods U and V of
P and ¢ respectively whose complements are zero-sets. Thus
stnce (Y — Uy (Y — V) =Y € E either ¥ — [/ or ¥ —V
must also be in £; but neither can be in £ if both p and g are in
every set in £. This contradiction shows that the sets of £ can
ha\re at most one, and hence precisely one point in common.
Thl.s point we call ¥}, and thereby define fax— Y; fis the
desired extension of f. Ta show that fis continuous we need only
show that the inverse Image of any closed zera-set is closed, and

this follows from the fact that for ever
t Yy Zeroset A C Y,
FHAY = Cpay.

111. Stone-Cech Compactification of the Integers

Ijet [;X,T) be the Stone-Clech compactification of Z+, the space of posi-
tive integers with the discrete topology.

1.

The set X is that subset of fee",n which is the closure of the
mage of kg Z% o [0 D (hore hzv is detined by hyi(n) =
(h(nh) for a € C(Z+I}. Since Z+ is discrete, C(Z+,1), the set of
aff continugns functions from Z+ to {, is merely the set of all
sequences of numbers in f = [0,1]. Since the set of gl Zerc-sets
of functions from Z+ to R is just the power set P(Z') we may
also describe X as the set of aJ] ultrafilters on Z+. Since the prin-

34
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eipal, ultrafilters correspond exactly to the points of Z+ we may
consider X to be Z+\J M where M is the collection of all non-
principal ultrafilters of Zt. In this case we have as a basis for
our topology the collection of all sets of the form Uy =
|F € X|A € F} for A C Z*, since X — Uy = (F € X|(X —
A) € F} 15 by definition a basis closed set. [f z € A, and if F,
is the principal ultrafilter containing {z), 4 € iy, 80, happily,
e C U4 which can be interpreted to mean that A U,
Clearly each I7, is closed as well as open; furthermore, U, M U
= UA(\,H, and A C B imp]ies U,q, C Ua.

The cardinality of C(Z*+,I) is the cardinality of all countable
subsets of I which is ¢, the cardinality of the reals. Thus card
(TCE'Dy = &= 9o card (X) < ¢ = 2. Analogously, the set of
ultrafilters is a subset of P(P(Z1)) and so has cardinality less

than or equal to 22 = e

Since the Cartesian product of ¢ = 2™ separable spaces is sepa-
rable, J€Z".1 myst have a countable dense subset D. So there is
a surjection ¢: Z* — D which is continuous since Z+ is discrete.
Thus ¢ can be extended continuously to ¢: X — D. Since X is
compact, so is ¢{X); so ¢ (X ) is a closed set containing D, which
can only be D = I€&".1 Thus card (X) > card ([OE" D) = 9¢
Ho therefore X has cardinality 2¢,

When 8X is eonsidered as u sct of ultrafilters the above eardi-
nality argument takes the following form. We must construct,
$0 to speak, 22 ultrafilters on the positive intcgers. We in fact
construct 22 ultrafilters on any infinite set with cardinal «. Let
F be the set of all finite subsets f of X and let & denote the set
of all finite subsets ¢ of F. Note that # X & has the same cardi-
nality as X so it is sufficient to construct the desired ultrafilters
on I X &. For any subset 4 C X we define by = {(fe) €
F X ®AMFE ¢}; let by denote (F X &) — by. Now for each
Sin P(P(X)}let Bs = [bajd € S) U {ba'14 ¢ 8 C P(F % &).
Then B has the finite intersection property, and thus is the base
for a filter on # X @. If § and T are different subsets of P(X),
there is some set A € § — T; thus b, € Bg, and by’ € By, 50
any ultrafilters containing By and By are distinct. Thus there
are at least as many ultrafilters as subsets of P(X)—that is,
2 many. We note that of the 2= ultrafilters, at most « are
principal, so we have 22 nonprincipal ultrafilters.



5 If F € M, the sets U/, for all 4 € F form a loeg) neighborhoy
basis at F._So if G is an open set andif A = 0N z+ ¢ must he
contained in Uy, forif f ONM, there existy % .:xet B C 2
such that F € [/, C 0. But then B A4, s0F €y,

B, If.A = O0MZ+ where 0 i open in X, and if J € 7 every
nelghl_mrhood Ug of F must interseet O singe B MA 5= ,é:; Thl?‘
F.C' a, Conversely, if ¢ € Us, then Ugely s an upen se't €0 :
taming @ which jy disjoint from ¢ Thus 0 = [y suﬂ X "
ezctlremaﬂy disconnected and since if 0 = {7, we hnchI'} =l X
X is zern dimensional. I, fact if Z+ = 4 U p A ﬁdB_— "
Lhen Uy UB =X and [_.!4 M 'Uu = 7, , h g’

=3

Every nicighlmrlmnd {74 of every puint # € A containg Infinitely
many elements of M, so M7 i dense-in-itg ‘hus X
scattered nse-in-tiself. Thus X ig not

L4 L,iY 18 separable since Z+ is donge m X. But, since X is extremally
lsconxlefct-ed yet not discrete, jt is not metrizable; sipee it is
regular, it cannot be second countable, ,

112.  Novak Space

_If zZ+ denotesvthe Positive integers with the discrote topology, and if 8
is Fhe _Stone—Cech compactifieation of £ we will construct i) 1

finite mdm_ztifm' 4 certain subset J* of S Let F obe tIlwe fu’mil‘; :?]EI
::H{;{t:?lilyc infinite su})sets of 8, well ordered by the least ordinyl U of
S.;l:ilalz?laf = card (S). Let P44 € Pl ey collection of subsets of §
b eard {.}TA) < 2‘,_1’5 C P4 whenever D < 4, and f(P.t} N

4 = & \\'bere I is the Unique extension to § = B(Z%) of the C(};ILi

uous function f; z+ — g+ which permutes each wdd linteger 1-."3;
13;{ pe‘ﬁn est;f:cessor: f(n) = n 4+ (=)™ Then we define Pl=
: Sub:imce ! ié 5:1{; (glf; define Novak’s spuce hy X = p VASE &7

1. The cc?llectioxl {PilAd € F} can be defined inductively as fol-
lows: if Be F where P, has heen defined for all A < B, let
Qs = ULP,)A < B Then card {(Qx) < 2¢sinee card {1 <j B
< 2¢ um} eard (I’A_) < 2 Furtherore, sinea f O fis the iden-
uty on £¥ g is Fofon s Thus § is invertible, so f(QH:] =
UngA) Cannot intersect Q. Now & Is an infinite closed subwet,
of S, and any such set must haye cardinality 2¢: henee card B >
vard B U S{2y), s0 there exists a point p £ fj? - Blsuch that

r g f(@). Let Fe = Qu\J {z}. Then clearly card (Py) « 2
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furthermore, f{Pa) N Pp = f(Qs\J {z}) N (Qs U fz}) =
[f(x)} M Gy since [ leaves no peint fixed. But this intersection

is empty since otherwise . = f{ f(;r)) = f(QH). This completes the
inducetive construction of the sets Py

2. I Bis a countably infinite subset of S, P contains a limit point
of B, since by construction P contains a poiot of B — B for
each such B. So X is countably compact.

3. Let K = {(nf(n))n € Z*}. Since f: § — S is continuous, its
graph G = {(z,f(z)) € 8 X S} is closed in 8 X 8. Since
P NOVJ(Py = & by construction and J(Z4) C 2+, @ N (X % X)
= K, 50 K is closed in X X X, Furtherore, K is infinite and
contains ne limit points of itself since it is the graph of the
homeomorphism f on the discrete set Z+. So K is an infinite set
of X X X without a lmit point so X X X is not countably
eompact,

4. X is separable since Z* = X, and X is eompletely regular since
it 13 a subspace of the normal space S.

113, Strong Ultrafilter Topology

Let Z* be the positive integers, and let 3/ be the collection of all non-
principal ultrafiters on Z+ Let X = Z+\ U M » and let the topology r
on X be gencrated by the points of Z+ together with all sets of the form
AV [F] where A €E F € M.

1. X is Hausdorfl, since any two members F and G of M , being
ultrafilters, are incomparable. So there exist 4 € F — G, B €
G — F. Then since F is an ulteafilter, B' € F, s0 A M B’ =
A—BEF. Similarly, B— A € ¢, and so (A — B)\J [F}
and (B — 4)\J {G] are disjoint neighborhoods of F and @.
(Note that ' € Af can be separated from any y © Z* precisely
since 1o ¥ can be contained in all sets of ¥ since F can have no

clusier points.)

2. We cun prove that X iy extremally discounceted by showing
that if O is un open subset of X, 0 is open. Suppose p is a limit
point of (¢ which does not belong to F; since each point of Z+ ig
open, p € X — Z+ = Af Sopisan ultrafilter, say F, and every
neighborheod A U [F] of p (where A € F) intersects G. But
since I itself does not belony to (), this interseetion is contained
i Z*, Thus, O M Z+ intersects every member of the ultrafilter
£; but it is a property of ultrafilters that for every subset §
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2. X is extremally disconnected for the only limitdpﬂint ofi al,‘lj}'{s;;;
‘ i imi i iff A € F and then
i but F is a limit point of A 1f{ p; ’
11: ::f‘[;en. Thus, also, X is zero dimensional since the sets A\ {F)

(of Z*}, either S or iis complement belongs to the ulteafiiter,
Since G Z+ does not, intersect its own complement, O N z+
itself must belong to the ultrafilter F. That js, (OMZ4 e p!

. losed.

Thus (0N 24U (], ar cquivalently, (6 ZHY\U (), are both open and clos _ be densodin-itself. but

open. Thus OV {p} = o\ Gz M p) is open, and 3. X is clearly scattered, sInee no subset. can be dense ,

sinee p was an arbitrary limit pein of 0, O must be open. Thyg not discrete since the point F is not open.

X is extremally disconnected,
3. Any basis element 4 \J {F} has ss a limit point every ultry. It5. Nestex] Rectangles . R,

filter G which contains A as an element, forif 8 € Gand 4 € G, In the Euclidenn plane, let L; designate

then A M B ¢ g 5o B ey mau {F} # &. Soif B 4, the line r = |, L the linex = — 1, and

B U_Uiﬁ _contains all ultrafillers which contain B, which meang R. the boundary of rectangles cent{él‘ed

that BAJ[F} is not conbiined in A U (] Thus X cannot be at the orgin, of height 2n and width

T, 30 it is not zerg dimensional. on/(n + 1). Let X = Ly\J L) (Ulzif,

: . 1 from the

4. X is scattered since it cannot contain any nonempty denge-iy. and 'let, X inherit the topology

itself subsets. For no dense-in-itself set can contain » point of Z+, Euclidean plane. N

yet no point of M can be a limit poing of a subset of A/, Iy fact, L. X is not locally connected since n

4% is discrete, and in the induced topology, so is A Cleariy M is point on either L, or L has a con-

an infinite subset of X with ng limit point, so X is pot countably nected neighborhood. " .

¢ompact, 2. Each rectangle R, is both open and closed in X, 50 X — n\i =
5. Since tvery open set in X contains an integer, Z* is dense in X . is also open and closed. Thus L, \J L; = X — ‘UR, is a guasi-

Thus X is separable. Bug M is uncountable, so the eollection of
all open sets 4 \U {F} where F € }f is an uncountable open
covering of X which has no countable subcover. Thug X s not

component of X. But L, i a component of X, sinee it is connected
and no larger subset of X is connected.

Liﬂdelﬁf. 116. Topoiogist’s Sine Cul've
6. Since X is extremally disconnected it is totally separated, and . .
thus Urysohn. 117. Closed Topologist’s Sine Curve

7. 'The direct sum of Y with 8(Z+), the Stone-Cech compactifica-
tion of the integers, is extremally disconnected, but neither zZero = sin (1/z) for 0 < = < 1, considered as a
dimensional nor scattered, since bath spaces are extremally dis- Let 8 be the graph of f(z) = sin (1/x)

i i i «ed topolegy. The topol-
connected, but one is not zero dimensional and the other is not subset of the Tuckdean plane with the mglllii(‘,h “ ;:vmgd o
eattered | ogist's sine curve is the set S/ {(0,0)} which w

118. Extended Topologist's Sine Curve

114, Single Ultrafilter Topology

= (11 Y A e 4
Let X = z+\ {F} where F js g nonprincipal altrafilter o 2t We 2

take as a basis of open sets all sets of the form 4 \Fl where 4 € F, |

together with the points of Z+,

L. X is Hausdorff for clearly any two points of Z+ may be separated, .
while if z € 2+, then since F i nonprincipal, {z)] ¢ P: thys r
(Z+ = {zph v {F} is v neighborhood of #2 disjoint from the open vl i
set [z). i

B R
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i

Lo

8* is not locally compact, since the
point (0,0} has no compact neigh-
borhood. For uny nelghborhood N te F
of (0,0} contains g set Ay 8T T

where 4 is a disc centered at the
origin of radius . Then any horizon-
tal line passing through, say (D,e/2)
intersects A M & iy g sequence of
points which hag ng accumulation
point in ¥. So N cannot be count-
ably compact, and thys nok conrpact.,

N

The map g - HV@1] - 8 do
fined by f(—1) = 0,0), flz) =
{z, sin(1/x)) for y = (3 1]is continuous, so the continuons Linage
of a locally compaet space need not be locally compaet.

The closed topologist’s sine curye S, which is § U 104)-1 <
¥ < 1}, is compact, being closed and bounded, as wel| S con-
nected, for S is the clostire of the continuous image of the eon-
nected set (0,1]. Sinee § = SO0 is tonnected, and § & S,
5" is alse connected,

Clearly neither §* nop Sis locally connected. Bus any continuous
function from the locally connected tompact set [0,1] o ghe
Hausdorfy space 8 (e 8) mugt have » locally connected and
connected image. Thug ne path ean join the puint (0,0) to (4, 0)
in either § or 5%, s0 neither Space is path connected.

S has two path components, § ang L= {(0,]—1 Sy <)
Though L is closed, 8 is not; but § is not path connected, though
S s, Similarly, §* hag twe path tomponents, S and {(0,0) l.

The extendag topologist’s sine cupye 7 = S e, )0 <2 < 1}
I are connected, but net even locally connected.
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119. The Infinite Broom

120 The Closed Infinite Brocm

In the Huclidean plane, the infinite broom
R is the union of the closed Tine segments
joining the origin to the points [(1,1/n)[a
= 1,2,3, . ..} together with the half-open
interval (3,1} on the T axis. T}.le closed
infinite broom is then B, the union of B
and tle interval (§,1).

£ is conneeted since the line segments through the origln all hafvc
a comnwon point, and every open set in the_p‘lane which contains
{z,1] interseets these line segments. Thus B is also connected.

L

Neither B nor B is loeally conneeted since every small open
neighborhaod of the point (2,0) has separation,

Clearly 5 is are connected, yet B is nut even pqth connected, f{?r
auy path connecting o point of (3,1} to a point off the x axis
would be a continuous map from a tocally ccnnem.‘.ed compact
apace (namely [0,1]) onto 3 Hausdorff space which was not
locally connected (namely J10,1D).

A more interesting infinite broom may be formed !Jy joining a
sequence of closed brooms end to end as pietured. Since no spen
set containing the point (0,0) is connected (except for X itself),

this space fails to be locally connected at the point (0,0} even
though this point has a basis of open sets whose closures are

ronnected .
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121." The Integer Broom

Let X be the set of Points with polar coor-

dinates {(n,8)} in the plane R* where  is

4 nonnegative integer and § {1/n}p

U {0}. We define a topology r on X by *
taking as a basis of open sets all sets of the »
form U X V where U ig an open set in .

the right order topology on the non-
negative integers and ¥ is upen in .
O} {1/} in the topology induced . } $
from the reals. The only neighborhood of X
the origin is X itself

age "
L |

1. Xis clearly Ty, but neither T, nor T, i (X,r) is compact since the
only open set, containing the origin is X itsels.

2, X isnot locally connected since (1,0) does not have o basis of
connected neighborhoods,

3. Since X is countable it is not arc eonnected yet it is path
conneeted for the funetion S 10,1 = X which maps the interval
[0,3) to the point (n1,8), (3,1] to (n,, 82) and the point § to the
origin is a path joining (n,,6) and {72,82).

122, Nested Angles

Let X be the subset of the plane &2 consisting of line segments joining
the points (0,1} and (m1/(n+ 1)) for n Z*; the half-lines y=

i+ 1),ne 4%, 2 < n; and the line ¥ = 0. We give X the indeueed
topology.

1. X is the elosure of a family of (bent) lines with the point (0,1)
in common. Hence it is connected.
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2. Since X is a closed subset of E? it is locally compact, but it is not
eompact since it is not bounded,

3. The set X — {(0,1}} s not connected; in fact, each angle and
the r axis are components. So, in particular, X is not locally

connected.

123. ‘Fhe Infinite Cage

The infinite cage X is the union of three types of sets:
Ay = l(l/ﬂrb’:ﬂ) « Rlly z 0];
B, = {(0y0) € RB2n — § <y < 2n + 3},
Ca=zyn ERO<z<1/ny=2n2=all/n— n}.

We define X to be C} (4. \J B,\JC,) and give it the induced

n=1}
Euclidean topology.

L D, = A4, B\, (D} is a collection of pairwise disjoint
closed connected subsets of X.

2. The cage X = \UD, is itself connected, for supprose Y.Z were a
separation of X. Then each of the sets ¥ and Z must contain
entirely each D, which they intersect. So at least one of Ehel sets
Y or Z contains infinitely many of the sets 4 ;; suppose it is Y
Then ¥ must also contain \JB, since any point of B, is 3; limit
point of any infinite collection of A, hence each D, C ¥. But
this means that ¥ = X. .
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124. Bernstein’'s Connected Sets

Let {Cla € 0,1} be the collection of all nondegencrate tlosed eop.
uceted subsets of the Buclidenn plane & well urdered by T, the least
ordinal equivalent to ¢, the cardinal of the continuum. We define by
transfinite induction two nested sequences | Aalacr and | Batacr such
that 4, M By = ¢ for alt pairs @, 8. A, and B are merely distipet
singletons selected fron) Cr; i { Ao }ucs and {Ba}acs have been defined,
the cardinal of \ (Aa\V B,) is less than ¢, but card Cp = ¢, Thys we
<g

can select poinis abs € Cy — U {(A.\/ B,), and define Ag = faz) U

a <8
(\ A4,), By = fha) L (U Hg). Let 4 = U Ay aneh = g2
w O g < a<]
oA and B are clearly disjoint subsets of B2 coutaining A, and

R, respectively and any nondegenerate closed connected sub.
set of B must intersect buth 4 and B,

— 4.

e

Every open subset of f? contains some nondegenerate closed

connecled set, so must intersect both 4 and B. Thus both 4
and B are dense in f¢.

3. Suppuse 4 were separuted by the disjoing open sets {7 and V;
ANU = g1 ANV 2 4 C{UVV). The com
mnRofUU YV separates the plane, so must c
erate closed connected set (' But then 1w
though CC X — A This contradic
similarly, B) is connected,

Plement
onfain a nondegen-
1kl intersect € eyen
tion shows that A {and,

125. Gastin’s Sequence Space

erms (including the null seguence denoted
, the positive integers, and TV iy the collection of
all unordered pairs (that is, all subsets of size two) from Y. Now if o
amd g are arbitrary finite sequences, we will denote by a8 the sequence
formed by adjoining 8 ty the end of @, by o > 4 (1 € Z%) the condition
thata > 7 for alla € o and by 8 D « the existence of sequence ¢ > {
such thut 8 = gy, For 2Ny sequence w, let {7(a) = (g € ¥ig D af.

Befare defining the topology on X, we select SOIME GHE-L0-0Ne Currp-
spondence p between the countable wet 177 and the set of positive prime
uumbers. Then we define ALY X W) — 2+ by qlnw) = [pwil.
Finally, we defipe the topology 7 on X by selecting the set 17 o) as open
neighborhoods  of the puint o € Y, and Viln,w) = {n,w) |\

126.
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U {og(m,w)) \J UifBg(n,w)) as open neighborhoods of the point (n,10) =
(nlef]) € 27 X W.

1. (X,7) ean be shown HausdorfT by a straightforward c?ntszdera-
tion of cases. If .8 € ¥, a 5 8, then we can find an in eEEI:Q n
larger than any term of a or 8. Clearly U,.(f} ﬁngn(,B% —t m;
Buppose v € ¥ and (nw) = (n,|a,8)) € Z+ X ; se eztn -
integer i greater than every term of the sequencesi Y, ag ,V EI;
By(nw); then Un(y) M Valnw) = &, for -, havmg. an ihe '
number of terms can never equal ar;{_—n,w) 01" Bu{nw) since {})
each have an odd number of terms, F-mall.),', 1{(' Eﬁ,,w) ;= (’?, {a,I,H‘ct
nnd (mye) = (m,ly,010) :u-fcdistinct,_pmutmn (Z+x W), “esi;_or
w0 integer § greater thun any t:erm n aq(’n,w), Bq(ﬂ,tv_)f, 79(":)} o
diy(m,z). Then Vi(n,w) could intersect V. (m,z) only I 1.’;me .
points ag(m,w) or Bg(n,w) equaled one of the poin -yqd t,h is,
dq(m,z}. 1ut this could happen only if ¢(n,w) = g(m,z), an
would mean {nw) = (m,2).

2. Udv) is a neighborhoud of y € ¥, let Z(’i:ﬂ = t("’{“ﬂes}ﬂe

s X Wleg(nw) Doy or Bglnw) ;v ’Ih‘ﬁ“ '31"‘"'15} ev “_y

point of Z{z,y} is a lmit point of Uiy); in fact, Uilvy =
UViy) Y Z(Gy).

3. B ~3d €Y, ZEwy) N Z(,8) # & for all iLj e Zt thisk lshst;
because we enn abvuys fiwd a point (n,w) = {re,1e,B}) such ta‘a
gl{n,w) > mnx (07), and &« D, v and 8 _'),-6. Thus cvery.t\w ‘15..-
jeint open sets in (X,7) have closures with nonenpty intersec-
tion. This shows that {X,7) is conneeted.

4 Let X' =Y {(n{adin e Zf, w7 (}‘] Then .cveg\'r rela‘:
tively open neighborhood of a point in X* is apen in \L "T:I.,d:(,
un :ﬁ-gumcu!, similar tu that givcn_ ﬂb{)V(.) shcml.rs that_ P fl:. ‘X‘
connected. But the point 0 € ¥ is o dispersion point or X°
stnee X' — 0 i totally disconneeted.

Roy's Lattice Space

127. Roy's Lattice Subspace

Let {€.} 2, be a countable eollection of dfsj'ui-nt dense s'ubesetg ;féi{f
rationals (5 we coustruct the space X by juining to E.[r’z_) ek
r € Cif an ideal point w. Neighborhoods of the points ol rcéinary
{ry2n)—that is, of points on the even munbered lines—are o

upen intervals U {r,2n) = {({,2n) l [t — rl < ¢}. But a neighborhoud of
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Counterexamples

_________________ s :)m

_________ My _F

o T

e S

I e {3

3 -——-6—.-5— —————————————

2 __..E.__a..__ ___________

?:, E,ﬂ;nt _of thf form (r2n — 1) is a stack of three open infervals
x(b, .u _l) = {({t,m) ' ff~rl<e m=ay _ L, 2n - P
Jgu: :;vz u)elihbcrl'wod of '{;he point w consists of all lines numb’ere(-i >'

alw f(s) € X|i > 2n}. These neighborhoods form a basis

for a topology + on the cauntable set X, The subspaco X ~ feo} will be

denoted by X*,

L ‘ -
gcr‘lt)lfl (::ilsed set containing un evep numbered kine muyst, contain
oot Jacent odd m.nnbered lines since every neighborhood of
Hne;}[ (po_mté on 1';he line {(r,)) € Xl = oy _ 1} interscets the
o Or:e} ‘t’( [i = 2Zn} and frd) € X|i = 2 — 2}. Similarly

PEN 5et containing an odd number d B in
both adjacent even numbered lines, rer fine mmust contain

12

'?*l;ppoje A1s an opcn.uud elused subset of X which coretaing w
& en;1 f:ont,amsg neighborhood {7 = i} € X|i > 2ul of '
an:;e“ is :_:lo:_sed, 1t must contain the next lower odci_ numhereug
Cleér;;;n;:: it 1st (gl)en 1t contains the next eveq numberad {ine

must therelore eontyj i .
and thus all of X, Thug Xis conie?:lt{e:;ms b belay o

3. i’i};etid;]zal Point w is & dispersion point of X, for X* =
: {;) ;n gf{se]?arated‘ and thus totally disconnected, Fop whenever
) 33) € X*, wherer « % we enn find an ivrational num.

ber ¢ between r and ¥ whi i
which vield i .
X[r < ¢} and {(ry) € Xir > t)}{, % & separation of X- {{r,i) €

— {w}

4. Since X* i - .
i connecitsﬂdmtalfiy separated, X* st be Urysohn; but since X
image of o inal[xo Ir}:uunts;(l;]c, X cannot be Urysohn since the
. . »11 would be connected and o Y wh
18 impossible, unless the lmage is one poin countable, which

5. However, X is completely Hausdorff

» Since no two Do i
have the same first coordinate, ot

Thus we can find sufficiently
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short intervals around the points with disjoint elosures. Further-
wore, X* is not regular sinee the neighborhood U,(r,21) cannot
contain any closed neighborhood whatscever. Thus X* is not
zero dimensional.

6. X' contains no isolated points, so it is dense-in-itself; thus X~
is nutscattered, Neither is it extremally disconnected for U, (r,2n)

is not open since it contsins points of the form {(5,2n + 1) and
{f,2n — 1) but does not contain any of their neighborhoods.

7. If V.{r,2) is a neighborhood of the point {r,2), V.(r,2) cg‘nj_&_i}l_s
points of the form (3,1) which are interior points of V. {r,2)

Thus V. {r,2)" = V.(r,2), s0 X is not semiregular.

Cantor’s Leaky Tent

129. Cantor’s Teepee

Let £ be the Cantor set situzated on the unit interval [0,1]; let p be the
point {3,4) in the coordinate plane. Let X be the cone over ¢F with
vertex at p. That is, if L{¢) denotes the line segment joining p to the
poinit ¢ € €, X = U{L{¢c)|c € C}. If E denotes the subset of ' con-
sisting of the endpoints of the deleted intervals, we let X denote the
cong aver F: Xz = \J{Lic}le € E}; similarly, if F=C — K, Xr
denctes the cone over F. Then we define Y = {{z,) € Xzlyv & Q},

p

0 1

where @ denates the rationals, Ye = {(x,9) € Xply € Q}, and
Y = YU Yy Both X and Y earry the induced Buclidean topology.

To prove ¥ connected we consider a separation A,B where
p € A. We will show that for some dense set 8 C €, A contains
all the points of ¥ which lie in the cone over 8 {except those for
which y = 0); thus A = ¥. For each ¢ € ¢, we let I{c) be the
Feast upper bound of B M Lie); if B M L{e) = &, weletl(e) = e.
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Then I{c) ¢ Y unless le) = ¢, 1 ise i

. = ¢, for otherwise it would be a ji
}})}011\1; nf both A‘ an{% B. Furthermore, f{e} = ¢ can be irl: l}u:
. 5\ Yponly if it is in Yg, or equivalently, in - fop the y
Lf)(;rdluute of I(c), namely 0, is rational, Thys for exch ¢ € Y
etther ie) ¢ ¥, orife) = ¢ € V. esh

Let 8= c€ il = )b, and let T, = fc € ClLEe) N
O L(e A

(;g i@' | H:'llera, -lf i} s an enumeration of the rationals ;
vl Hio = {ardlie) = (£,r:) for some ¢ € F}. Bach J7, '-“
clos_ed, _bom]ded subset of the line y = Ty and ¥is .th;, conti o
]%E?;?CEOH t._hr()ugh P of Hy; s0 cach T, iy closed. Further?l::?:
"ﬁ:_ A LE;) —“hﬁ fur. cgvnr"v ¢ E. K :uu'l eaele g > 0, for if {44 E"
o },’E v ;.,m_ r,-! - uh},» ;;Bm l'.'ltltm:il .-mil (w) € N s
dha e g; b g_. WH, CANE, w0 i, M fe) C
Thus each 7T, CFs0if T = \UP, 1o vy i y
_I(c) nm'xt be rational—sinee utherifi:ell(r:) é‘; ]éﬁ})’{. If-{}::'e l:.
1mpossxhie‘ He€F Thus ¢ = v ST v.'l:(,zre C ?i:s“a lfh .
ipnleéesillitém; spae% i iz:i T})}un_table and each ,T,- i nowhere dﬁ:
. i = 15 an e Interi Tiin s : -
;@;lﬁe we ef.)ul_d findd an open izle{:r:lf if’ ::a:h 1‘;}:3:: p;“: |"(‘:|J ?‘uz_'
S(; % 5, f[!lm:St (l}lfl tc;z,}f: rzt:c;}; tif AT ;herg must be a point of 0,
. ‘ategory, but €' is not. Furthern,
open subset of (' is of the first ¢ in € b o
mus'st, contain a point of § = ¢ —(ﬂ(t}e‘g\fj‘];r: t%:::[,)‘selfi}lu?f {h st?'t
Set?\;,‘:; i:i:ﬁipuw 7 € B; then, since 8 is dense in (', (:V(}l:;: :::)en
Tt Lo ng'g mterfects d segment of Lic} for somoe ¢ € 8.
. Y definition of &, the get ¥ (L) - 1e}) is containgd
in A whenever ¢ € S;thusg € Asod =y This o that ‘
it com ey - L3S Proves that §

;Ile: p(l):nt p = (.%,%) is a dispersion point of ¥, for each point, of
roored ; f tp]fls}a c;mponent of ¥*, For suppose A s 1 con

subset of ¥° then clearly 4 must i j ithi .
1 : ;- 1 ¢ lie entirely withi g
gi:: Egc)), fr_fﬁr;:uyoi;h(':r\'ns'e some line through P would sppam:e“z(.

e " is totally dise : 3 : ai '
0o bt ¥ distonnected, su A ean contain ab most

But V* i -

(m;plgn ::1 ;ﬁtft(;;&'!f separated, fur the lingy L) are the eptEasi-
’ o - Tu see this we observe th: i € i
the intersection of cot i it ) i

188 OVer cartain intervaly eontainin i
' ; cones aver als ¢ £ ¢ which
:;'f ;}:{:;tﬁ_ld_ closed in ¥*, Furthermore, each upen and cloyed
SIME A point r € Lie) M 7* o i :

et : L, st conedain /(¢ o
sthiee otherwise there would be s point g € Ly oy ‘i(:;zi ‘:](Ii ’
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B.{q) in the complement of 4. Assume
that g lies above r in L(c}; a similar
argument helds if g is below r. We
con then find an interval (s5,1) contain-
ing ¢ such that the cone T over (s,f)
is open and clused, and separated by
B.(g). Then ihat part of AMT
which lies below B,(g) is an open and
clused subset of ¥* whose complement
together with p is an open and closed
subset of Y. But thw Is Impossible
sinee Y is conuected, so o4 mwust contain all of Liey M Y2

4. Clearly Y contains no nondegenerate compaet connected proper
subsets g0 is punctiform.

Binee no point of V* is selated, Y is not scattered,

The direct sum of ¥* with modified Fort space is totally dis-

connected but neither scattered nor Hausdorff, since modified
Fort space s scattered and totally disconnected but not

Hausdorft.

130. A Pseudo-Arc
By a chain B in the Fucldean plane we will mean a finite collection of
open sets {D.7 (called links) such that D,V D; = @ iff i — 5] > 1.
A pseudo-are joining two points a,b in the plane is any set in R? re-
sulting from the following inductive construction. Let 3] be a se-
quence of chains such that

(i) The diameter of each open set in D, is less than 1/4.

(it} The clogure of each link of 2, is eontained in some link of D,
(i) ©e is crooked in Dy, that is, if D, D € D, withm < =
and DV C DY, DY C D] with [k — | > 2 then there exist
D, D" € Dy, with m < s <! < n such that D is con-
tained in a link of D; adjacent to D{ and similarly D' is con-
tained in o link adjacent to D).

¢ i3 in the first link of each chain ©; and b is in the final link
of each chain. '
Dt = ':J D; denates the set of all clements of clements of ©,, then

{iv)

X = N %" with the induced topology is a pseudo-arc.

I, Since X 15 an interseclion of closed sets, it is closed. Since each
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element of ©, has diameter less thap 1
t . and D, has anly
many links X C 9," is bounded. Thus Xis colmpa,t:t.n) e

2. X is connected. Suppose ) and C: are two disjoint
_(and thus compact) subsets, Then for some ; 3/1 s I--d.
inf [c_f(a:,y)|(a:,y) € €1 X Ca} where d is the in,duwed E:x“ i
metrie on X. Thus there is some lipk B whose closure iut:,\
next’her €y or €, but since the closure of every lnk of ey
chaiu contains & point of X, U0 =X, ™

3. X contains no decomposable subcontinuum, that is. X ;
X cont: ) 8, Xish
;tinjiy 1f1deco‘mpusable. Le_t Y C X be any suhcmlf,immmer:
le be the sum of two distinet proper subeontinua 1 gy | &
llmu_ there are points p € I, ¢ € K and an integer j suchltbj
the distance from g to H and p to K are hoth greater than 2/,

;3‘,-1 Dy = zD;;;_“DL;_, - DLy DY} and 9, = pw
wtn s, DIFL DY 4, subchains of ©, ang Dy fr:.'

p to 2. Without loss of generality assume p € P/

contains no point of K, therefeore it must erf:lta.ilf) ;,. ;:;10111::1 tf;i I?

;).Tmﬂmtly, D;_, {_:ontains ho point of H but some point of K'
oW sinee Dy is crooked in M; there are links DA Dt pea

with r < 8 <t such that £ Di,, and Dt rD:"+1 .C,D"

;I(‘,}::;ij“ 'ci;lta;n; no point of K but both J_rJFi'r'“,.'.mdJ b 111:;

n points of K. 8i
T P ndesoros Eilll:]ie T <s<{ K cannot be connegted,

131. Miller's Biconﬁected Set

i;iti gtb;;f a_no:vhere dense perfect set contained in the unit, interval |
e K " ;z (,_ ):VI C R Let Kyb_e an indecompospble continuum :-;m-h'
= W. The space X is defined using the axiom of chojee

us follows. Let @ be the set of
. com , .
which separate X, and ¢ the set posants of K, @ the set of conting

of subsets of a fixed eou
e K 3 ntabie depy
i, hiset ﬂfuoi'l K which are themselves dense in the interior of sonie squ:r:
P.g an with edges parallel to /2 which interseets W, Let (1), ¢, ¢
‘- . . benwell ordering of the elements of v o,

f;.s than tI:Ie Lf?rst ordinal Q@ of cardinality e, Likewise let 7,
(-1} - LY i i ’ 4 '
and oy, oL De, L be similay well orderings of & ang O

respectively. For each §2 define 4 i
e ety a < Ndefine M/, C K and g sinple closed cupye

C where the a ure ordinak

B Mo=p. € BAKIB,NA~ g
) M= it B, Nawx g '
(i) For ondinals p » & and
_ M3 = of
different composants of K; @ O U and iy pelong
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{iv) J.separates K;
W J.NQA=-D)=Jd. NN = where M = \JU M.

]

We define the space X to be the set A \J M with the induced topology
from I

1.

Fo show that X is conneeted, we first note that ¥ is a subset of K.
Now if U/ and V are open sets in K such that X /') V and
XNUand XMV are disjoint, then X N U and XNV are
separated sets in K? which is completely normal. Thus there
exist disjoint open sets U’ and V* which separate X. So the
complement of U \J V' contuins & continuunr which separates
K. Thus by (i) we have a contradictionto X C U U V. S0 X s
connected.

Now by () and (1) M. is either empty or a singleton. Bince A is
countable, (i) implies that no compesant of K confains a con-
nected subset of Al for any such set is uncountable. Now if & is
s connected subset of X such that ¥ is & proper subset of K then
N is a proper subcontinuum of K and hence lies in some compo-
sant so N also lies in the same composant, a contradiction. So
the closure of N in X is X, which means that every connected
subset of X is dense in X.

Consider the family of sets X /M B,. We pow show that there
ts no set containing at least one element of each X M B, which
dues not contain all of X M By for some 8. Let @ be any set which
contains a point of euch X M B,. Then since X is dense in K,
{iv) implies that ) has a point in every set X M J,, for J. is a
continuum which separates K and thus any dense subset of K.
By (v) and the choice of the D,, @° = QN {J (X NJ)) is

denwe in W. In fact since J, /™M = @ we know ¢° C A so
Jo M D, #= & for every a, which implies that every neighbor-
hood of & point of W intersects §°. Since Q* C 4 and is dense
in W for somie 8, Q" D Ag. But by {(v) X MJz = A M Jgso Q
aned thus @ contains X M J,.

By using the preceding results, we can now show that X is bi-
conneeted and contains no dispersion point. If X were the union
of two disjoint connected sets X; and X, X, would be dense in X
singe it is 2 conneeted subset of X, Hence X, interseets X M B,
for every a; since any set with a point in ecach X M B, contains
some X M\ Bg, X, must contain some particular X M By, But X,
must also have a point in every X /M B, thus in partieular in
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-A ("L Byso X, v x 2 ¥ @, Thus X is bleonnected, Nowif X -
lS' disconnected fur any point p, say X — P=Yi'VY, .
NiNY,=giga separation, then ¥, \J lp} is connerieg
ot dense, a contradiction. 8o y can not have a dispersion pot

ISL'I. Wheel without Its Hub

Let X ‘be the closed unit dise in g2 minus the erigin. The topalogy ¢
for X 13 generated by adding to the induced Euclidean tapology K]
upen intervals on the radii contained in the open unit dige

X() s conneeted beenuse it g the union of rachi hmnenmurphicu
(O, 1] abl of which mtersect the conneeted it cirele,

3 . T

2, ff"uxthmmme, .)x 5 arc connected for we can obtain an are be
I\Ieen Lwo.pomts by running out along the radiys containing
the first point, wlong the circumfersnce Yr the radiug containing

the second point, and in along this radius 10 the second point,

3. ;‘he Euelidean .length of the shortest gy between a angd can
Ie used fo (‘iehne 4 metrie on X; by convention we dechie
d(a,q) =_0. The topology determined by the metric o i Precisely
7, and d s a bounded metric with bound 2 + ;. -

4. Asin t!le order topology, every point is 4 eut point, for if P is
any point of A., then the open radial Segment connecting the
orgin t0 p and its complement give a separstion of X — ipl

o

But the topology on X is not the order topology for any line
order on X. Assume that it is, and BUppose a < b < s whe r
a,l‘),c belong to the clreimference (7, Then since ¢ c{mtain‘m
neighborhood of nuny of its points, there exists a pointx € ¥ —b— I(':’
such that e « r < . Then {t € ) < zf and {1t € QY > .r[,
i ce the cireumference Cis

133. Tangora’s Connected Space

I',ot Jff, ¥.Z he mutually disjoint apd exhaustive dense subsets of the
:]Llij rI;ne ﬁ,_ for example, the dindi: rationals (those of the form m/.?")L

mamning rationals, and the irrationals, We expand the Euc]idcm,
topulogy on R by adding as open sets XVY, and sety of the fm-m1
I € XUV |- 4 < 8 where 2 € Zand 5 > 0, x, v,

) . ' ‘ and
Z then inherit the subspace tepology.
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1. With the above topology X and Y are totally disconneected sinee
their topology is an expunsion of the BEuelidean topology in which
such sets are totally disconnected. Z is clearly diserete.

A=Y U Zand B = X\ Zareclosed being complements of X
and ¥ respectively. Moreover, every pointz € X Eives a separa-
tion, {e € Ala < and {u € Ala > x), of A. Likewise poinis
uf Y give separations of B. 8o A and B are totally disconnected.

3. The space R = A\J B is connected in the above topelogy al-
though it is & union of two closed totally disconnected subsets.
For suppose €D is a separation of £ where some polnt of
is fess than some point € D; let p = Lub. {c€Cle<d}. If
pisin X or Y we obtain u contradiction since € and D are buth
open and hence whichever one contains p contains an open inter-
val of X or ¥ about p. Likewise, if p € %, whichever one of €
or D contains p contains an open interval in X\ Y sbout iR
again & contradiction. ITence A \U B is connected.

Bounded Metrics

If (X\d} is any metric space we define new metrics for X by & =
d/{1 + d) and A = min (d,1).
1. That 8 is indeed a metric follows from the following proof of the
triangle inequality:
d(z,y) dy,2) d(zy) + d(y,2)
T4dy) " 1+ dy,2 = U+ dlxy) + diy.z)

= (@) + A + 111 2 [[dan)l + 1 = 5(x,2).

2. Sinece d = §/{(1 — 8), the metric § is equivalent to the original
metrie d, for any open ball in one metric contains an open ball
in the other metrie.

3. The metric § is bounded (by 1), but the space (X,6) need not be
totally bounded. Suppose, for instance, that (X,d} is the real
line with the Euchidean metric. Then Bj(z;e) = {ylé(z,y) < el =
bylie — yl < /(1 — 9} = Balz: ¢/(1 — &), Clearly for small «,
nw finite nuber of such balls can cover the real line,

4. By iterating the process by which we derived § from d, we ean
produce a sequence of equivalent, bounded metries {d.}, related
by g = &, /{1 + d.).

4 is also bounded by 1, and s a metric for X since min (d(z,y;,1)

(43
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e Leiinderexampiles

< min (d(z,2) + &z,y),

1} < min (d(x,2),1) + min f
Clearly A is equivalent,

{2y}, k Duncan’s Space
to d since they agr

ee for all spu)

e e f positive
Let X be the set of strictly i“cr"w“&; mﬁmiimi(\]-;::?:ﬁ{{; II)) is the
: 3) = lim N{ax}/n exists, ’

6. If (X,) is the regl line with the Fuclidean metrie, the opey integers such that 8({z)) ,Ell:, ( ‘hich are less than n.
B4(0,1) s the interval (—1,1). Its closure Ba(0,1) is [— L1 b umber of elements in the sequence = é-"«’:'}é‘ X We then define a
the closed ball {zla0,z) < 1} equals X. :(I) will be called the density of the p;:l(ﬂ -’; Lt 1a(z) — 3(y)| where

_ N ) = k(z,y)-
7. Any bounded metrls on a topological space X opn he used metrie on ‘:f bllf th:’ "jm;sgl;m;dgrﬂwhjch ,:c,, # yn; if T =y, we set
. a is the least 1n
define the Fréchet metric on the product space X7 - I ';g’g; f 0
o i dunyr = 5 . " r cheek that
(where each X, = X } which yields the Tychenoff produet Loy "o venrtfy that (X,d) is o metrie space, we nccfi u'f;f} Ll)m;;(z e
ogy. If & is the bounded metrie on X, we simply define the prds b To venly N i(z,y). Certainly k(r,p) = min {k(z,2), k2,031,
uct metric to be d(x,y) = d*(ry, 7, }‘ (yn, e ) - Ay} < (i(d-’Z) B ality for real numbers shows ﬂ'fﬂt
B2 0. e bapology of (1) s b oo i) 501 < ) 591+ 1) ~ 8. The range
Tychonoff product topology by a direct eomparison of hagy Iﬁ{x;,lizv ffjr d now follows trivially. (Note that f; 15 35 ::) 2)
neighborhoods, ﬁ?;;ric since k(z,y) > 1, and 0 < 3(a) < 1; thus d(z,y) <
8 I (X,d)is the real ling with the Euclidean metrie,

we can defips
4 special metri¢ by

i the
2. X is a subset of Z%, but the topology » on X is not the same as

h z ince the Baire metrie
subspace topology o }nduce{i from Z} o SIZ;(; since p(z,y) <
_|_= y wg) = Loy Fel e o ey e o an expmaion
D= e | (a9}, we huve o C . Thus the topology on X is
11 8 .
Heroie bug straightforward caleulations can be used to verify of the induced produet topology. . X.0), there-
that o is indeed n metric on X, and that it yields the Enelidean Each projection map 7.: X — Z is cantmu-r)us on (t; ’ar(;ject .
topology. In fact, a(x,y) < Iz — ¢ for all oy < X, Butin (X,s), 3. ba R lp o on (X,7). 8o any compaet subset of X mus p 7 But
the positive integers forn, o Cauchy sequence sinee olnm) = ff e e bsets s’ince ouly finite subsets are eompffci'; . ini.inite
[n — m|/Q + NI + |m]). Of course this Cuuchy sequence hys finite su en metric ball B will have some 7,(B) which is tha‘;
ne linit point in X, 50 (X,0) is not a complete metric space. orery (fg) iently Iarge n. This can be seen by C’F’Ser}j 1ngl Jitial
f;fr ;;1 *ic ¢ mefms that the sequences ¢ and y agree in their i
ey
135.  Sierpinski’s Metric Space

. p 1

msities which are approximately

d ultimately have densities w - : i
zei?;?’ Taﬁus no open subset of (X,r) ean be contan::}[:‘ inaco

IfX = {a)i = 1,23 .. 4is i countable set, the function d(z,x,) = piet D  sommaot nor compac,

L+ 1/ + j) for ¢ 5« J, 4@415) = 0 s & metric on X.

I. Since |y Xld(zay) < 3} = {2:], each point in ¥

th(,’, t,o‘poIogj; g

L3 s b t] . k = i’ P t t 'ni(ﬂ k) 1}9
'}["irate[i 7 . 'h L each t 15 Compaﬂ‘- F ¥ ¥

- ()p(«ll. &U 4 3uppose = U . WIer: k. [+
h) 0, . 3 e l!letrl{, d is k=1

; inly. there
the discrete the greatest integer in the finite set x.(Y)). Certainly

) ; i} - such a point
exists in X a point {x;) where for ench €, x; > m(t;:gt,}izﬁcis uﬁteu-
: -, » gets Yy, thus our supp

2 (Xdisa complete metrie space, since all Cauchy sequences nre would be in none thth(‘.o&;t;acz

eventually constant, uble. Hence & 1 not a-c i is countable, as is the
. N a intezers 3 !
3. Let 8, = {y € Xjag,z,) S 1+ 1/2n). Then 8, = {z,, Tup, 5. The set of all ﬂnlt-e. bequf:lfi: 0';1111:13 %he set of all z € X of the
Fate - . .}, 50 {8,) is a nested sequence of elosed balls whose set of ull arithmetic sequ .
mtersection, M8, is emp

ty. Of course the radii of the sets 9,

. . ) is an
form (2, r Xy Lugry + - o) Where Xass, Tnsny -+ )
OXI Ay, Tgy 0 vy X

tonverge to 1, not to 0,

tion of
arithmetic sequence is countable. Furthermore, the collec
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all finite unjong of such

sequences is clearly denge in X, ut
sepurable. .

6. Since 2% ig totally separated, sy iy (X,0)
But no point in (X7} is ssolated, so
not seattered. Sinee Y Is me
extremally disconnecteq.

and therefare wly (
X iy dense-in-itself and
trizable but not discrete, iy isg

137, Cauchy Completion

F(Xd)isa metric spaee, we lot X7 be the set of ] equivalenge ¢lay
of Cauchy stquences where the Sequence {x,} is equivaleny to {y.) '
Hm dz.p) =0 we define on x* metrie oy "

o=
[in @y}, where lau} is any element in the equiv.
n— s

alence elass 7
and similarly, funl € 4

I The metric space (X 0% g complote, for if b s o Cage
Sequence in X*, and if for each », {a..} is a representative v
quence in the equivalence class 2%, then the diagonal SeqUence

{#a.]isa Cauchy sequence, and jtg equivalence class, 2°, iy (he
limit of the sequence |z,*}.

3

The mapping f: X , y* which takes ea

chpointx € ¥ into the
equivalence elagg conlaj

ning the eonstant sequence {2, 2, 2,
15 a distance Preserving injection of X into Xx*

(Sl fly)) = d{a, 4. JOX), the iy
" subset of X

That i
e 0f fin X" iy a dense
138. Hausdorfi’s Metric Topology

Let (8,d) be 5 metric space, and Jot

bounded elosed subsets of

Sis,8) = inf d(s,b), and let
hER

a‘:._lp fa,B), and jat 6(A,B}
wkz g

X be the collection of all nonempty
S Let f:8%xx Y be defined by
$XXX 5 pe be given by ¢{4,B) =

= Max {g(ri,b’},g([f,d)!. (Y.8) is kuown g
Hausdorft’s metric space,

L If for some s & Sand B € X, fis,1) = 0, we must have s € B
since s would be o limit poing of g, T

! hus if g4 W) = 0, every
pomt of 4 muyst belong t, p and conversely; thus i this ease,
A =g

5=

Since diab) < d(e,c] + dic,h)

for all g, b, ¢ S, we have:
ng d(ab) < d(a,e) + inf die,b).
F

Hence fla,m) < wf d(g,.e) 4
c
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il fieB), 50 fa,B) < f{a,0) + sup f(c,B). This then yields
w10, B) < 53p J(5,0) + 9(C,B), or g, B) < glA,C) + o(C.5
A 4

‘Thus § satisfies the triangle inequality and is thus a metrie for X

1. The Post Office Metric

Let (Y ) be the Euclidean plane with the oedinary nufatric; let O b-e t};e
Wi ir; iln this plane. We define a new metric d* on X by the foum; :;
' ‘r: p ! T - H = &
d'(pyl = d(0,p) + d{0,¢), whenever p,g € X,p#q;ifp=ygq wele
Iy = 0.

I d" is o metrie for X sinee clearly d*(p,q) = d{{l:,p) + d(0,q) <
O + d03) + dO) + d0g) = d () + d" o).

2. Ewvery point but 0 is open since if B ;é F),' and f ¢ m‘v}d (D.,p;hthe
h open metric ball around p of radius ¢ is just {p}. Basis neighbosr-
hoods of 0 are just Euckidean open balls.

3. Bmce each point of X — 0] is open, X is not sep&%rable and thus
' neither e~ompact nor compact. A,ltlmu.gh each point of X — {(;}
has 4 compact neighborhood (namely, itself) 0 does not; thus

15 not locally compact.

4. The open metric balls around 0 are alsn f:losmi, so X I3 ze;o
. dimensional. However X is not extremally d.lsconnented .sn;lcie ]i re
closure of the open set £ = |(z)|y > 0} is BV {0}, w lc. is
not open. But X is scattered, since every nonempiy subset con-
tains isolated points.

140. The Radial Metric

Let (X4} be the Enclidean plane with the ordinary metric; let 0 be t_l:;

origin in this plane. We define s new metric ¢* on X by the composite

formula:

0 ifp=gq

d(p,q) i p = ¢qand the line through p and g passes
through the origin.

d{(p,0) 4 d{g,0) otherwise.

d*(pg) =

. . . .
The metric d* corresponds to a model in which all distances are meas
ured along lines radiating from the origin.

1. The metrie balls around peints removed from the origin con_ms%
‘ simply of line segments lying on a radial path through the point;
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We generate

in addition, buints neyr have g oy :Hd i
cluded in thei, Metric balls, T Heteiborbo ol

3. The -induced topology op each ray ¢
Euclidean topology, Thye X is arc ¢

which tonnect pointg ¢ and b §o the origin are ares,

Radia] Interva] Topology
& topology , un

the toordinate plane X from g

ta

AN, and BN La; elear]
o5 clearly \ U7, ang
subsets of y Containing and B, L

I[.{\,:) tx;s qut fira, tountable beey e it does pot h
\.?ﬁ:,.e a[jus at thf origin, F_‘ur Suppose {7, ) Were such a g
n= U2 8.} is any sequency of angles, and if oy

15 the middje half of the Interya} f4. and Otherwise 7, - L
. = L,

#VC 4 countable

rough the Origin jy gy
nnected gipep the ray.

i
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then \UJ, is g neighborhood of the origin which containg no
set U7,

Clearly (X,7) is neithor Lindelsf nor locally compact: no neigh-
borhood of the origin has a compaet closure, Similarly, X is not
separable.

X paracompaet sineg each kubspace L, is paracompact, If
{Ud} covers X, (U, N L} has a locally finite refinement, N?
{in which for exch 6, a neighborhood of the erigin 0 belongs to
#t most one of the sets N} so0 the collection [Nio ¢ N
together with \U{N!|o € N!lisa locally finite refinement of
fUL).

X is not metrizable sinee it is not first countable. Thus, since jt
Is regular, it cannot have 2 o~locully finite base. This can be seen

directly by assuming \J B, is u base for 7, where each B, is a Jo-
i=1 ]
cally finite family. This would mean that {7 &€ | B0 € U}
i=1

Is a countable Jocal basis at 0, which does not exist.

2. Bing’s Discrete_ Extension Space

3. Michael’s Closed Subsgpace
If B is the set of rea} numbers with power set, Powelet X = 1p {0,114,

AEP

where {0,1},isa capy of the two poing discrete space. For eachr €
et &, be the point of X whose ath coordinate (r,), equals 1iffr € ;
let M = {a, € Xlr € R} (OIf we think of X as the power set of /7,
M becomes the collection of principal ultrafilteps of B.) Now if X has
the Tyehonoff topology 7, X — A7 is clearly dense in X » S0 We gy
form the diserete extension ¢ of » by X — M. In (X,e), cach point of
X — M is open, while euch point of A7 retaing 1ts 7-neighborhoods, Let
¥ be the subspace 34 \U F of (X,0) where F' is the collection of all finite
sets in X — )7,

1.

Bince X — A7 iy vpen i (X,0), M is a closed subset of (X,o).
As a subspace, 3/ inherits from 7, and thus from e, the discrete
tepology, sinee if €M and if \ = {r}, then w1 =
{a.]. A slight extension of this argument shows that any two
disjoint subsety of A7 are contained in digjoing Open subsets of X .
i & s a subset of g torresponding to a subset f, of M, then
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6.

m (1} and m»~(0) are disjoint open sets in X which contaiy
and 3 — L, respectively.

Now (X,0) is cluarly Hausdorfl, so to show that it i nnrnll!‘
need only find disjoint open neighborhoods for disjuint clowdf
sets A; and A,. Let U; and [7, be disjoint open sets in \

coutain, respectively, A, M Af and A, M M, Then (I, — .4:;3
(Ay — M) und (I — A\ (4, — M) are disjoint open ol
containing 4, and A,, respectively. '

Sinee X — Y C X — M, Y is ¢losed in (X,0). Thus, since (X4
is normal, so iy the subspace b,

Neither (X,0) nor ¥V is parieinpact, sinee the covering by badg
sets has no locally finite refinement, for every neighbarhoud of 3
point x, € A/ must contain infinitely muny points of X — X
{or of F),

(X,e) is not even metacompacet, since some points of X - ¥
will always lie in infinitely many neighborhoods of points of N,
so the eovering by basis sets has no point finite refinement, L
¥, which does not eontain all the points of X — M, is metacom
pact. For let {17,} cover Y; seleet for each & € M a weighhw.
hood U, € {U,}. Then V, = I EU|(r} €2} = Ur D1y
is open in Y, and {V.} is point finite. Thus the family {V}
together with the singletons of # = v .. 3/ form a point finite
refinement of {1/},

Sinece ¥ is normat and metacompact, it is countably paracom.

pact; but it is not pitracompact,

PART I
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SPECIAL REFERENCE CHARTS

The next few pages eontain six basie reference charts which display the
properties of the various examples. The praperties of a topological space
have been grouped into six nearly disjoint eategories: separation, com-
pavtness, paracompactaess, connectedness, disconnectedness, and metriza-
tion. In each category we have listed those spaces whose behavior is par-
ticularly appropriate. We usually chose any space which represented a
rounterexample in that category or which exhibited cither an unusual or an
instructive pathology; vecagionally we listed a space simply because it was
so well behaved.

Entries in the charts are either 1, 0, or -, mesning, respectively, that the
space has the property, docs not huve the property, or that the property is
inapplicuble. Oeoustonsl blanks represent properties which were not dis-
cwssed in the text and which do not appear to follow siniply from anything
that was discussed. Examples are listed by munber, and in a few cases the
tables extend beyond one page in length.
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Special Referenee Charts

Table 1
SEPARATION AXIOM CHART

TYHYCN
ATENEINTS

TYIUO N
ATILATENOT)

TVRHEON

HYIA DY
ATALTTINO.)

NHOSIA[)
VAN
VIO EINEY
*L

L

fer

'L

By

L

'L

°L.

oo oo~ SO

[ e R o W e B on R B e B — R

SOoOC QO -~

s = B Bl e B A

[ J e e e

oD oo o
D0 oo

— O o

17
13

21

1

24

BN

—

—

1}

o oo

e i e an ]

<

OO oD OoOoC O

- e R e e Y e B - e Y i . e e < R - i

cCoocoo

jass It e B 2 e o

oo oD

=

[

=

]

cocoao
o e B i e
~o oo o
— oD
cCoooT o
cooc oo
fan- B o B e I S

[ B B ]

(= B e I

[ o I e Y e Y e B e

o R s Bra i en B0 o

(= B I ==
oo oo o
fuae B e T R s B
oocoocao
cooco Do
o e R e i o o L
[T =R R T —
o TR o B O o T e B
L B B I
[ |
— = = =t -
TERE=zg

<

™

—t

-

—t

SOSOoOoS oo

SCooooo-Do D

D000 O=O -0

fan

—

DD D e I CD e et e D

e D o OO e o O

—

—

—

— O -

-y

—

—

1

103

105
126




165

Bpecial Reference Charts

ADREnchx

(333

Table IT (continued}

Table II

COMPACTNESS CHART
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Table IV
CONNECTEDNESS CHART
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PARACOMPACTNESS CHAR'I;

ENIO NOISHISSI(T

AFLOTANOOIE

GELIFNNOD DY LT11v001]
QEIDTMKOY HIVF ATIVOOT
QELOFNHOD) ATIVOOT
QILOANNOIVHLL])

AEL) AN KOSHILAF]
QILIANNO]} oUY
QELOINNGD} HIVJ

QILIANNOD)

wqﬂ«.NhE.m.Gﬁ

'I 1104

TYWHON iT1a,0
LOVANODVIATY AT8YLN000
LOVAROOYUY] 218vinao?y
,H_Uf.mw.m_oo .ﬂqmthz‘.poo
IOVAIN0D¥LATY
LOVANOIVEY g

LIVEIGT)

o B = = i B I Y e Y o o e B

O~ OO SO Qoo oD

L e~ o B - - R~ e

o OO OO e e

L B B B e B B e I B I I I ]

COoONMO o OO0 OO ~O0O

Dot D D e v O D e e 05

D oo OO =k OO S — o

OO A RO DO -~

== =R R I I I R R )

=

[e=)

fae}

—

—

=]

-

=

-

18
19
23
35

10000000000000
e L T TN
10109090090009
Ll B T I RNIUREP. — ot — —
IRl R e —
01000000000000
101111000111 —_

lﬂlolﬂﬂﬂuﬂuﬂﬂuaoﬂu

00000000000000

28

42
4l
iR
62
64
78
82
103
144

16
48
52
33
55
56

SCSCOLDLOUWLOOoOODT D

DO OD O oL OD D D00 mmm O

o= = e B e B e T e e e B e R e B e R o T

fan == e R e B o R e e i e B o e

Ll e [ e e e Y e e e B e T S

o OO C OO OSSO

CODOLoCoOoOOSWMoO

SR O DO DD = SO —

O D OO DO DD

Lo e e A e T B T T T T

57
G0
61
66
75
101
116
118
119
120
121
126
128
132




164

Special Reference Charts

SpPpeiiny

L

1

Table VI
METRIZABILITY CHART

Table V¥
DISCONNECTEDNESS CHART

IOVdHOOVEY]

ZO¥EWOD) KTA¥EROO))
10VAWD]) ATIVOX]
LOVEWO))

JIMOGE VY

AHODELY]) ONODIE
LLATIGD) ATIVIIDOTOLO],
AS¥EY ILINI XTIVIOT]-0
TIGVLNAOD) AN0DIY
HVI303Y

ATAVZIMLATY

TYNOISNANIT ouay
QELOINNOISI(] ATTYIRTULXY

ATLVAVEIZZ 171V,
(RLIINNOOSIT XTTViO],

GRLOANNOOSI(] Havg ATTVIO]

Y1253
U 00110110110101010001 =T
— han i o T = B R
NHoz1y foe-]
.D 011911011010111110011 =
- 111111
z
L|oa~—
011011011111111111101
L
Lioco
1..-..1..1..'.1110111
1111111111111111
Lan B o B R
o
..H.._ 011111111
11111111111
i B T

111111101110110]010111111110
BRSNS o R R -l e e R R R B B o B B o R e
il = = B = M= i e i e B R e B R o S S ]
M- OoO OO =~ 0000 o000 oo OO0~ O~ S0 o O
Ll e e =R B B B B T B T T T I TR S R
L B B e B I e T B I e T e R e B s e T B Qi — e = = P —]

-~ | -2~ ! | 1 1S T [ | v | v ] e ] e —_ -
101111000110101]010101011110

.I.U11110001101Dl.l.UlDﬂDanUi.Ognu

.I.111101111111101111111111111




GENERAL REFERENCE CHART

AILOANNOD) MNONOULY [ &« & = o oo T -
g "ONO[ LON QHVD - - | —_ — |- — - e ..H.-
O = auv) == || = =S o 0= oo - e —
D NVILL, $¥H7p GEV]) | o~ | — e | o e oae | o
HIEVINAQY [ ~ =@ | == w0~ me D S wsomse
AFONALVYY (INODAY — e — o o — = L e
HLATIWG "OdOJ, | — — =~ | t (R P o
HSVE HLINL] ATIVOOT-2 | m = e = = e o D . ot i o Do oy
AIEVZIHLA | v = —m & @ oo oS8 oo Dom
HIAEIRI(] —_— - D el oo o 0@ S S oo
(CAHEHILVOQ —_— = (=] — et — oy TS oCc o
TVNGISNIRNI{] OddY —— — — S oo D= o Pl I e ]
TORI(] ATTVRARLNG] — o O == = O S = oo ST oo
QHLVHVIINE ATTVLG ], —_ == o fun R B v [ e} fou e} S oo o
QALFANNODSI(] MTTVLO], | m =~ =& & S oS8 ScocC S oO205c
I LY ATIVEO, | m i e o= < ocooco coo T D~
ENIO] NOISHUARI(] VH | o = = R R T - =)
CEHLOW NNDDLET N o —_ o T T OD o oo
QHRLIINNOTY FEY IV | e = S TeCcCD DTS 2D =S oo oo
UULFANNOD HIVE TVOUT [ e o e = o~ e ot oo e = S oo o~
SELDENNOD ATIVOUT | o m . i m o e iy e e o
ALY N NG LT [ oo B RN = oD — cooco oo
MULIANROMEAALA | oo e 3 momrom o 2 0 D R o o o
TALIINNGDY DUV | o= o = =l = T = o SR~ D
QULMINRODDY RV | @ € © = & =~ i oy =T == o
a"._.HU_MZZCU =SS - = — - — — - = I B
FL AT | — — = — - oo - -mT oo oR
TYRHON, ST, | ——— = = S oo = Tco Sooooo
B LAIROODLL Y LN MY e - — — —_ = - —_ —_——_ = —
Latdama g oesaogy o - - = - _— —_———_— =
...n!...;—.uf_.lll...- —_ - = = e — ~a— = o=

e B -
TEMER D NIV ML)y

,z-qw:u.z..:nu...w:_,a - —— —_ —_ = ——— mmmoas
.m\._ﬂa.—.Z_DCO :ZCU”&T_ — e T — - D oy - — Ulll.l'r.lll..
ATEVHYIELY | ot oo o ey }J{H!!

LOVdROyy ortvoorp-a | L L o L T .o
LOVIEOT) o PEOMLY | o o L = - .o Ic-
TTAVAKROD) ey 4 O R — —— —_— HII‘U;UI
LOVIROSOUIHE] | o o = = I . _Tcr
TAVEROD I 00 HVEM | = oo ST CTTme-
Lovdnoy) ATIVINHITAGS | oy o o & o= . T TmmEee
LOTEI0;) NIEVANI0D | L e o = llm.” HH] T o=-
- - —_— -

AOTIANIT | o sl = HI!H(I

TS WEON AL “cL CooD 2 meee -kl oo

. N Abaddgag | o S STSSs ono sosoa
TYRHO N Albaaannn | o o o T oo sco. HHMH!U
. i fm) = o = = -0

VT RSy Sni‘“wsm.o? LLlo 2 Sses == SCeeee
E _,_mrou T2 9 scoag omm o T
.Eﬂwxm me~® 2 ocose oeo )J))..:..J

HVTADTR IRy ~—~® > S2oce =soo HM.U.MHH
NHOSXE) | - o i = Sooe oo a UUUUMM

H.h — ey — = e B i - S DD

L o T T e e ST Sme o

I I oo o2

TN = 22 oce aoo oS oo o

— oy oo o 2o o ST oa



General Reference Chart 172

GENEEAL REFERENCE CHART (continued)
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PROBLEMS

SecrioNn 1

If {A;} =, is a countably infinite collection of subsets of a topological
space, show that \J A, C U 4.

i=1 iml
True or false: AM B = AN B.
Show that the complement of an F, set is a G; set, and conversely.

. Show that any space with an open point must be second category.

What is the smallest second category space?

Show that if foré = 1, . . . , n, C;is a closed subset of a topological

space X, and f: X — ¥ is continueus on C; for all s, then f is continu-

ous on W (s Show that this result does not hold if one eonsiders in-
il

finitely many closed sets.

Show that a filter F on a set X is an ultrafilter if and only if for every

two disjoint subsets A and B of X such that A \J B € F,eitherA € F

or BEF.

Sgcrion 2

Show that a space is Ty if and only if every point is closed.

. Show that a spaee is Tz if and only if every point is the intersection of

its closed neighborhoods.

. Show that a space is Ty if and only if every open set contains a closed

neighborhood of each of its points.
151



182

10.

1l
12

i3
14.
15.
6.
i7.

18.
18,

21,

24,
25.

28,

29,

a0.

Appendix
Show directly that every second countable regular space is completely
normal. {Do not use any metrization theorems.)
Show that TIX, is completely regular if each X, is completely regular.
Show that every Urysohn space is completely Hausdorff.

SecTioN 3
Show that every separable space satisfies the countable chain
eondition.
Prove the following generalization of the Tietze extension theorern:
any reab-valued continuous funetion on u clused subset X of & normal
space Y may be extended continuously to aft of V.
Show that every fully normal space is normal.
Show that disjoint compacet subsets of a Huusdorfl space have disjoint
neighborhoods.
Show that every paracompact Hausdorff space is normal.
Show that every o-locally compact Hausdorff space is normal.
Show that every locally compact Hausdorff space is completely
regular.

. Show that every Lindelsf T; space is paracompact.

Show that every second countable Ts space is both Lindelsf and T;.

_ Prove Tychonoff’s thearem: the produet of an arbitrary family of
topologicul spaces is compact iff each factor space 18 eompact.

. Ts the product of second category spaces always second category?
Prove that every open subspace of a separable space is separable
Show that the countable Cartesian produet of separable spaces is
separable.

SecTion 4

. Show that the following are equivalent:

(i) X has no nontrivial separation
(i) X has no nontrivial subsets which are both open and closed.

. Show that the union of any family of connected sets with a nonempty
intersection is connected.

Show that if 5 space has just one quasicomponent, it must be
connected.

Show that every quasicomponent in a locally connected space is
connected.

Show that every countable Ty spaee is totally path disconnected.
Show that every zero dimensional space is Ty

31.

Problems 183

SzcTioN b

392, Show that every metric space is perfectly normal.

33. Show that a metric space is compaet if and only i it is complete in
every equivalent metric.

24. Show that every second countable space has a o-locally finite base.

CoOUNTEREX AMPLES

35. Show that the indiscrete topology on a set (Example 4) is arc con-
neeted iff the set is uncountable.

36. Show that the uncountable particular point topology {Example 10)
does not have a o-locally finite base.

37. Show that the uncountable excluded point topology {Example 15) has
a e-locally finite base.

38 Show that the either-er topology (Example 17) has a olocally finite
base. .

39. Prove that the finite complement topology on an uncountable set
(Example 18} is second category.

40. Show that the countable complement topology (Example 20) is not
path connected.

41. Show that the countable complement topology (Example 20) does
not have a o-locally finite base.

42 Show that the countable complement topology (Example 201 is second
category by showing that a set is powhere dense if and only if it is
countable.

43. Show that the compact complement topology {(Example 22} is second
countable.

44 Show that the compaet complement topology (Example 22) is not
second category.

45. Countable Fort space (Example 23) is metrizable since it is regular
and second countable. Find a metric which gives this topology.

46. Show that Fortissimo space (Example 25) does not satisfy the count-
able chain condition and thus is not second countable.

47. Prove that the real line B (Example 28) is a complete metric space.

48. Show that the rational pumbers are dense in the real line (Example 28).

4%, Show that a subset of Euclidean n-space (Example 28.9} is compact
iff it iz closed und bounded.

50. What can be said about the cardinality of cennected subsets of R»
{Example 28)7 :

51. Show that the uniformity {Sa}aser where Su = {{z)lzy <bor
z,y > a} is not the usual metric uniformity for the real Iine (Example
28) but still gives the Euclidean topology.
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5R.

89,

60.

61.

62.

63.

64.

65,

66.

67.

8.

G0
70.

Appreadix

. Prove that the Cantor set {(Example 28} is zero dimensional,
. Shony that the metric d of Example 30.5 is indewl a metric for the real

numbers.

. Show that the rational numbers with the Euclidean topology (Exam-

ple 30) are not topologically complete.

. The set of irrationals in {0,1] (Example 30) is topolegically complete

bt not compact ; thus it eannot be totally bounded, Show this directly
from the definition of totally bounded.

. Show, without using the concept of eompactness that (0,13 s not

homeomaorphic to {0,1] (Bxample 32.7).

. Show that no hemeomorphisin of 2 onto itself can map A = [0} U

(1,2]V {3) onte B = [0,1] U {2} \J 13}, even though A is homeo-
morphic to B {(Example 32.8).

Show that the one point compactification of the frrationals is second
entegory, but not first countable (Kxample 34).

Show that the one point compactiication of the irrationals is not arc
connected (Example 34).

Note that the one point compactification of the irrationals (Example
341 is of course locally eompact. Why should this be considered
artificial?

Show that the Fréchet product metric (Example 37.7) does indeed give
the right topclogy for Hilbert space.

Show that every separable metric space may be imbedded in Fréchet
space (Example 37).

Show that every connected order topology (Exumple 39) is loeally
connected. More generally, show that any connected topology on a
linearly ordercd set is loeally connected provided it has a basis of
convex sets.

Ordinal spaces for countable ordingls (Examples 40 and 41) are
metrizable. Find appropriate metrics.

Show that open ordinal space [0,I') for I' < @ (Example 40) is topo-
logically compHete.

Cive as many different reasons as possible why elosed uncountable
ordinal space (Example 43) is not metrizable.

The extended long line (Example 46) is not path connected since no
path can join any point to . Prove this.

There is an obvious definition of sin 2wz for every z € L7 the extended
long Hne (Example 45). Why is this function not continuous?

Shew that the altered long line (Example 47) is not locally compact.
Show that the ultered long Hne (Example 47) does not have a e-locally
finite base by showing that this property is preserved in open
subspaces.

7.

78.

7.

81,
82,
83.
1.
85.

18

87.

88.

89,

90.

1.

Problemms 1%5

. Prove that the lexicographic ordering on the unit square (Example 48}

yields a perfeetty normal topology.

2. Prove that the unit =quare with the lexicographic ordering topology

(Example 48) is indeed first countable.
Show that every right order topology (Example 49) is locally compact.

. Show that the right half open interval topolegy (Example 51) is neither

Ioeally compact nor second category.

. Show that the right half open interval topology (Example 51) is

erfectiy normal.
p k

. 8how that the nested interval topology {Example 52) is not second

eategary.

Show thut the overlapping interval topology (Example 53) is second
category.

Find an infinite subset of the interlocking interval topology (Example
54) which does not have a limit point.

Show that the interlocking interval topology (Example 54) is not
strongly locally compact.

. Show that the interlocking interval topology (Example 54) is neither

second countable, scattered, nor biconnected.

Show that the prime ideal topology (Kxample 50) is second category.
Show that the divisor topology (Example 57) is not fully T..

Show that with the divisor topology (Example 57), the positive in-
tegers are weakly countably compact but not countably metacompact.
The cvenly spaved integer topology (Example 58} is metrizable.
Tind a metri¢ which yields this topology on the integers.

Show that the integers Z with the p-adic topology (Example 59) are
not extremally disconnected.

Sheow that the relatively prime integer topology (Example 60) is not
biconnected. Hini: first show that the prime integer topology {(Ex-
ample 1) is not biconnected.

Prove the assertion (Example 63.7) that a subset of the countable
complement extension topology is compact iff it is finite.

Show that the countable complement extension topology (Example
63) is neither pseudocompact nor metacompact. From what otber
property of this space can you then determine immediately that it is
not eountubly metacompact?

Prove that the vountable eomplement extension topology (Example
63) satisfies the countable chain condition.

Show that Smirnov’s deleted sequence topology (Example 64) is sep-
arable but not first countable.

Show that Smirnov’s deleted sequence topology (Example 64) is
connected, but neither path connected nor locally connected.
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95,
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97.
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99.

100.

101,
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103
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105.
106.
107,

108.
109.
110.

111.
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Show that in the rational sequence topalogy (Example 65) every sub-
set is a (5 set.

Show that the rational sequence topology (Example G5) is not
paracompact.

Show that for appropriate choices of sequences of rationals, the ra-
tional sequence topology (Example 65) need not be T%. Is this topology
ever T,?

Discuss the rational sequence topology (Example 65) with regard to
whether it is ever countably paracompact for any choice of sequences.
Show that both the indiserete extensions of I (Examples 66 and 67)
as well as the pointed extensions of B (Examples 68 and 69) fail to be
semiregular.

Show that the indiscrete rational extensmn of B (Example 66) is not
countably metacompact.

Show that neither disvrete extension of B (Examples 70 and 71) is
g-coripact.

Show that the discrete rational extension of B (Example 70) is zero
dimensional, but neither scattered nor extremally disconnected.
Show that the diserete rational extension of B (Example 70), with the
metrie given in 70.3, i¢ not complete. Is this space topologieally
complete?

Show that the double origin tepology (Example 74) is e-compact.
Show that the irrational slope topology {Exaniple 75) is not second
category,

Show the deleted diameter nod radius topologies (Examples 76 and
77) are arc connected. Hini: consider paths which contain no hori-
zontal segments at all.

Show that althouwgh neither the deleted diasmeter nor the deleted radius
topologies (Examples 76 and 77} is second countable, the deleted radius
topelogy is Lindelsf,

Is the deleted radius topology (Fxample 77) metacompact?

Show that the hall-dise topology (Example 78) is are connected.
Show that the irregular lattice topulagy (Example 79) is seeond
category.

Justify the global and local compactness properties of Arens square
{Fxzmple 80).

Show that the space developed in Example 829 from Niemytzki's
tangent dise topology is normal.

Prove that Niemytzki’s tangent dise topology (Example 82) is netther
Lindeclsf nor o-compact.

Prove that Niemytzki's tangent dise topology (Example 82) is arc
connected.

112,

113,

114.

115,
116

117,

118.

1149.

120,

21

122,

123,

124.

£29.

130.

31
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Show that the metrizable tangent disc topology (Example 83) is are
connected.

[s Sorgenfrey’s half open square topology {Example 84) countably
metacompact? (Hind: publish this one.)

Show that Michael's product topology (Example 85) is zero dimen-
sional, but neither seattered nor extremally disconnected.

Show that Michael’s product topology (Example 85) is first countable.
Show that Michael’s product topology (Example 85} is second
category.

Show that the deleted Tychnoff plank (Example 87) is loeally com-
pact but not Lindelsf.

Verify that the Dieudonne plank (Example 89) does not satisfy any
of the global or local compactness properties.

Prove the assertion that (N M X) C N which appears in the con-
struction of Hewitt's condensed corkserew [Example 92}.

Prove that the wesk parallel line topology (Jixumple 95) is paracom-
pact while the strong parallel Line topology {Example 96} is not. Show
also that both topelogies are metacompact.

Show that the eoncentric cu'cies topology (Example 97) is not per-
fectly normal.

Show that the minimal Hausdorff topology (Example 100) is
pseudocompact.

Show that the Alexandroff square {Example 101) is neither perfectly
normal nor separable.

A metric space is compact iff it is complete in every metric. Z# (Exarn-
ple 102) is not ecompact though we describe a metric in which it is
complete. Find a metric in which it is not complete.

. Why is the uncountable product of vopies of Z+ (Example 103)

neither countably compact nor Lindelaf?

. Show that the subspace Y of Helly space consisting of eontinuous

piecewise linear functions, which take rational values on the diadic
rationals (Example 107.3), is dense in Helly space.

. Show that the Boolean product topelogy on B¢ (Example 109) gives

a space which is not Lindeldf.

. Show that the Stenc-Cech compactification of the infegers (Example

111) is not first countable.

Novak space (Example 112) is clearly not compuet.
cover with no finite subcover.

Show that the strong ultrafilter topology (Example 113) is an expan-
sion of the Stone-Cech compactification of the positive ntegers.
Show that the strong ultrafilter topology {(Example 113) is neither
locally compact nor first countable.

¥ind an open
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Show that the single ultrafilter topology (Example 114} is perfectly
norik end paracompact, but not locally compact.

Show that the integer broom (Example 121) is Ts.

The construction of Bernstein's connected sets (Example 124) as-
sumes that the number of closed connected subsets of En is ¢, the
power of the continuum. Prove this.

Prove that the pseudo-are (Exnmple 130) is nonempty.

Prove that the whes] without its hub (Example 132} is locally arc
eonnected.

Prove that the wheel without its hub (Example 132) is not Lindeldf.
Show that the wheel without its hub (Example 132) iz not loeally
compact,

Show that the wheel without ite hub (Example 132) is topologically
complete, though not complete in the given metric. )
Be lieroic. Verify that the function o(x,y) in Example 134.8 is
indeed & metrie.

Verify that Sierpinski’s metric (Exampie 135) on a countable set
satisfies the triangle inequality {axiom M, for a metric).

Show that Dunean’s space (Example 136) is not complete in the given
metrie. [s there s metric in which this space is complete?

Determine whether Dancan’s space (Example 136) is zero dimensional.
Fill in the missing details in the construetion of the Cauchy comple-
tion of a metric space (Example 137.1).

Show that the plane with the post office metric (Example 138) is
complete. Since it is not compaet, it is not complete in every equiva-
lent meiric. Find a metric for this space which is not complete.
Show that the radizl metric (Example 140) really is a metric and that
it yiells a complete metric space.

Show that the plane with the radial metric topology {Example 140} is
not locally compaect.

NOTES
Part I Basic Definitions

Secrios 1. GENERAL INTRODUCTION

In the defnition of 1 topological space, condition O is actually redun-
dant since the union of an emply faniily of sets is empty, and the inter-
section of an empty family of subsets of a set X is X itself.

With the abbreviations introduced in Example 32.9 we can explicitly
represent the semigroup of sets formed by complementation and closure
(Table 23. The inclusion relations between these fourteen sets can be
summarized by

- !
N \
) O , N,
N, N,
0/ e/

where lurger sets are above smaller ones.

The Tychonoff topology on the set 11 X, 1s churacterized by the fol-
atS A

lowing universal property: if 4 is any topological space, and i

fa: Z — X, are continuous there exists a unique eontinuous function

f:Z — 1 X, such that =, O f = fo. Indeed Il X, with the Tychonoff
EA

= A o
topology is the product in the eategory of topological spaces and con-

tinuous mappings. Likewise the guotient space X/R is universal with
189
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Table 2
OPERATIONS TABLE

1= identity e=- m = fo

"= complement f=vo n=e~

o==interior =0 p=1£o
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respect to continuous functions f: X — ¥ such that the relation defined
hy f on X extends B. That is, if p: X — X/R is the projection and
F: X - Ydefines {(by o ~ z' if f{z) = f(2")) 2 relation which extends B
then there exists a unique continuous function f*: X/R — ¥ such that
J' O p = f. By the universality of p this condition characterizes X /K.
Finally, the topelogical swn is characterized dually to the produet by
the inclusion functions of the summands, and thus is the sum or eo-
product in the category of topologieal spaces and continuous functions.

When dealing with identification topologies the concept of a saturated
sot is often helpful. If f: X — ¥, and if A C X, A is called u saturated
subset if A = f~Y(B) for some B in ¥, that is, A is the complete in-

Notes 101

verse image of some subset of Y. Themapp: X — X /R is not generally
open but it docs take saturated open sets to open sets.

1t should be noted that the existence of any nonprincipal ultrafilters
depends on the axiom of cheice for the construeiion of ultrafilters uses
Zorn's lemma to produce at least one maximal ultrafilter containing
& given filter. In Example 111, we construet many distinct ultrafilters’
on 5. eountable set; in fact, we construct 2¢ ultrafilters of which only ¥o

nun be principal.

Sgerion 2. SEPARATION AXIOMS

Certain genera) constructions dealing with the separation axioms are
worth special note because of their generality and effectivensss. Many
others of more special applicability can be found among the examples.
I one doubles the points of a space (technically this invelves taking
the product of the space with the two point indiscrete spaca) the re-
sulting space is no longer To, Ty, or T, but clearly the new space
satisfies the same higher Ti-axioms as did the original space. More
generally since for i < 3}, the preduct of two spaces is T; iff each space
is T;, we may use products to destroy certain selected T; properties.

Properties Ty and T are often satisfied vacuously if the space X ha-,s
no disjoint closed sets. The open extension topology (Example 16) is
a genersal construction which accomplishes this.

The results that a space is Ts iff every subspace is T4 and that every
perfectly normal space is completely normal may be found in Gaal [19].

Bgerion 3. COMPACTNESS

A proof of Alexander's subbasis theorem can be found in Gaal [19],
p. 146. :

Tt should be noted that our definition of countably compact requires
that infinite sets have w-sccumulation points, while most suthors give
a definition of countably compact which is equivalent to our definition
of weakly countably compact. Since in a T\ space every limit point is an
w-sccumulation point it is clear that the two different definitions eoin-
cide in a T space. Hence the theorems which correspond to the equiv-
alences of CC, CCa, CCs, and CC, ususlly involve the assumption that
the space involved is Ti. In particular the proof due to Arens and
Dugundji [15], p. 229, that a space is compact iff it is both countably
- gompact and mefacompact does not need the assumption that the space
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is T, if one defines countable compaetness using w-accumulation points.
Finally vne should note that doubling the points of any space renders
it wenkly countubly compact, for then every subset has i limit point,
namely, the twin of one of its points. Note that the space is no longer
T, and in fact is still not eountably compact H it were not so originally.

The Venn diagram which relates ihe countability axioms and compact-
ness oniits the concept of separability since there are general means
available to render each example separable or nonseparable, as desired.
To make any space separable without affecting any of the other prop-
erlies involved in the Yenn diagram one simply takes the closed exten-
sion of that space (Iixample 12). The new point is then » dense subset.
Conversely, to render the space nonscparable it is sufficient to take
the product of the space with uncountable Fort space (Example 24}
which is compaect and nonseparable. The result will ther have exactly
the compactness properties of the original space but will no longer be
separable. There are other useful tricks for producing certain desired
alterations. We have already observed that the product of any space
with the two point indiscrete space effectively doubles the points of the
original space thus rendering it non-Hausdorff and all that that entails.
Direct sums of two spaces often have a different variety of properties
than either of the summands. And finally, the methods of the indiscrete,
pointed, and discrete extensions {(Examples 66-71) are frequently useful
in dealing with the higher separation axioms.

Further discussion of fully normal spaces together with proofs of the
relation to normal and paracompact spaces can be found in Gaal [19].
Proofs of the T, and T'; implications concerning the compactness prop-
erties ean be found in Dugundji §15] and Gaal [19].

The product property lists separability as preserved under countable
but not uncountable products. In fact, it is preserved under produets
of cardinality no greater than 2% this is proved in Dugundji [15], p.
175, and his proof is adapted in Example 103 to show that that product
space is separable for x < 2%, Dugundji also proves thai every sepa-
rable Hausdorff apace has cardinality less than or equal to 22%,

SreTion 4, CONNECTEDNEESS

The proof that Jocal connectedness is preserved under certain contin-
vous functions actually shows more. We observe that if the function
maps saturated open sets (open sets which are complete inverse images
of sets) to open sets then f preserves local connectedness. This condition

Notes 153

is always satisfied if the imnge of f bears the identification topology.
Trom this viewpoint, the given proof merely asserts thai any Haus-
dor(T imgze of o compact space bears the identification topology.

Countable spaces have some interesting connectivity properties. If X
is countable and T, then it is not path connected for the inverse images
of the poinis in the path would yield a decomposition of the elosed unit
interval inte a denurerable nunber of closed disjoint subsets, a con-
tradiction. If X is countable and connected it may not be Urysobn, for
if it were Urysohn then there would be a nonconstant real-valued func-
tion on X: the image of this funetion must be countable, hence not
connected. The inverse images of two components of the image will
then separate the original space. Finally, and trivially, no countable
space or finite space with more than one point is arc connected.

T¢ should be noted that the three point space with the indiserete topol-
ofy is u biconnected space with no dispersion point. Miller's example
(Example 131) is of interest because it is Hausdorff.

Secrion 5. METRIC BPACES

As in metric spaces the sets B(x,e) = {y € X |d{x,y) < ¢} form a basis
for o topulogy whenever d is either a pseudometric or a quasimetric.
The topology resulting from a psuedometric is not necessartly T; for
i < 3, but it is always T; and Ts for the same reason that metric spaces
are Ty and Ts. For example, the indiserete topology is given by pseudo-
metric d{x,y) = 0 for all z,y € X. Quasimetric spaces are discussed in
Murdeshwar and Naimpally [35]. The compactness relations for meiric
spaees also hold for pseudometsic spaces with the exception that wesk
countable compactness need not imply countable compactness, for this
result depends on the T, axiom.

It is shown in Pervin [40], p. 118 that in a totally bounded metric space
every sequence contains a Cauchy subsequence. Thus if s totally
bounded metric space is complete it is sequentially compact and hence
compact.

The Baire category theorem and several equivalent formulations are
présented in Pervin [40], pp.127-128. Pervin also proves on p. 124 that
all completions of a given metrie space are isometric.

That regular second countable spaces are necessarily metrizable was
proved by Urysohn [51] in 1924. In 1950 Bing [10], Nagata [36], and
Smirnov [44)] showed that a space is metrizable iff itis regular and has a
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o-locally finite base. The search for further metrizability conditions

contintes, centering around the normal Moore space conjecture.

That a space is uniformizable iff it is Ty was proved In 1937 by

Weil [52].

Niemytzki and Tychonoff {38] prove that & metric space is compact iff

it is complete in each metric,

18.

23.

26.

Part Ni: Examples

Tn 18.10 we prove X is not path connected by using the fact that
the unit interval cannot be written as a countable disjoint union
of closed scts. Since this result is used repeatedly to show cer-
tain spaces are not path connected, and sinee it is not usvally
proved in the standard texts, we prove it here.

Suppose I = \U C; where {C;} is a family of disjoint closed
t=1

seta; let B = g€, = | — \UC#, Then B iz nowhere dense in T
since each subinterval J of I contains an open subset L disjoint
from B. This follows from the fact that J is of second categery, so
some Cy is dense in some open interval L C J; since C; is elosed,
LC O 0 LN B = ¢4 Since B is nowhere dense in I, every
open interval {7 containing a point x € §C; must intersect
B — 3C; for U, being a neighborhood of z, contains a point of
IT—-Chsayu € Cu®. Thenif UMBNMaCa = &, CrMUisa
nonempty open and relatively closed subset of T/,

Now I itseli is of second eategory (in itself) since it is a closed
subset of T; thus some 3C; is dense in some nonemptiy open subset .
7 N\ B (where U is an open Interval in 7). Again, since aC} is
closed, this means that a0, M U = B M U.But this isimpossible,
since f UM EC, # &, then UM (B — aCy) = @&. This eon-
tradiction shows that f cannot be written as \JC,.

Fort [18] introduced this as an example of a Hausdorff space in
which some peints do not have a local basis of nested sets.

This more sophisticated type of Fort space is adapted from Arens
195
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28

30

32.

36.

39,

40,

[6]. It is of interest particularly because it is a countable space
which is not first eountable.

Thix discussion of the Fuclidesn real line is somewhat incomplete
in that it provides sanctuary for several logical circularities.
First of all, we refrain from asserting thai the real line is path
connected for such a statement, though irue, would be lacking
significance since & path is defined to be the image of part of the
real line. Furthermore, the fact that the real line is connected,
and that the intervals [a,b} are compact depends on the fact
that the real line is complete, either in its order topology or in its
melric. Since these completions are discussed later we chose to
avoid using them in Iixample 28. A logieally complete clementary
discussion of the topological properties of the real line may be
found in any introductory text on real analysis.

‘T'he complete metric on the irrationals is adapted from Greever
(21}, p. 110, where he proves & more general result due to Alex-
androff [1] that every Gy subspace of a complete metric space is
topelogically complete.

The sets in 32.9 are an explicit representation of the SEMIgroup
whose table is given earlier in these Notes.

The assertion that Hilbert space is homeomorphic to the count-
able infinite product of real lines was first proved by Anderson (3]
in 1966. Anderson and Bing [4) provide an elementary, though
lengthy proof of this result, together with a survey of related
problens,

Example 132 shows that the converse of 30,9 is false; 2 topologi-

cal space in which every point is a cut point need not be an order
topology.

The proof in 40.12 that every continuous real-valued function on
[0,42) 15 eventually constant is ndnpted from Dugundii [15), p. 81.
This proof shows also that any continucus real-valued function
on {,4] is also eventually constant, though this fact can be
proved more directly by observing that if f(2) = p, then f-1(p) =

STUAB(p, 1 /) = MYRB(p,1/7)), & countable intersection of

neighborhoods of 2, which niust contain some interval (a,9].

Every metric space is perfectly normal, and if L were metrizable
the proof in 45.4 would be unnecessary. But L is locally metriz-
able und this observation provides the idea for the proof as given.

61.

74,

75.

80.

B2,

83.
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This example was constructed by Alexandroff and Urysohn [2],
pp. 71-72.

This topology is a special ease of a tapology for any eommutative
ring with unit that is usually ealled the A-adic topology where 4
is an ideal of the ring K. We take as a basis of neighborhoods of
zero the sets 4%, the powers of the ideal 4. We then take the set
of cosets of these powers as the topology. B with this topology
forrus a topological group and thus is Te iff M A% = 0. In the
i=1
case that R is Hausdorff the function & defined by dir,s) = 27%,
where & 15 the lorgest power such thai r — s € A%, defines &
metrie.

The proof that the prime integer topology o is loeally connected
is due to Kirch [27]. '

Due to Alexandroff and Uryschn [2), p. 22,

Bing [8] introdueed this as an example of a countable connected
Hausdorff gpace; the first such axample was given by Urysohn
[4Y]. Bing's example, though connected, is not paih connected,
and the proof of this fact depends on the lemma proved above
in the note for Example 18,

Hewitt [24] credits Arens with constructing an example of this
type: we present & modified version, and then a simplified version.
Like Example 75, Arens sguare is a countable connected Haus-
dorff space.

The method of argument in 82.7 centers on a subtle but very
useful application of the Baire category theorem: if e, is a positive
number for each real number x then at least one of the sets
S: = {z € Rle. > 1/7} is not nowhere dense, so there is some
interval (a,b) and some i where {2 € (g, > 1/} 1s dense in
fa,by. This method of attack is used often in proofs concerning
paracompactness and metacompactness.

This example is adapted from Bing [10], p. 182. He eonsiders the
case where the subset § is hereditarily €4, that is, where § and
each of its subsets Is G5 Now no set of cardinality ¢ = 2% ean
have this property since any such set has 2¢ subsets, but there
are enly ¢ (; sets. So the existence of an uncountable hereditarily
(75 set depends on the denial of the continuum hypothesis,
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84,

83,
88.

89,

90.

92.

93.

Surgenfrey [45] used this exanmple to show that paracompactness
is not necessarily preserved even by finite products.

This example is due to Michael [31).

This example i3 adapted from Alexandroff and Urysohn [2],
p- 26.

This space was introduced by Dieudonne [13] in the same aréicle
inn which he formulated the definition of a paracompact space.

‘The Tychonoff corkserew was eonstructed by Arens and reported
by Hewitt [24]. Greever [21] presents a lengthy exposition of the
details of this example on pp. 77-79. OQur pregentation is a signifi-
cant geometric rearrangement of the original, and our proofs
rely more heavily on geometric imtuition. Both Hewitt and
Greever present the space as a cube with certain ideptifications
along the edges; we have simply unfolded the cube into 2
corkserew.

This example, very eomplex yet very significant, was constructed
by Hewitt [24] using & coodensation process first described by
Urysohn [60]. As in the previous example, we have relied heavily
on a geonmetric analogy in order to present a clear description.

To appreciate the significance of this example, we should con-
sider the relations hetween cardinality and connectedness. Any
Urysohn space has a nonconstant map to the real line, se if it
were connected, its image would be an interval with cardinality ¢.
Thus connected Urysohn spaces have cardinality > ¢. Urysohn
{50] showed that connected regular spaces must be uncountable
{(a separation of a countable regular space can be constructed by
induction), and also that there exist countable connected Haus-
dorff spaces.

Now the absenes of any noneonstant continuous real-valued
functions is & very strong form of connectedness which cannot
cceur in Urysohn spaces; we will call such spaces strongly con-
nected. Hewiit’s example shows that regular spaces may be
strongly conneeted. Figure 13 indicates the relations between
these conceptis, with the designation of certain significant counter-
examples. For simplicity here, we assume the continuum
hypothesis.

Thiz is an adaptation of an example given by Themas [49); by
translating his example into planks and corkscrews, we hope to
make clear the similarity between Themas’' example and
Tychonoff’s.

95-97.

98,
99-100.
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Each of these examples is from Alexandroff and Urysohn [2],
pp. 6, 13.
This example was first given by Appert [5) in 1934.

Both of these spaces are adaptations of examples developed by
Ramanathan in [41] and [42].

Hot strongly connected

N Not connected (62)

I
|
f
Countable i
i

(50)

g
T

" T | (28) | (78)

(75)
(1256}

101.
103.

107.

110.

Regular =+ Hausdorff Strongly connected = Connected
Urysohn = Hausdorfl Urysohn = Mot strongly connected
Regular and connected = Uncountable

Connected but not strongly connected = Cardinality = c.

Figure 13.

From Alexsndrofi and Urysohn [2], p. 15.

The proof in 103.3 that X, is separable whenever A < 28 ig a
special application of & proof in Dugundji [15], p. 175 that sep-
arability is preserved under products of cardinality < 2% The
proof in 103.6 that X, is not normal is adapted from Stone [46].

The treatment of Helly space is motivated by a problem in
Kelly [26], p. 164,

Most of the material about BX in its ultrafilter guise is adapted
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111,

E12.
113.

£19.

124,

125.

126.

fromy Gillman and Jerison [20], Chapters 6 and 9. The original
ideus are primarily due to Stone [47]. The method in ("ech [12] is
similar to the view of 8X os a subspace of & product space. The
churacterizing and mapping properties of 8X described in 110.3
express the fact that 8 is a functor from the category of completely
regular spaces to itself whose range is compact Hausdorff spaces,
and that k is a natural transformation from the identity to 8.

This discussion in 1114 is from Gillman and Jerison [20]. In
particular the claim that B, satisfies the finite interseetion prop-
erty is proved there in detail.

This example is due to J. Novak [39].

Notice that in this topology the closure of a basis set is the same
ns its closure in the Stone-Cech compactification. As with the
vurious dense extension topologies this renders the space not Ts.
This is & frequent occurrence that in an expanded topology the
closures of open sets remain unchanged.

The special infinite broom of 119.4 is adapted from Hocking and
Young [23], p. 113 where a sinilar space is used to illustrate the
concept of connected im kleinen.

The construction in this example is due to Hocking and Young
{23}, p. 110 who modified an idea of Bernstein [7]. Two aspects of
this example are worth further comment. In the construction we
assume that every nondegenerate closed connected subset of the
plane has the cardinality ¢ of the continvum. To see this we
merely consider the image of such sets under nonconstant contin-
uous maps to the real line. Such images must be connected, so
must be nondegenerate intervals which have eardinality ¢. Thus
the original connected closed subset has cardinality e.

Hecondly, in 124.3, we use the obvious but subtle fact that
every set which separates the plane must eontain a nondegenerate
closed connected set. This follows directly from the theorem (see,
for instance, Nowman [37], p. 124) that every component of the
complement of & connected open subset of the plane has a con-
neeted boundary. The complement of the union of two disjoint
vpen subsets of the plane will always contain some such boundary.

Further details, particularly concerning 1254, can be found in
Gustin [22].

From Roy [43].

128,

130,

131.

133.

136.
141,
142,

Notes 203

This example is from INnaster and Kuratowski {28, p. 241, a
paper which contains many similar examples.

The history of indecomposable continua may be traced back to
Janiszewski (25} whose example is rather different from the one
presented here. Our example is presented by Bing [9] though we
call it. a pseuduo-arc which was the term used by Moise [33], for
a different deseription of the same space. The footnotes in Moise
and Miller [32] give a good survey of the basic literature dealing
with the unususal properties of indecomposable continua.

For the extended proof that such an inductive construetion can be
performed one should see Miller {32] 1t appears that the inde-
composable continuum K of this example may be constructed in
the spirit of Bing [9] and Muoise [33]. Tt is necessary to keep certain
liriks of the chains long, but thin, and to adapt the arguments of
Bing [9] to use srguments about adjacent pairs of chains as used
by Moise to prove such & continuum is indecomposable. Our
proofs that X iz biconnected and has no dispersion point are
adopted from Miller.

This example was eonstructed by Tangora [48] as the solution to
a Monthly problem.

This is adapted irom Duncan [16].
This is one of many examples in Bing [10].

The space (X,r) i8 also from Bing [10] who introduced it as an
example of a normal space which is not collectionwise normal.
Michael [30] selected the subspace Y to be metacompact. That
normal metacompact spaces arc countably paracompact was
proved by Maorita [34]. These papers discuss at length several
areas beyond the scope of this book, all related to the metrization
problem. Tt remains, for instance, an open question of whether
the sssumption of netacompactness is essentisl in Morita's
theorem: do there exist any normal spaces which are not couni-
ably paracompact? Dowker [14] shows that this is equivalent
to the unsolved problem of whether the product of a normal space
with the closed unit interval is normal. Engelking [17] contains a
thorough diseussion of this topic with extensive bibliography.
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Accumulation peint, of a sequence, 5
w-, B

Adherent point, 5 .

Alexander’'s compactness theorem, 18

Alexandroff plank, 107

Alexandroff square, 120

Appert space, 117

Are, 29

Are component, 29

Are cannected, 29

Arens-Fort space, 54

Arens square, 98

Baire category theorem, 25 37, 197
Baire metrie, 123, 124 ’
Ball {open), 34
Base, of a filter, 9
of & topogy, 4
a-locally finite, 37

symmetric [for a quasiuniformity},

38

Basis, 4

equivalent, 4

local, 4
Bernstein’s connected sets, 142
Biconnected, 33
Bijective function, 8
Bing's space, 157
HBoundary, &

Index

Rounded, 36
totally, 36

Cantor set, 37
Category, first, 7

second, 7
Cauchy completion, 154
Cauchy sequence, 36
Clased extemsion topology, 44
Closed function, 8
Closed set, 3
Closure, &
Cluster point, 10
Coarser fifter, 10
Courser topology, 3
Cofinite tapology, 49
Compact, 4, 18

countably, 19

locally, 20

meta-, 23

para-, 23

pre-, 36

pseude-, 20

sequentially, 19

v-, 18

o-locally, 21

strongly locally, 20

weakly eountably, 19
Compactification, one point, 63

Btone-Cech, 129
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Comparable filters, 10
Comparable tepologies, 3
Compatible uniformities, 38
Complete, 36

order, 67

tapologically, 37
Completely Hausdorff, 13
Completely normal, 12
Completely regular, 14
Completely separable, 7
Completion, 37

Cauchy, 154
Component, 28

are, 29

path, 29

quasi-, 29
Composant, 33
{Condensation point, 5
Conneeted, arc, 29

hyper-, 29

loeally, 30

locally are, 30

Ipeally path, 30

path, 29

strongly, 198

uftra-, 29
Cennected between two points, 29
Connected im kleinen, 200
Connected in X, 28
Connected set, 7, 28
Connected spaee, 28
Continua, 33
Continuons funetion, 7
Continuous at a point, 8
Continuum hypethesis, 50, 197
Convergence of z filter, 10
Convergence of a sequence, 5
Countable, first, 7, 22

second, 7, 22
Countable chaim condition, 22
Connfably compact, 19
Connfably metzcompact, 23
Countably paraeompact, 23
Cover, open, 4

refinement of, 22
Cube, Hilbert, 85

Cut point, 33
Cylinders, opern, 8

Dogenerate, 28
Dense-in-itself, 6
Dense set, 7
Dierived set, 5
Dhagonal, 38
Diameter, 36
Dieudonne plank, 108
Disconnected, extremally, 32
totally, 31
totally pathwise, 31
Diserete metric, 41
Diiserete topology, 41
Discrete uniformity, 42
Dispersion point, 33
Distanee, 34
Double pointing, 51, 191
Pruncan’s space, 153

Eatourags, 38

symmetric, 38
e-net, 36
Equivalent, topologically, 8
Fgivalent bases, 4
Equivalent subbasis, 4
Euclidean topology, 56
Expansion, 15
Exterior, 7
Fxtremally disconnected, 32

Filter, &
coatrser, 10
comparable, 10
convergeace of, 10
finer, 9
limit point of, 10
neighborhood, 10
strictly coarser, 10
strictly finer, 10
Filter hase, @
limit of, 10
Filtered by, §
Filtored set, &
Finer filter, 8
Finer topology, 3

Finite complement topology, 49
Finite intersection axiom, I8
Tinite intersection property, 9
First category, 7
First countable, 7, 22
Fixed ultrafitter, 10
Fort space, 52
Fréchet product metrie, 64, 152
Yréchet space, 11, 64
Free ultrafifter, 10
Froniier, 6
F, -set, 3
Fully normal, 23
Fully T,, 23
Function, bijective, 8
closed, 8
continnous, 7
open, 3
Uryschn, 13

G;-Sﬂt, 4
Custin’s space, 142

Half-open interval topology, 75
Half-open square topology, 103
Hausdorff space, 11

pompletely, 13
Hausdorff’s metrie, 154
Helly space, 127
Hereditary, 4

weakly, 4
Hewitt's condensed corksersw, 111
Hilbert cube, 65
Hilbert. space, 64
Homeomorphic, 8
Homeomerphism, 8
Hyperconnected, 29

Identification topology, B
Indecomposable, 33
Indiscrete topolagy, 42
Induced topology, 4
Interior, &

Interval topology, 66
Invariant, topologienl, 8
[rrational numbers, 59
Irreducible subcovering, 23
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Isolated point, 6
Isometric, 37

Kolmogorov space, 11

Larger topalogy, 3
Lexicographic order, 78
Limit point, &

of a filter, 10

of a filter base, 10

of a sequence, 5
Lindeldf, 18
Local basis, 4
Locally are connected, 38
Loeally compact, 20
Locally connected, 30
Locally finite refinement, 22
Locally path connected, 30
Long line, 71
Lower Hmit topology, 75

Meager, T
Metacompact, 23
countably, 23
Metric, 34
Baire, 123, 124
discrete, 41
Fréchet, 64, 152
Hausdoril, 154
product, 64, 152
Sierpinski, 1562
Metric space, 34
Metrizable, quasiuniform space, 38
topologieal space, 37
Michael’s subupace, 157
MichaeFs topology, 105
Miller’s set, 148

Neighborhood, 4

open, 4
Neighborhood filter, 10
Nested sequence of sets, 37
Net, e-, 36
Niemytzki's topology, 100
Nonprineipal ultrafilter, 10
Normal, 12
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Normal {continued}
completely, 12
fully, 23
perfectly, 16
Notes, 189
Novak spuce, 134
Nowhere dense set, 7
Numbers, irrational, 58
rational, 59

w-acemmntlation peint, &
Open ball, 34

Open cover, 4

Opexn cylinder, 8

One point eompactification, 63
Open extension topolegy, 47
Open function, 8

Open neighborhood, 4
Open set, 3

Order topology, 66

Ordinal space, 88

p-adie topology, 81
Paracompact, 23
countably, 23
pointwise, 23
Particular point topofogy, 44
Path, 29
Path component, 29
Path conneeted, 20
Perfect wet, 8
Perfecthr normal, 16
Perfectly separable, 7
Perfectly T,, 16
Plank, Alexandroff, 107
Dieudonné, 108
Thomas’, 113
Point, adberent, 5
cluster, 1)
condensation, b
eutf, 33
di=per-ion, 33
isolated, B
fimit, &
w-accumulation, 5
Point finite refinement, 22
Pointwisr paracompact, 23

Precompact, 36

Principal ultrafilter, 10

Problems, 181

Product invarianee properties, 26

Produet metrie, 64, 152

Produet space, 8

Pseudo-are, 147

Pseudocompact, 20

Pseudometric, 34

Pscudometrizable {guasiuniform
space}, 38

Punctiform, 33

Quastcomponent, 2§
Quasimetrie, 34
Quasiuniform space, 38
Quasiuniformity, 37
separated, 38
Quasiuniformizable, 38
Quotient space, 9

Rational numbers, 59
Reference charts, 161-171
compactness, 164
connectedness, 167
distenncetedness, 168
metrizability, 169
paracompaetness, 166
separation axiom, 163
Refinement, 22
locally finite, 22
point finite, 22
star, 23
Regular, 12
completely, 14
semi-, 17
Regular closed set, &
Regular open set, 6
Relation, 38
Relative 1o, 4
Relative topology, 4

Right half-open interval topology, 75

Right order topology, 74
Roy's space, 143

Saturated set, 190
Scattered, 33

Second eategory, 7
Becond countable, 7, 22
Semiregular, 17
Separable, 7, 21
completely, 7
perfectly, 7
Beparated, 28
totally, 32
Separated by open sets, 11
Separated quasiuniformity, 38
Separated sets, 7
Separation, 28
Separation axioms, 11, 191

Sequence, accumulation point of, 5

Cauehy, 36

convergence of, 5

limit point of, 5
Set, Bernstein’s cotnected, 142

boundary of, 6

Cantor, 57

clozed, 3

closure of, 6

connected, 7, 28

dense, 7

derived, 5

exterior of, 7

filtered, 9

first category, 7

frontier of, 6

F.- 3

Gs-, ¢

interior of, 6

meager, 7

Miller's, 148

nested sequence of, 37

nowhere dense, 7

open, 3

perfect, 6

regular closed, §

regular open, 6

saturated, 190

separated, 7
Sequentially compact, 19
Sierpinski metrie, 152
Sierpinski space, 44
o-compact, 19
o-locally compact, 21
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e-locally finite base, 37
Smaller topology, 3
Smirnov’s topology, 86
SBargenfrey's topology, 103
Space, Appert, F17
Arens-Fort, 54
Bing's 157
completely Hausdorff, 13
completely normal, 12
connected, 28
Dunean’s, 163
Fort, 52
Fréchet, 11
Gustin's, 142
Hausdorff, 11
Helly, 127
Hilbert, 64
Kdlmogorov, I1
metric, 34
normal, 12
Novak, 134
ordinal, 68
product, 8
quasiuniform, 38
quotient, 9
regular, 12
Roy's, 143
serniregular, 17
separable, 7
Sierpinski, 44
T, 11
Tangora's, 150
topologieal, 3
Tychonoff, 14
Urysohn, 16
Spec A, 79
Square, Alexandroff, 120
Arens, 0%
Star, 23
Star refinement, 23
Stone-Cech compactification, 129
Strictly coarser fitter, 10
Strictly finer filter, 10
Stronger topology, 3
Strongly connected, 168
Strongly locally eompact, 20
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Subbase, of a filter, 9

of u tepulogy, 4
Subbasis, 4

equivalent, 4
Subcovering, irredusible, 23
Subspace, 4

Michael's, 1567
Qubspuce topology, 4
Sumn, topological, 9
Symmetric base (for a quasiuniform-

ity}, 38

Symumetric entourage, 38

T, space, 11
T,, fully, 23

perfectly, 16
Tangent disc topolegy, 100
Tangora's space, 150
Thomas’ corkserew, 113
Thomas' plank, 113
Tietze extension theorel, 20
Topological invariant, 8
Topalogical property, 8
Taopological space, 3
Topological sum, EJ
Topologieally complete, 37
Topulegically equivalent, 8
Topologists’s sine curve, 137
Topalogy, 3

chosed extension, 44

eoarser, 3

cofinite, 49

comparable, 3

diserete, 41

Enclidean, 56

finer, 3

finite complement, 49

hatf-open interval, 75

hal{-open square, 103

identifieation, 9

indiscrete, 42

induced, 4

interval, 66

larger, 3

\pwer limit, 75

Atichael’s, 105

Niemytzki's, 100

opeit extension, 47

order, 66

p-adie, 81

particular point, 44

relative, 4

right hali-open interval, 75

right order, 74

smaller, 3

Smirnov, 86

Sorgenfrey’s, 103

stronger, 3

subspace, 4

tangent dise, L

Tychonoff, 8, 189

usual, 66

weaker, 3
Totally bounded, 36
Totally disconnected, 3
Totally pathwise disconnected, 31
Totally separated, 32
Tychonoff corkserew, 109
Tychonoff plank, 106
Tychonofl space, 14
Tychonoff theorem, 26
Tychonofl topology, 8, 189

Utraconnected, 29
Ultrafilter, 10
fixed, 10
free, 10
nonprineipal, 10
prineipal, 10
Uniformity, 38
compatible, 35
discrete, 42
Urysohn function, 13
Urysohn lemma, 13
Urysohn space, 16
Usual topoloegy, 56

Weaker topalogy, 3
Weakly countably gompact, 19
Weakly hereditary, 4

Zoro dimensional, 33



